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An artificial-channels scattering method [M. Shapiro and G. G. Balint-Kurti, J. Chem. Phys. 71,
1461 (1979)] is used with a transformed Hamiltonian [R. E. Moss and I. A. Sadler, Molec. Phys. 66,
591 (1989)] to calculate the energies of vibration-rotation levels for the ground electronic state of
HD+. All nonadiabatic effects, except for part of the coupling of rotational and electronic angular
momenta, are accounted for. The results, which are for v =0-21,J=0, 1, together with some other
levels involved in observed transitions, are compared with previous calculations, particularly those
of Wolniewicz and Poll [Molec. Phys. 59, 953 (1986)]. Inclusion of a correction to the energies of
JAO levels to allow for the remaining contribution of II electronic states permits comparison with

experimental transition energies. The agreement is excellent.

I. INTRODUCTION

Vibration-rotation transition frequencies of HD in its
ground electronic state have been measured by Wing et
al. ' and Spezeski for transitions involving low vibration-
al quantum numbers and by Carrington and col-
leagues for bands involving high v. The most exten-
sive calculations so far are those of Wolniewicz and
Poll indeed, their theoretical values have been an in-

valuable guide for experiment. Other calculations should
be mentioned: the variational calculations of Bishop and
colleagues were restricted to J =0 and low v (0—2); the
coupled-states calculations of Carrington and Kennedy
and Kennedy et al. ,

' the transformed Hamiltonian calcu-
lations of Moss and co-workers, ' " and the hyper-
spheroidal coordinate calculations of Hara et al. ' did
not include all the nonadiabatic corrections; the recent
variational calculations of Moss and Sadler' were limited
to low U, although they extended to sufficiently high J
that all the bound states for U =0, 1,2 and some quasi-
bound levels for u =0, 1 were included.

In this paper a method of calculation is reported that
makes use of the transformed Hamiltonian obtained by
Moss and Sadler. ' This has the advantage that some of
the interactions responsible for nonadiabatic effects, not-
ably symmetry breaking, are removed from the kinetic-
energy part of the Hamiltonian at the expense of the ap-
pearance of effective nuclear charges in the potential en-

ergy and of effective reduced masses. Of the remaining
nonadiabatic terms, that responsible for the coupling of
rotational and electronic angular momenta is neglected
and it is the effect of —( I/2p, tr)(B /t)R ), where R is the
internuclear separation, that is of particular interest here.
The Hamiltonian used is described in Sec. II.

Section III is devoted to the description of the method

used to solve the Schrodinger equation with this
transformed Hamiltonian. It is similar to that used in

scattering problems with R playing the role of the
scattering coordinate. To solve a bound-state problem
using scattering-theory techniques, two artificial open
channels are introduced in the manner used by Shapiro
and Balint-Kurti' ' for calculating the vibration-
rotation energies of triatomic molecules. The artificial
channels are coupled, in a well-specified asymmetric
manner, to the bound states of interest but not to each
other. The bound-state energies are found by monitoring
the scattering-transition probability between the artificial
open channels for different scattering energies, since at a
bound-state energy the T-matrix element for transitions
between the two open channels has a first-order pole.
Shapiro and Balint-Kurti' ' used the same basis func-
tions at all values of the scattering coordinate but, since
here very accurate results are required and high vibra-
tional levels are considered, it is necessary to modify their
method so that the basis functions may be changed as R
changes.

Section IU presents the results obtained. For J=0,1

all vibrational levels (v =0—21) are included except for
v =22. For J &1 only those vibrational levels used for
comparison with other calculations and those involved in
spectroscopic transitions that have been observed are re-
ported. For J=0 a comparison is possible with earlier
work' ' ' for low v. For JWO it is possible to compare
with the low-v variational calculations of Moss and
Sadler, ' but only if a correction is made here for part of
the coupling of rotational and electronic angular momen-
ta. However, for the bulk of our calculations, it is the
work of Wolniewicz and Poll' that is of particular in-
terest. To compare with their work we must include rela-
tivistic and radiative corrections, as well as the correc-
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tions for neglected rotational-electronic coupling. Our
calculated transition frequencies are in excellent agree-
ment with experiment and display some systematic
differences from the work of Wolniewicz and Poll.

