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Crossings of potential-energy surfaces in a magnetic field
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We investigate the interaction of molecular electronic states through nuclear motion in the pres-

ence of a homogeneous magnetic field. The different possibilities and effects of this interaction are
classified according to the symmetries and the qualitative behavior of the diabatic energy curves.

As a central result we show that conical intersections of electronic energy potential surfaces, which

are in the field-free case common for polyatomic molecules, appear in the presence of a magnetic

field already on the level of a diatomic molecule.

I. INTRODUCTION

The behavior of molecules in strong magnetic fields has
become in the past ten years a subject of increasing in-
terest. This interest was partly motivated by the astro-
physical discovery of strong magnetic fields on white
dwarfs and neutron stars. Most of the theoretical investi-
gations on molecules in homogeneous external magnetic
fields dealt with the H2+ ion. ' The electronic ground
state and first few excited states of the magnetically
dressed H2+ system are now known to a relatively high
accuracy. ' They were calculated for a relatively wide
range of magnetic field strengths, covering the weak
( & 10 T), intermediate, and strong ( ) 10 T) field re-
gime, and for arbitrary orientations of the internuclear
axis with respect to the magnetic field. There exist only a
few investigations on many electron molecules. Detailed
studies of the electronic potential surfaces are not only
necessary for the calculation of the bound-state proper-
ties but also for the investigation of scattering processes
in the presence of a magnetic field.

Molecular systems in magnetic fields exhibit many in-
teresting new phenomena. In comparison with the field-
free case there is an overall increase in binding energy
which is mainly caused by the strong localization of the
electrons near the nuclei. The bond lengths are contract-
ed because of the more complete screening of the nuclei
by the electronic clouds. As a consequence the minima of
the electronic potential surfaces become more pro-
nounced. The symmetry of, for example, the H2+ system
in a magnetic field depends strongly on the orientation of
the internuclear axis relative to the magnetic field. Cer-
tain configurations represent a minimum of the electronic
potentia1 energy and are therefore distinct. For the
ground state of, for example, the H2+ ion it is well
known' that the equilibrium position is given by the in-
ternuclear axis parallel to the magnetic field. Another in-
teresting new phenomenon is the fact that certain in the
field-free case unbound states (cf. lo„H2+) become
bound above some critical field strength.

From the abovementioned it is obvious that nuclear
dynamics also experiences severe alterations in the pres-

ence of a magnetic field. One of the two rotational de-

grees of freedom of a diatomic molecule acquires vibra-
tional character with increasing magnetic field strength.
The potential barrier, which is a function of the angle of
the magnetic field axis with the internuclear axis,
prevents the molecule from free rotation. This effect is in
the literature well known as the so-called hindered rota-
tion. ' Furthermore, there exists a field-strength-
dependent rotation-vibration coupling which becomes
important in the strong-field regime.

The subject of the present paper is the interaction of
adjacent electronic states through the nuclear motion in
the presence of a magnetic field. As in the field-free case
we shall call this interaction vibronic interaction. There
exist many phenomena like, for example, the radiation-
less decay of excited electronic states, predissociation, or
certain chemical reaction mechanisms which are inti-
mately related to the violation of the Born-Oppenheimer
approximation as caused by vibronic interactions. We
first briefly sketch some aspects of vibronic interactions
in the field-free case. A necessary condition for the oc-
currence of vibronic interactions in molecules is that two
or more electronic states come energetically close to each
other. Usually this happens only for certain values of the
nuclear coordinates. Neumann and Wigner have shown
very early that in general, three parameters are neces-
sary to bring together two eigenvalues of a Hermitian
matrix. If the matrix is real symmetric only two parame-
ters are sufficient. Of course the states under considera-
tions should not differ in some essential properties like,
for example, symmetry.

