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A new alternative local method to solve the Schrodinger equation is established, in which powers
of the Hamiltonian are used to set up algebraic equations. The computation is integration-free and

easy to carry out. The method is applied to the quartic anharmonic-oscillator problem.

where x ER, if

He ' %=is(x)e (2)

for any t, then ls(x) =JLt is a constant, and ls and 4 are the
eigenvalue and eigenfunction of H, respectively. The
proof of this theorem goes as follows. Equation (2) hold-
ing true for any value of t implies that

H"+'V=@( )xH4, n =0, 1,2, . . . .

By induction we have

H "0'=[p(x)]"qt .

Hence

(3)

The search for effective methods to solve the
Schrodinger equation continues to be a topic of current
research. A typical approach to the approximate solu-
tion usually employs a basis set to change the
Schrodinger equation into corresponding algebraic equa-
tions. Commonly this procedure requires integration,
which makes it almost impossible to use certain basis
sets. In the past decade several integration-free tech-
niques have been shown to be useful in the solution of
quantum-mechanical problems. These integration-free
techniques facilitate both computation and optimization
of the basis set.

The purpose of the present paper is to present a new
integration-free local method for solving the Schrodinger
equation. Powers (or polynomials) of the Hamiltonian
are used to transform the Schrodinger equation into alge-
braic equations. As a test case we solve the problem of
the generalized anharmonic oscillator.

First we prove the following theorem: Given

H= —
—,'V„+V(x},

qt(V„ls) =0,
Excluding the irrelevant case 4=0 we have (V„ls) =0.
Hence p(x) =constant =p. For n =0 in Eq. (3),
H+=p+. This proves the theorem. The converse of the
theorem is obviously true.

The operators He ' and e ' have recently been suc-
cessfully used in solving quantum-mechanical prob-
lems. ' The theorem above provides us with the basis for
a new application of these operators. Expanding 4 on a
complete basis set which spans the domain of operator H
we can get the full eigenspectrum of H by simply impos-
ing Eq. (2) for arbitrary t, at any particular xo. In prac-
tice we use Eq. (3}with a finite number of n's and a trun-
cated basis set. Let [P; I be a complete basis set; we may
expand %' as

%=pc;tb;(x) . (4)

Coefficients c, are determined such that Eq. (3) is satisfied
for all n at an arbitrary space point xo, with constant p.
We obtain

gc,H"+'P, (xo)=pgc;H"P;(xo), n =0, 1, . . . .

This is the familiar secular equation. Now the truncated
form of Eq. (5) reads

H" "4=H
I [ls(x)]"+I

=[@(x)]"+'4.

This gives

—
—,'VV„[y,(x)]"—(V„%)t V„[p(x)]"I

=0 .

Since this equation holds for all n we get for p(x)%0 (or
the theorem is trivial)
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TABLE I. Ground-state and second-excited-state eigenvalues of the quartic anharmonic oscillator.

0.0001
0.01
1

100
10000

'Data from Ref. 9

Eo (Present)

1.000 074 986 880 20
1.007 373 672 081 38
1.392 351 641 530 27
4.999417 545 138 17

22.861 608 870 276 6

Eo (Exact' )

1.000 074 986 880 20
1.007 373 672 081 38
1.392 351 641 530 29
4.999417 545 137 59

22.861 608 870 272 5

E2 (Present)

5.000 974 615 938 39
5.093 939 132742 31
8.655 049 957 815 93

34.873 984 263 586 5
160.685 912 617 748

E, (Exact' )

5.000 974 615 938 39
5.093 939 132 742 31
8.655 049 957 959 31

34.873 984 261 994 8
160.685 912 611712

N N

pc;H"+'P;(xo) =p g c;H "P;(xo),

n =0, 1, . . . , N —1 (6)

where

v=(1+P) ', 1~v+0 . (14)

or

with

A C=pBC (7)

We employ the following optimized basis set:

%(x)=pc, P, (g 1)exp—( —
—,'aug +a, g '+in'), (15)

where P; is the Legendre polynomial and
(8)A =( a&)=[H'+'P (Jx)o],

B=(b; )=[H'P (xo)],
g=(1+ax )

rr=(1 —v3)/[1+(1 —v )~ ]

a, =(1—v')'/2/a,

—
( 1 v3 )

I /2/ ~3/2

(16)

(17)
and

TC (c~, . . . , cg) (18)(10)

where T denotes transpose. Equations (7)—(10) usually
define a generalized eigenvalue equation, with the ele-
ments of A and B obeying the important relation
a;.=b;+1 .

We now apply this method to the quartic anharmonic
problem, the eigenvalue equation of which is

(19)

H% =E%,
with

dH= — +x +Px, P~O.
dX

To make the eigenvalue problem less sensitive to the p
value we rescale the equation

d +v x +(1—v )x %(x)=vE+(x),
dX

(13)

TABLE II. Convergence rate of successive approximations
as a function of the truncation order (P= 1)

1.392 434 0
1.392 352 647
1.392 351 656 13
1.392 351 641 689 9
1.392 351 641 530 27
1.392 351 641 53029

4
6
8
10
15

Exact'

8.68607
8.655 846 2
8.655 068 02
8.655 050 43
8.655 049 957 815 9
8.655 049 957 759 31

Thanks are due to Professor W. Yang for helpful dis-
cussion. This research has been aided by grants to the
University of North Carolina from the National Science
Foundation and the National Institutes of Health.'Data from Ref. 9

This basis set can reproduce harmonic-oscillator basis set
when P goes to zero.

Now it is a routine to construct matrices A and B, and
then solve Eq. (7). We take xo =0 or g= 1. The calculat-
ed ground-state and second-excited-state eigenvalues
along with exact solutions for difFerent p values and
N =15 are reported in Table I. In Table II the conver-
gence rate of successive approximations as a function of
truncation order N for p=1 is shown. We see from the
tables that the convergence rate is very fast and that a
large basis set is not needed for most practical purposes.

One can improve this method numerically by using po-
lynomials of H, instead of pure powers of H, in Eqs. (7)
and (8). The method can be used in combination with
other local techniques. One should note, however,
that the fast convergence of the method depends on the
chosen basis set being well tailored to the problem at
hand. For example, if for the quartic oscillator one uses a
truncated scaled oscillator basis set, one runs into
diSculties both with complex eigenvalues and with ex-
traneous eigenvalues. Note that with an arbitrary
discrete basis, the eigenvalues of Eq. (7) are not necessari-
ly real, and that the lowest eigenvalue does not necessari-
ly approach Eo from above as the number of basis func-
tions is increased. Other local methods have the same
problem.
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~See any quantum mechanics textbook for the conventional
treatment of the eigenvalue problem.
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