Section V includes a discussion of the limitations of the
method used and the prospects for further work.

II. THE HAMILTONIAN

%»= —
—,'Vg —(1/r, ) —(1/r2)+(1/R) (2)

and in the Born-Oppenheimer approximation the
Schrodinger equation

jf»f(r 'R ) =E»(R )P(r 'R ) (3)

may be solved exactly for each bond length. The elec-
tronic states may be classified X, H, . . . , and also g or u.
The ground X and the first excited X„electronic states
have the same dissociation limit in this approximation.
The energy as a function of bond length may then be used
as the potential that governs the vibrational-rotational
motion.

In allowing for the breakdown of the Born-
Oppenheimer approximation the molecular Hamiltonian
may be averaged over the Born-Oppenheimer wave func-
tion to give the adiabatic potential

The Hamiltonian for the hydrogen molecular cation
HD+ may be written as '

&=&»+(1/p)&,d+(1/p, )~s„.
Here the overall translational motion has been removed
and the geometric center of the nuclei coordinate system
is used. In atomic units

g=(r, +rz)IR, ~ &(~1

g=(r, r2)/R, 1 —~ q ~ —1 (10)

as

higher X states must be included in an accurate calcula-
tion. In addition, the coupling of rotational and electron-
ic angular momentum, which mixes X and II states for
rotational quantum states that are associated with
nonzero rotational quantum numbers J, should be includ-
ed. (Although X, II, . . . , and, in particular, g, u are no
longer true symmetry labels, these symbols will be used as
near-symmetry labels to refer to different electronic
states. )

The symmetry-breaking part of the Hamiltonian (7)
may be removed by subjecting the Hamiltonian to a uni-
tary transformation. ' ' This is largely at the expense of
introducing effective nuclear charges into the potential
energy and effective reduced masses. All g/u mixing,
that is, mixing caused by the term & „[seeEq. (7)] in the
Hamiltonian, which prevents the inversion operation i
from being a true symmetry operation, is completely ac-
counted for in the transformed potential-energy operator.
However, mixing of II states and excited Xg states with
the ground Xg state is not allowed for.

Further transformation' of the Hamiltonian removes
cross derivatives between electronic and nuclear coordi-
nates. The relationship of the final transformed Hamil-
tonian to that expressed in hyperspheroidal coordinates
(see, for example, Ref. 16) is discussed in Ref. 15. If, as in
this paper, rotational-electronic coupling is neglected, the
ultimate transformed Hamiltonian for X states may be
written in terms of (transformed) prolate spheroidal coor-
dinates,

and

(1/p)&, d
= —(1/2p)Vs —(1/Sp)Vg,

(1/p) =(1/m& )+(1/m2),

E,d(R) =EBo(R)+ ( 4»I(1/p)&, dIP») ~

where

(4)

(5)

Here

+(3/R )
—pJ( J+1) R/] .

x, =(g' —&')-'[(a/ag)(g' —l)(a/ag)

(2p /mR —)Xo (p/p, &R )(2—Y+3)+p'~ V'

—(1/2p, )[(a /aR )+(5/R)(a/aR )

with m
&

and m2 the masses of nuclei 1 (H) and 2 (D) rela-
tive to the electron mass. However, the adiabatic correc-
tions are diagonal in the electronic state and in this ap-
proximation the two lowest electronic states still have the
same dissociation limit.