In the case of a diatomic molecule we have only one vi-

brational degree of freedom and therefore the noncross-
ing rule follows. ' However, already for a two-mode sys-
tem two states may become exactly degenerate at a cer-
tain point of the nuclear coordinate space, forming a so-
called conical intersection. ' A conical intersection
necessarily causes a complete breakdown of the Born-
Oppenheimer approximation. ' The majority of the
theoretical studies of the vibronic coupling problem dealt
with the following two cases: (i) the vibronic coupling of
the components of a degenerate electronic state via a sin-

gle degenerate vibrational mode (Jahn-Teller" and
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Renner-Teller' effects) and (ii) the vibronic coupling of
two nondegenerate electronic states of differential spatial
symmetry via a single nontotally symmetric mode.

In the present paper we study, among other things, the
vibronic coupling problem in the presence of a magnetic
field and concentrate on diatomic molecules. Since the
symmetry is lowered by the presence of the field, we dis-
cuss in Sec. II the symmetry groups for molecules in a
homogeneous magnetic field. In Sec. III we investigate
the behavior of the diabatic potential-energy surfaces as a
function of the angle between the magnetic field axis and
the internuclear axis. In Sec. IV we use the results of
Secs. II and III in order to classify the diff'erent possibili-
ties and eff'ects of vibronic interactions between the dia-
batic states of a homonuclear diatomic molecule.
Characteristic phenomena of vibronic coupling of polya-
tomie molecules in the absence of a magnetic field are
shown to appear in the presence of a magnetic field al-
ready on the level of a diatonic molecule.

II. SYMMETRY CONSIDERATIONS FOR MOLECULES
IN A MAGNETIC FIELD

In the presence of a magnetic field we have for a dia
tomic molecule already two vibrational degrees of free-
dom: the internuclear distance, and in addition, the an-

gle between the internuclear axis and magnetic field axis.
The electronic potential-energy surfaces are functions of
these two parameters. Since the Hamiltonian of a mole-
cule in a magnetic field is complex, these two parameters
are, in general, not suScient to achieve an intersection of
two electronic potential surfaces. Only if we would in-
clude a third parameter by, for example, an additional ar-
bitrarily oriented electric field would an intersection of
two potential energy surfaces be possible. In spite of all
that, vibronic coupling at intersections appears in the
presence of a magnetic field already on the level of a dia-
tomic molecule: two electronic states of diferent spatial
symmetry are not subject to the noncrossing rule and
might be coupled through the symmetry breaking vibra-
tional mode associated with the angle between the inter-
nuclear axis and magnetic field axis. Before we discuss
the topology of level crossings and vibronic interactions
for diatomic molecules in a magnetic field we have to in-
vestigate the symmetry groups for molecules in a homo-
geneous magnetic field.

Our starting point for an investigation of the symmetry
properties of the molecule is the electronic Hamiltonian
of the system. This Hamiltonian can be obtained from
the total molecular Hamiltonian by assuming infinitely
heavy, fixed nuclei. For a more systematic derivation of
the electronic Hamiltonian and an investigation of the
Born-Oppenheimer approximation in the presence of a
magnetic field we refer the reader to Refs. 13 and 14. In
the following we assume the validity of the Born-
Oppenheimer approximation for energetically well-
separated states and we neglect all e8'ects due to the
center of mass motion of the molecule. ' ' In order to
specify the electronic Hamiltonian we choose the sym-
metric gauge for the vector potential and the midpoint of
the internuclear line as the coordinate origin. Our z axis

coincides with the internuclear axis and the magnetic
field vector is chosen to be perpendicular to the y axis (cf
Fig. 1}. 8 denotes the angle between the field vector and
the z axis. The Hamiltonian in atomic units then reads as
follows:

&=—
—,
' g V, + —,'B g [(sin8)1; +(cos8}l, ]

+ ,'B g—(x, +y, +(sin 8)(z; —x,~)

—[sin( 28) ]x;z; J + V, (2.1)

FICr. 1. Illustration of our coordinate system, magnetic field,
and internuclear axis.

where the index i labels the electrons, 8 is the magnetic
field strength, I;, and 1; denote the corresponding com-

