
PHYSICAL REVIEW A VOLUME 41, NUMBER 9 1 MAY 1990

Passage-time calculation for the detection of weak signals
via the transient dynamics of a laser
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The passage-time (PT) distribution associated with the switch on of a laser with an injected signal
can be used to detect weak signals. We calculate the distribution function of such a distribution.
Results for the mean PT interpolate between the limit of no injected signal and a simple logarithmic
law for strong signals. It has a scaling form with a single important independent parameter. The
variance of the distribution is more sensitive to the presence of the injected signal than the mean.
Explicit formulas for the limit of sensitivity of the detection method and for the bandwidth resolu-
tion are given.

It was recently proposed by Vemuri and Roy' that
weak signals could be detected via the transient dynamics
of a laser much in the same way as superregenerative
detection in radar receivers. The basic physical idea
behind the proposal is that weak signals are greatly
amplified when used to trigger the decay of an unstable
state. This is basically the same mechanism underlying
the proposal of using the transient dynamics of a laser as
a statistical microscope to probe the initial radiation dis-
tribution. The switch-on process of a laser can be
characterized by the time at which the intensity reaches a
prescribed reference value. This is a stochastic quantity
known as passage time (PT). The PT turns out to be
highly sensitive to the presence of an injected weak sig-
nal. The injected signal reduces the initiation time of the
laser. The usefulness of this possibility for detecting
weak signals has been proved by indirect measurements
of the intensity of an attenuated He-Ne laser acting as an
injected signal during the switch-on of an argon-laser
pumped single-mode ring dye laser. The experimental re-
sults indicate a logarithmic dependence of the initiation
time with the intensity of the injected signal. The
strength of spontaneous-emission noise gives a bound on
the intensities that can be detected. Another bound of
detection, given by the bandwidth resolution, indicates
that only signals with a small detuning with respect to
the laser frequency can be detected. Our purpose in this
paper is to provide a theoretical framework of PT calcu-
lations where these results can be analyzed.

The theoretical model for the evaluation of the com-
plex, scaled, dimensionless laser field of a single-mode
laser in the good cavity limit is given by'

d, E= —~E+ FE
l+ A (I /F)

+a,E, +((r),

where sc is the cavity decay rate, F is the gain parameter,
2 the saturation parameter, I = ~E~ the intensity of the
laser field, E, the injected field, and ~, the coupling pa-
rameter. Spontaneous-emission noise is modeled by a
complex random force g(t), taken to be Gaussian of zero
mean and correlation

(f(r)g*(r')) =2~ 5(r r') .— (2)

The laser is switched on by changing the loss parameter ~
from below threshold to above threshold. We are in-
terested in the time at which the intensity reaches a value
I„ taken as 2% of the steady-state value Is = (F x)/A. —
In this regime saturation is not important and the process
can be described by the linear version of (1)

d, E=+(y i+i y2)E +a,E, +g(t), (3)

where y, =F—~, and where we have allowed for a detun-
ing y2 between the laser field and the injected signal E, .
The field E, is taken in (3) as a real number.

The experimental results of Ref. 3 have been compared
with numerical simulations of the above model showing
good agreement. From the point of view of an analytical
calculation, comparison has only been established' with
the results of a Fokker-Planck calculation for E, =y2=0.
The diSculty of a PT calculation for (3) is related to the
fact that a closed equation for the intensity I does not ex-
ist when E, or yz are not zero. Equation (3) defines a
linear problem, so that the statistics of the field E are
easily obtained. However, a straightforward calculation
of PT statistics by Fokker-Planck methods becomes
rather involved due to boundary conditions when there is
more than one relevant variable. This is the case of Eq.
(3) in which the intensity and phase of the laser field are
dynamically coupled. We follow here an alternative
method which focuses on the individual realizations of
the stochastic process E(t) The PT stat.istics are easily
calculated by solving first for t as a function of I, in each
realization and then averaging over repeated experi-
ments. This method has already been shown to be useful
in the description of the transient statistics of a dye
laser, in the calculation of the dependence of PT statis-
tics on a finite sweeping rate of the net gain parameter in
the laser switch-on and also in the description of the
switching-on of a laser with saturable absorber. Our
analytical results give a scaling form for the generating
function of the PT moments. This indicates that the PT
distribution only depends on two separate parameters. In

41 5012 1990 The American Physical Society



41 PASSAGE-TIME CALCULATION FOR THE DETECTION OF. . . 5013

particular, the dependence on the intensity of th~ injected
signal and on the detuning are not independent. There-
fore different measurements for difFerent pairs of these
two parameters correspond to the same PT distribution
given by our scaling form. We point out that the vari-
ance of the PT distribution is a better quantity to detect
the presence of an injected signal than the mean PT
(MPT). Our results for the MPT interpolate between the
limits of no external field and the case of decay dominat-
ed by the injected signal in which a simple logarithmic
law holds. These results permit us to identify a critical
value of the combination of parameters which gives the
limit of applicability of the detection method. An expres-
sion for the bandwidth resolution is also obtained.