To obtain the different dissociation limits, correspond-
ing to H++D(ls) and D++H(ls), mixing of the Xg
ground state and the X„ first excited state must be al-
lowed for. This symmetry breaking is caused by the third
term in Eq. (1),

+(a/ag)(1 —
q )(a/ag)],

Y =(g' —&')-'[P g' —l)(a/ay)+ ~(1—~')(a/a~)],

(12)

(13)

and

p=1+(m/4p, s)(g +q —1) . (14)

The two mass parameters in Eq. (11),p,z and m, may be
expressed in terms of

(1/p. )&g„=—(1/2p. )(Vg.Vg ),
where

(1/p, ) =(1/m, ) —(1/m ) .
as

p = [2+(1/p) lp. .

(1/p, s) =(1/p. )(p' —1)' ' —2

(15)

(16)
However, although this coupling of the ground and first
excited electronic states is the major nonadiabatic (off di-
agonal in the electronic state) effect, the contribution of and

= (1 Ip )
—(1/4p, )+O (1/pp, ) (17)
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1/m = I+(I/4p, fr) .

The transformed potential energy is p' V', where

(18)

I'= —(2/R)[(zl+Z2)k+(Z2 —Zl )n](k' —9') '

+(1/R)[1+P$2)+y(( +2I )] (19)

with the effective nuclear charges

Z, = [(p —1)I(p+I)]'"
and

Z = [(p + 1)/(p —1)]'

(20)

(21)

and with

P=(p' —I) 'i'=(I/2p, )+0(1/pp„l/p', )

and

y=(pP —1)/2=(i/16@', )+0(l/pp, ,') .

(22)

(23)

In Eq. (11)nuclear-motion effects, apart from the nona-
diabatic coupling due to the operators involving deriva-
tives with respect to R, have now been brought within an
adiabatic approximation. The Hamiltonian [Eq. (11)]
also has the desirable properties that at dissociation the
correct atomic limits are obtained and the electron densi-
ty at the nucleus of the atom to which dissociation occurs
is also correct.

The term in Eq. (11) involving the first derivative with
respect to R may be removed by replacing the wave func-
tion P" corresponding to %"by

R
—5/2

q

At the same time the volume element is changed from

R dR($ —
r) )dgd7) dy/8

to

(24)

dr=dR(g 2) )dgd2) dy—/8 .

The Hamiltonian appropriate to g, is now

&,= —(1/2p, ~)(r) IBR )+&, ,

where

(2p ImR )X—o (p/p, &R )(2Y—+3)

(25)

(26)

(28)

where P„(2)) and L' '[a(g —1)] are the Legendre and as-

+(p/pdrR )J(J+ I)+(3/8p, ~R )+p'i V' (27)

does not contain any derivatives with respect to R, al-
though it still contains R as a parameter. In the kinetic-
energy operator only —(I/2p, s)(B /BR ) couples elec-
tronic states and it is the effect of the nonadiabatic cou-
pling due to this operator that is the main interest in this
paper.

In Ref. 15 the matrix elements of the Hamiltonian A,
were found between the basis functions

P; =(2m) 'i exp[ —a(g —1)/2]L' '[a(j—1)]P„(g),

sociated Laguerre polynomials, respectively. The term
p' V' was expanded as a Taylor series and terms of or-
der higher than (I/p) and (1/p, ) were neglected. The
same basis functions and expansion are used here. The
Schrodinger equation corresponding to the Hamiltonian
%, is then solved variationally in this basis, for fixed
values of R, and the nonlinear parameter a is optimized
at a large number of R values (see Ref. 15).

In Sec. III matrix elements of the Hamiltonian, Eq.
(27), between the basis functions, Eq. (28), are needed as
well as the overlap matrix elements. The integrals re-
quired may be evaluated analytically as in Ref. 13. In ad-
dition, overlap matrix elements between basis functions
with different values of the parameter a are needed, since
different values of a are adopted for different ranges of R,
but these integrals may also be evaluated analytically us-
ing the methods described in Ref. 17.