X Z

ponents of the angular momentum of the ith electron and
V contains all the Coulomb interaction terms. The trivial
spin terms have been omitted. The second and third term
of the Hamiltonian (2.1) represent the paramagnetic
( ~ B) and diamagnetic ( ~ B ) contribution to the energy.
From Eq. (2.1) it is obvious that the symmetry properties
of the electronic Hamiltonian strongly depend on the an-

gle 8.
It is not necessary to consider the dependence of the

Hamiltonian (2.1) on the angle 8 over the whole range
—m &8~m. . The Hamiltonian is invariant under each of
the operations (x, ,y;, 8)~(—x, , —y;, —8) and

(x;,8)—+( —x;, n 8) A—s a. consequence the electronic
energies have the symmetry properties E(8}=E(—8)
and E(8)=E(m 8). We ca—n, therefore, restrict our in-

vestigations to the case where 0~8~m/2. Note that
these symmetry properties apply to homonuclear as well

as to heteronuclear diatomic molecules.
Let us first consider the case of a homonuclear diatom-

ic molecule at 8=0, i.e., parallel internuclear axis and
magnetic field vector (cf. Fig. 1). The following opera-
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tions are symmetry operations of the Hamiltonian; i.e.,
the corresponding operators commute with the Hamil-
tonian (2.1) for 8=0.

the C2 axis of the field-free case. The corresponding re-
sidual symmetry group is the C2 group.

(i) Arbitrary rotations around the z axis. The angular
momentum component g; I; is a good quantum number,

'z

i.e., [&,g; I; ]=0.
(ii) Inversion (parity P) of the electronic coordinates

with respect to the midpoint of the internuclear axis, i.e.,
[%,P]=0.

(iii) Reflection of the electronic coordinates at the hor-
izontal x-y plane (z parity).

8=0'
8=90'
8 arbitrary

Homo-
nuclear

C2
C;

Hetero-
nuclear

C„
C,

C& (no symmetries exist)

The resulting symmetry group for a homonuclear dia-
tomic molecule when the magnetic field is parallel to the
internuclear axis is the C„z group. This symmetry group
does not exist for molecules in the field-free case. ' It is
an Abelian group which has only one-dimensional irre-
ducible representations. With each complex irreducible
representation the complex conjugate representation is
also present. In the field-free case and for the finite
analogue of the C„h group, i.e., for the C„I, group
(n ~ 3), these two representations belong to degenerate
states. This is due to the additional time-reversal symme-
try of the Hamiltonian in the absence of a magnetic field.
In the presence of a magnetic field we have no time rever-
sal symmetry and degeneracies do not exist.

For arbitrary values of the angle 8 parity is the only
symmetry, i.e., the inversion group C; is the molecular
point group.

At 8=90 we have the following symmetry operations.

(i) Rotations of 180' around the magnetic field axis.
(ii) Reflections of the electronic coordinates at the y-z

plane (x parity).

The resulting symmetry group is the C2„group.
For a heteronuclear diatomic molecule the symmetry

operations and thus the symmetry point groups can be
found analogously. The final results are for 0 + 8 + n /2.

III. TOPOLOGY OF POTENTIAL-ENERGY CURVES

In this section we give an overview of the simplest pos-
sible dependencies of the diabatic potential-energy curves
on the angles 8. For simplicity we restrict our discussion
to the case of a general diatomic molecule. The diabatic
potential curves are smooth functions of the nuclear
coordinates. If the potential energy curve in question is
well separated from the other curves, it coincides with
the adiabatic one which is the exact eigenvalue of the
electronic Hamiltonian. The behavior of the energy
curves in the vicinity of 8=0' and 8=90' is of special in-

terest since these two positions are distinct by their
higher symmetry. In order to investigate this behavior
we use the Hellman-Feynman theorem which takes on
the following appearance:

(3.1)

where 4 is an eigenfunction of the electronic Hamiltoni-
an % with eigenvalue E . Equation (3.1) only makes
sense for states which are smooth functions of 8 and thus
applies for all diabatic states. Using Eq. (2.1) and its sym-

metry properties discussed in Sec. II, we easily verify that
the following relations hold:

BE (8=0) BE (8=m /2)

B8 B8
(3.2)

The potential curves, therefore, exhibit extrema for the
configurations where the internuclear axis is parallel and
perpendicular to the magnetic field. The fact that the
two positions 8=(0,n. /2) are distinct, i.e., belong to
higher symmetry, reflects itself in the dependency of the
energy levels on the angle 8. It depends now on the
second derivative whether the extremum under con-
sideration is a maximum or a minimum. The correspond-
ing formula for the second derivative reads as follows:

We remark that the symmetry group is independent of
the totally symmetric coordinate, i.e., the change of the
internuclear distance, which is the same as in the field-
free case.