In order to calculate the PT statistics we write the
solution of (3) as

(h, ) =~,E,
y2+ y2

70

3 0+72
(10)

(h, ) = ~E, r2 r2
r'+r' xo'+x'

=f dh, f dh, P(h, , hz)

0' = +
27 1 270

The statistical moments of the PT distribution can be ob-
tained from the generating function G (2yiA, )

G(2y, A, )—:(e ' )

E (t) =h (t)exp(yt), (4) (13)

where

h (t)=E(0)+f dt'e r' [a.,E, +g(t')] . (5)

E(0) is the initial value of the field at the time at which
the cavity losses are switched to above threshold. Thus
the value of E (0) is distributed with the stationary distri-
bution associated with (3) but with y, replaced by —

yo,
where y0=K F and k, is the initial loss parameter.
This means that

E(0)=f dt'e ' ' [~,E, +g(t')] .

Since passage times are typically such that y, t &)1 we
can replace h(t) in (5) by h(~)=h =hi+ihz In th. is

case the stochastic process h (t) becomes a time-
independent randoin variable h which plays the role of an
effective random initial condition in (4). The random ini-
tial condition triggers the decay process and it is ex-
ponentially amplified. This arnplification allows at later
times the detection of the seed of the process. Solving (4}
we have

I„t= ln
2y1 h 21+h 22

so that the statistical properties of the random time t are
determined by those of h through the transformation (7).
The statistical properties of the bivariate Gaussian pro-
cess (hi, hz) can be obtained from the explicit expression
of h =h1+h2,

h =f dt'e ' ' [v,E, +((t')]

Introducing the modulus and phase of h, h =Re, '4' the
integral over the phase can be done explicitly, yielding

' —jlL

(PR )
—(R +ti )/2G(2y, A, )= f dR R

0 R

(14)

where Io(z) stands for the modified Bessel function' of
zeroth order and a= I„/o an—d p—:~(h)~ tr, with o
and h given in Eqs. (10)—(12). Using a power-series ex-
pansion for I0, the generating function can be written as

2 /2G(2y A, )= — e1

x g
m=0

2

(m!) I'(m+A, + I }

e i ~ M(A, +I, I,P /2)1(X+I),

(15)

where M(a, b, z) is the Kummer conlluent hyper-
geometric function. ' The scaling of G in (14) or (15) in-
dicates that the PT distribution depends only on the com-
bination of parameters given by a and p. The depen-
dence on a is rather simple and contains the inQuence of
the reference value I„. The parameter P contains the
combined effect of the noise, gain, and detuning pararne-
ters and the intensity of the applied field. In practical
cases y, « yo so that a and p take the simple form

One finds that h, and h2 are uncorrelated with a proba-
bility distribution

(h, —(h, ) ) +(h~ —(hi ) )
P(h&, hz)= exp

27TO 2CT

2y 1I„

2(a, E )

1 + 72

V1

(16)

(17)

where

The generating function admits particularly simple ex-
pressions in the limits p=O and oo. For p=O it repro-
duces the result in the absence of injected signal
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G(2yiA, )= — I (A, + I),
Fig. 1 corresponds to the regime in which the switch-on
is dominated by noise. In this regime (20) is well approxi-
mated by

while for p= ac, it gives the result for relaxation trig-
gered by large injected signals (2y, t ) = (2y, t )~ —0 +

2 16
(22)

G (2y, A, ) = a
2 (19)

In the opposite limit of strong signals a good approxi-
mation to (2y, t ) is obtained by the asymptotic expan-
sion of (15}:

In this last limit noise plays no important role and G is
independent of e. An explicit result for the MPT is easily
obtained from (15),

lnG (2y, k, )
d

A, =O

e /2

(2y]t ) =2y)T =0 P'/2

where

T, 0=(2yr) 'ln(a/P )