For the determination of the symmetry groups of non-
linear polyatomic molecules both angles, which define the
direction of the magnetic field axis, are of relevance. As a
simple example we mention the H20 molecule. In the
free-field case it has the symmetry group Cz, . In the
presence of a magnetic field there exist no symmetries,
except the case that the magnetic field is oriented along

(3.3)

The derivative of the eigenfunction 4 with respect to the
angle 8 can be obtained by first-order perturbation theory
for small deviations from the reference configuration.
The results for the two configurations 8= (0,n /2) are
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a'E.(8=0) —,'B—M + ,'B —(4(0)~Z —X ~V (0)}+2 g ~V p(0}~ /[E (0)—Ep(0)],a8' P (&a)

"d E (8=m/2)
,'B—(—% (n-/2)IL„I+, (m/2)) ,'—B—'(4(m/2)IZ' X—'I+ (m/2) }

BO

+2 g ~
V p(n/2. )~ /[E (m/2. ) E—p(n/2. )],

P (Wa)

(3.4a)

(3.4b}

with the following abbreviations:
Z' —X2= g [z, —x, ], XZ = gx, z, , L„=g I;

I z

(3.4c)
where M is the magnetic quantum number of the state
4 (0), i.e., L, ~% (0))=M ~% (0)). The indices a,P la-

bel the eigenstates. The quantities V &(0), V p(m. /2) are
special cases of the general matrix element

V &(8)= —,'B [(cos8)(4 ~L„~4&) —(sin8)( 4 ~L, ~ 4&) ]

+ ,'B [[sin—(28)](%~Z —X ~%&)

—2[cos(28)]&e,~xz~ep) I . (3.5)

From Eq. (3.4a) together with Eq. (3.5) we can draw the
following conclusions. If the state 4 (0) is energet-

ically well separated from other electronic eigenstates
0'&(0)(pea) we have only a small admixture of these
states in the eigenfunction qi (8) for small angles 8. In
this case the third term of Eq. (3.4a} can be neglected and

the first and second terms determine the sign of the
second derivative of the energy. For states with negative
magnetic quantum number M we have for the whole

range of the magnetic field strengths and for a wide range
of internuclear distances a positive second derivative
which implies a local minimum for the energy at 8=0'.
Only for very small internuclear distances and/or posi-
tive magnetic quantum number M the extremum turns
into a maximum. If the third term in Eq. (3.4a) is of
relevance but not too large, i.e., perturbation theory is

still applicable, it depends on the adjacent energy levels
whether the contribution of this term to the second
derivative is positive or negative. If a denotes the ground
state we always have a negative contribution which might
cause a maximum of the potential-energy curve at 8=0'.
In case there exist energetically near-lying states 4&(0)
(pea) the third term of Eq. (3.4a) can become large or
even diverge (i.e., perturbation theory is not applicable).
Vibronic interactions among the states can become im-

portant and play an essential role in determining the be-
havior of the energy curves. This case mill be discussed
extensively in Sec. IV.

If the magnetic Beld is perpendicular to the internu-
clear axis we can draw with the help of Eq. (3.4b) for an
energetically well-separated state the following con-
clusions. For strong magnetic Selds (B ) 1 a.u.} and over
a wide range of internuclear distances the second term in
Eq. (3.4b) determines the sign of the second derivative to
be negative. %e, therefore, have a maximum of the ener-
gy at 0=90'. For intermediate field strengths and/or
small internuclear distances it depends on the sign of the

expectation value of the x component of the total elec-
tronic angular momentum whether we obtain a minimum
or maximum. For the case of other energetically near-
lying states we again have the situation already men-
tioned above for 8=0'.

If vibronic interactions become important it is no more
convenient to use a basis of adiabatic electronic states for
the description of electronic and nuclear motion. Adia-
batic electronic states are in the vicinity of avoided cross-
ings or conical intersections strongly varying functions of
the nuclear coordinates. The calculation of the solutions
of the electronic Schrodinger equation as well as the eval-
uation of the corresponding nonadiabatic coupling ele-
ments become, therefore, considerably more complicated.

(a)

CQ

LLI

0
ANGLE 8

Tr /2

FIG. 2. Diabatic (dash-dotted lines) and adiabatic (solid
lines) potential-energy curves as a function of the angle 0 be-
tween the magnetic field and the internuclear axis. The energy
scale is given in arbitrary units. (a) The different possibilities for
the behavior of the diabatic energy curves are sketched. (b)-(f)
The adiabatic energy curves together with their diabatic coun-
terparts for the case of different symmetry of the adiabatic-
diabatic electronic states at only one of the two distinct posi-
tions 8=0,m/2.
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As an alternative we will use diabatic states which are
smooth and slowly varying functions of the nuclear coor-
dinates. The vibronic interaction between the diabatic
states is then contained in the off-diagonal coupling terms
of the electronic matrix Hamiltonian.

In Fig. 2(a) we illustrate the simplest possible depen-
dencies of the diabatic electronic energy curves on 8 ac-
cording to the results of our discussion. Either the ener-

gy curve exhibits a minimum at 8=0' and a maximum at
8=90' or vice versa. We remark that the observations
made in Ref. 4 for the special case of the H2+ ion support
the present results. The above considerations are in-
dispensable for a discussion of vibronic interactions in the
presence of a magnetic field, which is the main interest of
this paper.

IV. VIBRONIC INTERACTIONS
IN A MAGNETIC FIELD

In Sec. III we have shown that the most simple behav-
ior of diabatic energy curves as a function of the angle 8
is given by the two possibilities illustrated in Fig. 2(a).
I.et us now consider the case of two diabatic electronic
states of a homonuclear diatomic molecule which come
close in energy and interact. In the following we will give
a survey of the static problem. According to the symme-
try of the two interacting diabatic states and their energy
behavior [cf. Fig. 2(a)] we will discuss the different possi-
bilities of the behavior of the adiabatic energy curves and
potential surfaces.

First of all we remind the reader of the fact that parity
is a good quantum number for arbitrary angles 8. Dia-
batic states belonging to different parity, therefore, do not
interact; i.e., they are allowed to cross without disturbing
each other. Consequently, we will consider two states of
the same parity. As already mentioned, the number of
parameters is too small in order to achieve a crossing for
the angle range 0'&8&90', i.e., the noncrossing rule
holds. Vibronic interactions in the range 0'&8&90',
therefore, appear only in the form of avoided crossings.
Although these crossings can complicate considerably the
behavior of the two-dimensional potential surfaces and
might change their maximum-minimum properties; they
are, in principle, nothing else but the two-dimensional
generalization of the avoided crossings of diatomic in the
absence of a magnetic field. If, in addition, the two states
under consideration have the same symmetry at the dis-
tinct positions 8=0' and 8=90' we can expect as candi-
dates for vibronic interactions only the above-mentioned
avoided crossings. Therefore, we restrict our discussion
to the more interesting and relevant situation, where the
two interacting states belong to different spatial symme-
try at least at one of the two distinct positions.

In the following we discuss basic cases out of which
more complicated cases can be constructed by analogy.
As a first case we study the situation of two diabatic
states of different spatial symmetry at 8=0' and equal
symmetry at 8=90. Furthermore we assume both states
to have their minimum at 8=0' and their maximum at
8=90'. Since the two states should have the same parity
but differ in some spatial symmetry, we choose them to

belong to different z parity (refiection with respect to the
x-y plane in Fig. 1). This choice is necessary, otherwise
the coupling between the two states vanishes [see Eqs.
(4.2) and (4.3) belowj. In order to construct a simple
model Hamiltonian for our two-state problem we must
use a diabatic representation of our basis. The simplest
way to do this is to choose two crude adiabatic electronic
states P, P& which are eigenfunctions of the electronic
Hamiltonian (2.1) at fixed value of the internuclear dis-
tance and the angle 8. In our case P, P& are energy
eigenfunctions for the parallel internuclear and magnetic
field axis. Our model Hamiltonian reads as follows:

(4.1)

As already mentioned we have to deal with a two-mode
problem; i.e., the matrix elements of the Hamiltonian
(4.1} are functions of the totally symmetric mode, which
is already present in the zero-field case, and the angle 8.
In order to obtain the analytical behavior of the Hamil-
tonian (4.1) in the vicinity of 8=0' and around some in-
ternuclear distance we expand its matrix elements in the
following form:

&P l&lP &=E +~rQ+(co l2)Q +pr8
(4.2)

where Er is the energy eigenvalue of the eigenfunction P
at 8=0' and Q =0 (y is a or P). Q is chosen dimension-
less. The coefBcients p~ and o. can be obtained explicitly
from the derivatives of the electronic Hamiltonian (2.1)
with respect to the angle 8:

(4.3)

They contain a linear and quadratic term in the magnetic
field strength. In addition they depend implicitly via the
wave function Pr on the field strength. The coefficients

~~,~~ are given implicitly by the expectation values of
the first and second derivative of the Hamiltonian (2.1}

with respect to the totally symmetric mode Q. In Eq.
(4.2) we have expanded the diagonal terms of the matrix
(4.1) up to second order in the coordinates Q and 8. The
off-diagonal terms have been expanded up to first order in

Q and 8. In the off-diagonal element of the Hamiltonian
the constant as well as the term linear in the totally sym-
metric coordinate Q vanish because of the different spa-
tial symmetry (z parity} of the states P and P&. The only
remaining term is the one linear in the angle 8. We re-
mark that a more complete expansion of the off-diagonal
terms of the matrix Hamiltonian (4.1) would include an
additional bilinear term which is proportional to the
product of Q and 8. This term is not of relevance for our
discussion below and has been omitted.

At this stage an expert for vibronic interactions im-
mediately realizes that the Hamiltonian (4.1) together
with Eq. (4.2) is the simplest possible model for vibronic
interactions with a tuning mode Q and a non-totally-
symmetric coupling mode 8 similarly to that encountered
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+(pp)82I 2+cr 282)1/2 (4.4)

So far we have not used the fact that a crossing of our
two energy levels (diabatic or adiabatic) is possible at
0=0' owing to their different spatial symmetry. We,
therefore, expand our Hamiltonian (4.1) around the point
of degeneracy in nuclear configuration space, i.e.,
E =E&=E in Eq. (4.4). For simplicity we neglect the
difference between the harmonic diabatic frequencies of
the two states; i.e., we take co =co&=co and p =p&=p.
Our adiabatic potential surfaces finally read as follows:

W, = E+[( le+Icy)/2]Q+(co/2)Q +p8
2

+ [ ~ (g —y )2Q + ~o ~282] ~ (4.5)

In Fig. 3 we provide a two-dimensional plot of the two
adiabatic potential surfaces (4.5). In addition we have
sketched in Fig. 2(b) the dependence of the two diabatic
and corresponding adiabatic energy levels on 8 at Q=O
and for the whole range 0'(8(90'. Although Eq. (4.5)
is only quantitatively correct in the vicinity of the conical

—0.70—

&- —0.74—
Ld

LLJ

—0.78—

W2

—0.82—
W)

l I I t I 1 I I I

0.6 0.4 0.2 0.0 -0.2
Q

FIG. 3. The adiabatic potential energy surfaces 8'I, W2 are
plotted vs the internuclear elongation Q and the angle 8 (in de-
grees). The following set of parameter values has been used {in
arbitrary units): E= —0.8, x = —0.2, a = —0. 1, co=0.8,
I&71=2X10 ', p=8. 5X10

in the field-free case for polyatomic molecules. ' In order
to gain some physical insight into our vibronic coupling
problem we investigate the adiabatic electronic potential
surfaces. The latter can be obtained by diagonalizing the
electronic matrix Hamiltonian (4.1). They take on the
following appearance:

W'i= (E +Ep)/2+[(lc +tcp)/2]Q
2

+[(a) +cop}/4]Q +[(p,+py)/2]8

+ ( —,
'

I (E~ E&—}+(Ic Ic&)Q—+ [(co~ cu&—)/2]Q

intersection, it correctly rejects the qualitative aspects of
the surfaces for a larger range of coordinates. The two
surfaces in Figs. 3 and 2(b) exhibit some characteristic
properties of vibronic interaction. First we observe that
there exists a single point where the upper surface
touches the lower one. This point is well known as a so-
called conical intersection point. ' Second, we can see
a lowering of the symmetry of the equilibrium position of
the lower surface. The lower surface has its minimum
not at the position 0=0' with C„& as a symmetry group
but at some value 8%0' with parity as the only remaining
symmetry. We encounter a local breaking of the molecu-
lar symmetry. The upper surface becomes steeper in

comparison with its diabatic analogue. Both effects, sym-

metry lowering and enhanced steepness, are a conse-
quence of the repulsion of the diabatic surfaces via the
vibronic coupling. Furthermore we remark that the
nonadiabatic coupling terms diverge at the conical inter-
section point which indicates the complete breakdown of
the adiabatic approximation. For the case of near-
degenerate surfaces we obtain a threshold behavior:
Above some critical value of the coupling constant ~cr

~

the onset of the local symmetry breaking is observed. We
conclude that conical intersections and the resulting phe-
nomena appear in the presence of a magnetic field already
on the level of a diatomic molecule. The angle 0 between
the internuclear and the magnetic field axis thereby plays
the role of the "symmetry breaking coordinate. "

We remark that a more elaborate discussion of the be-
havior of the energy potential surfaces over the whole
range 0' 0~90' is possible by, for example, using the
following diabatic states:

P =c, (8)$(0')+cz (8)P(90'),

where c, and c2 are 0-dependent coefficients which deter-
mine the mixture of the crude adiabatic states $(0') and
P(90') in the diabatic wave function P.

Let us now return to our general discussion of two vib-
ronically interacting diabatic states. So far we have dis-
cussed the case of two diabatic states with a minimum of
the energy at 0=0', different spatial symmetry at 0=0',
and the same symmetry at 8=90'. Furthermore we have
assumed an exact degeneracy of the two levels at 8=0'.
In Fig. 2(c) we have plotted the case of different symme-
try at 0=90' and the same symmetry at 0=0'. This case
is realized if the two diabatic electronic states under con-
sideration have different x parity at 0=90'. The degen-
eracy appears now at 0=90'. Hence it follows that the
upper adiabatic level develops a maximum for an angle
8%90. The lower level simply becomes steeper because
of the repulsion of the two diabatic levels.

A new qualitatively effect appears if we have a very
strong vibronic coupling and/or a sma11 variation of the
energy of one of the diabatic levels from 0=0 to 0=90 .
The eff'ect is illustrated in Fig. 2(d) where the two diabatic
states have different symmetry at 0=0, the same symme-
try at 0=90, and possess their minima at 0=0'. The
lower adiabatic level develops a minimum [cf. Fig. 2(b)]
which now, due to the strong coupling and/or the small
energy difference, shifts to the angle 0=90'. The 1ower
adiabatic curve has thus developed a minimum at 0=90,
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whereas its diabatic counterpart exhibits a maximum at
0=90. We will call this effect of vibronic interactions
the "adiabatic flipover. " The upper adiabatic level be-
comes steeper but retains its maximum-minimum proper-
ties. Obviously the same effects is also possible if the two
diabatic states have different symmetry at 0=90. This
case is illustrated in Fig. 2(e). The maximum of the upper
adiabatic level [cf. Fig. 2(c)] now shifts to 8=0' whereas
the lower adiabatic level becomes steeper but still has the
same maximum-minimum properties as its diabatic coun-
terpart.