(23)

(24)
'm

ao 2

=ln ——e ~ g (m!) 'hatt(m +1),

(20}

where P(z) is the digamma function. '0 A first important
consequence of (20) is that the value of a only gives a
constant shift of the MPT for all p, so that

(2y, t ) —(2y&t ) =ln a&

a2
(21)

A plot of (2y, t ) calculated from (20) for two different
values of a evidentiating this fact is shown in Fig. 1. The
value a=1.7945X10 corresponds to the dye laser pa-
rameters of Ref. 1 with F= 1.4 X 10 sec
y0 &=~F —k0 &~, kr =1.2X10 sec ', k0=7X10 sec
e=0.004 sec ', and I„=0.02y, /A with A =2.6X10
sec '. The second value of a corresponds to a
spontaneous-emission noise four orders of magnitude
smaller. The initial slow decay of (t ) versus p seen in

is the deterministic relaxation time which can be obtained
from (19). Equation (20) interpolates between the two
limits (22) and (24) above. As an interesting technical
point, we mention that in the presence of an injected sig-
nal the state of zero macroscopic field above threshold is
not an unstable state, since it decays even in the absence
of noise. A naive approach to the problem would be a
calculation of passage times by a perturbative expansion
around a deterministic trajectory for E,AO. This method
does not work because, as seen in (23), the correction to
the deterministic limit is singular in e. However, it is
clear that the logarithmic dependence of the initiation
time on the intensity of the injected signal observed in the
experiments is already obtained in the limit a=0 as given
by (24). This deterministic contribution is the dominant
one for P))1.

Other moments of the PT distribution can be obtained
from (15). For example, the variance of the distribution
gives a measure of the reliability of using ( t ) as a quanti-
ty to detect injected signals. More important is that it
turns out that (ht} =(t ) —(t) is a quantity indepen-
dent of a which is much more sensitive to the presence of
the injected signal than ( t ). From (15) we obtain
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A plot of (At ) versus p as obtained from (25) is shown in
Fig. 2, exhibiting a clear initial plateau and a rapid de-
crease to (b, t } =0 for p~ ~. The initial plateau corre-
sponds to weak injected signals. In that regime, (25} is
well approximated by

FIG. 1. (a) Results for the MPT as a function of P obtained
from Eq. (20) (solid curve) and from the deterministic solution
[Eq. (19), crosses] for a=1.7945X10'. The dot-dashed curve
corresponds to the sma!1-p expansion [Eq. (22)]. (b) Results for
MPT obtained from eq. (20) corresponding to two different
values of a, a=1.7945X10' (solid curve) and a=1.7945X10"
(dashed curve).

(2y, b, t) =P(1)— (26)

The absence of a correction of order p to the limit p=O
describes the very slow dependence with p. In the oppo-
site limit p»1 the deterministic dynamics dominates
and (b, t) vanishes as
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From Fig. 1 we see that this value of P corresponds to the
matching between the two approximations (22) and (24).
It can be understood as the lower bound for the validity
of the deterministic approximation (e=O) given by (19).
For P &P, the switch-on process is dominated by the in-

jected signal and not be spontaneous emission, so that E,
can be eSciently detected.

The dependence of & t ) on the detuning yz can also be
analyzed from our results. Since & t ) is a decreasing
function of P, & t ) has, as expected, a minimum for
y2=0 and grows with yz [see (17)]. The bandwidth reso-
lution can be obtained from the general result (20). A
particular simple result can be obtained in the limit of
efficient detection P» l. In this case &t) =T, o, (24),
and the value of yz=yz for which &t ) is twice its value
at y2=0 is given by

FIG. 2. Second moment of the PT distribution as a function
of

y0 —
y (e 1 e=o 1)1/22r T=

1/2

(30)

(2y, ht) = 4
(27)

(28)

With this definition P, is independent of a and from (22)
and (26) we obtain

P, =[4/'(I }]' =1.6 . (29)

The combination of our results for & t ) and (b, t) permits
us to define a critical value of P,P„below which the in-

jected signal cannot be detected. This limit of sensitivity
of the detection method can be defined by the value of P
for which the reduction of & t ) is of the order of the rnax-
imum variance

Equation (30) gives an estimate of the bandwidth resolu-
tion as a function of the gain parameter and intensity of
the injected signal.

In summary, the scaling result (15) gives a complete
characterization of the PT distribution as needed to
detect weak signals via the laser switch-on process.
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