Another possibility for vibronic interactions of two di-
abatic levels can be obtained if we assume the two levels
to have their minimum at 0=0' and 6I =90, respectively.
This case is illustrated in Fig. 2(f) for different symmetries
of the diabatic states at 0=0' and equal symmetry at
0=90'. Nothing exciting happens. The upper and lower
adiabatic level simply become steeper but retain their
maximum-minimum properties.

Finally, we have to discuss the case that the two dia-
batic states have different symmetry at 8=0' as well as at
8=90'. Let us first assume that both diabatic levels have
their minirnurn at 0=0'. If the energy difference of the
two diabatic states is small at 8=90' we obtain the adia-
batic curves illustrated in Fig. 4(a). The upper adiabatic
level develops a maximum at 8%90' and a minimum at
8=90'. The lower level exhibits the local syrnrnetry
breaking effect and shows a minimum at 8%0'. With in-
creasing energy difference between the diabatic states at
8=90' the vibronic interaction at 8=90' becomes negligi-
ble and we arrive at a qualitative behavior of the adiabat-
ic energy curves similar to Fig. 2(b). In Fig. 4(b) we illus-
trate the case where the upper diabatic curve has its
minimum at 0=0' and the lower one at 8=90'. For a
small energy difference at 8=90' [cf. Fig. 4(b)] the upper
adiabatic level obtains a maximum and the lower adiabat-
ic level a minimum at 8%90'. For large diabatic energy
differences at 0=90' vibronic interaction is negligible
around 8=90' and we arrive at a behavior of the adiabat-
ic energy curves similar to that given in Fig. 2(f). Obvi-
ously it is also possible that only one of the two adiabatic

levels develops an additional extremum in comparison
with its diabatic counterpart.

The dependencies of the adiabatic energies on 0 illus-
trated in Figs. 2 and 4 are the most simple ones. They
can become much more complicated in case the diabatic
states cross each other for 0=0' and 90'. The adiabatic
states will then exhibit additional avoided crossings. Fi-
nally we mention that possible candidates for vibronic in-
teractions have been observed in numerical calculations
of the adiabatic electronic energy surfaces of the H2+ ion
in Ref. 4 The 1vr„—1o.„as well as the ling

—15 crossing
for 8=1 are probable examples for the conical intersec-
tion of two adiabatic electronic potential surfaces.

V. SUMMARY AND CONCLUSIONS

Crossings of electronic potential-energy surfaces and
the resulting vibronic interaction between them are of
relevance for the bound-state properties of the underlying
system and also for scattering processes and chemical re-
action mechanisms. Such crossings of the projectile-
target molecule potential surfaces enable the collision
partner to change the surface it is moving on resulting in
a gain or loss of kinetic energy of the projectile and tar-
get.

In order to obtain an overview of the static aspects of
vibronic interaction in the presence of a strong magnetic
field we have, as a first step, investigated the symmetry
point groups for diatomic molecules in a homogeneous
magnetic field. Two positions are distinct, i.e., possess
higher symmetry: the configurations with parallel and
orthogonal internuclear axis and magnetic field axis. The
diabatic energies as a function of the angle 8 between the
magnetic field axis and the internuclear axis exhibit extre-
ma at these two positions. Whether these extrema are
minima or maxima depends, among other things, on the
internuclear distance and the magnetic field strength.
Taking account of the 8 dependence of the diabatic ener-
gies and the symmetries of the corresponding diabatic
states at 8=0' and 8=90' we discussed the different pos-
sibilities and effects of vibronic interaction. As a central
result we observed that conical intersections appear in
the presence of a magnetic field already for a diatomic
molecule. The angle 8 thereby plays the role of the "cou-
pling mode. " As a natural consequence we obtain effects
like, for example, symmetry lowering, which are, in the
absence of a magnetic field, common for polyatomic mole-
cules only. A particular possible effect of vibronic in-
teractions is the so-called adiabatic flipover in which the
maximum and minimum of a potential curve are inter-
changed by vibronic interaction.

FIG. 4. Diabatic (dash-dotted lines) and adiabatic (solid
lines) potential-energy curves as a function of the angle 0 be-
tween the magnetic field and the internuclear axis. The
adiabatic-diabatic electronic states under consideration possess
different symmetry at 0=0 as well as 0= m/2.
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