III. THE ARTIFICIAL-CHANNELS METHOD
FOR THE CALCULATION

OF BOUND-STATE EIGENVALUES

In the standard close-coupling method for solving
time-independent quantum-mechanical inelastic scatter-
ing problems the full Hamiltonian for the problem is in-
tegrated between basis functions corresponding to the
eigenfunctions of the separated fragments.

' This leaves
a set of coupled second-order differential equations only
in the scattering coordinate R. In the present work we
take the matrix elements of the transformed Hamiltonian
%, [Eq. (26)] between the basis functions [Eq. (28)] and
obtain a similar set of coupled differential equations in R.

Shapiro has shown how the bound states of a Hamil-
tonian represented in this manner may be found using the
standard techniques of inelastic quantum-mechanical
scattering theory. The methods proposed in his paper
have been applied to the calculations of bound-state ener-
gies for some molecular systems. ' ' In Shapiro's
artificial-channels method two artificial scattering chan-
nels are added to the set of channels or basis functions
representing the bound-state manifold. These artificial
channels are open at asymptotically large R values,
whereas the original bound-state channels are all closed
(that is, they correspond to negative kinetic energies).
The two artificial channels are coupled in a well-defined

asymmetric manner to the bound-state channels, but are
not coupled at all to each other. The solution of the
scattering problem yields a transition or T matrix be-
tween the open channels. The T-matrix elements depend
on the energy at which the scattering calculation is per-
formed.

In the artificial-channels method the energy depen-
dence of the T-matrix element between the two artificial
channels is computed. It has been shown, ' that the
energy dependence of this matrix element possesses a
first-order pole at the energy of each of the bound states.
Because the analytic form of the energy dependence of
the T-matrix element is known, the exact values of the
bound-state energies may be very efhciently located (see
Appendix of Ref. 19). For each vibration-rotation level a
trial energy is chosen and the open channels are defined
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so that the scattering energy is small; in this way the
scattering wave function has a long wavelength and the
overlap with the bound-state wave function is good.

The coupled equations are solved by starting at small R
and propagating the solution outwards using the log-
derivative method. ' For the lowest vibrational state,
v =0, only a small range of R values is important and
only one set of basis functions (that is, one value of a } is
needed. In addition, only a small number (35) of basis
functions are necessary. However, for higher vibrational
states a wide range of R values is sampled, the average
bond length for U =21, J =0 being about 13ao. The use
of one set of basis functions (that is, one value of a } for
all the important values of R is not sufficient to ensure ac-
curate results for the higher vibrational states. It is also
found that, to attain the very high accuracies we are here
aiming for, the number of basis functions must be consid-
erably increased for the higher vibrational states. Rather
than change a for every value of R, the range of R is di-
vided into segments and within each segment the same a
is used. In going from one segment to the next, as the
wave function is propagated to higher R, it is necessary
to match the wave functions at the boundary; this is done
by using the overlap matrix. For v =20 as many as 90
basis functions and 54 segments, with a varying from 2.2
at R =0. lao to 26.5 at R =40ao, are used. Satisfactory
results are also obtained for U =21, J=0, 1 using 104
basis functions and 88 segments. Unfortunately the
method is computer intensive and it has not proved possi-
ble to consider v =21, J & 1 and the very highest levels,
U =22, J =0, 1; these lie within 8 cm ' of the dissociation
limit and, in the case of v =22, J =1, the average bond
length is 41ao.

Using the results of Wolniewicz and Poll' as a guide,
good initial choices of the bound-state energies may be
made and the convergence to the exact nonadiabatic en-
ergies is usually very rapid, rarely involving more than
five iterations. The absolute energies of the bound states
are thought to be accurate to better than 1X10 EI,

(0.0002 cm '). In calculating the energy relative to dis-
sociation, the dissociation limit is taken to be
—0.499 863 815 2E& and the conversion to wave number
units is 1 EI, =219474.63067 cm ' from the 1986 con-
stants. Unfortunately these calculations do not provide
wave functions, and properties other than energies have
not been calculated.

IV. RESULTS

In this section the results are presented in such a way
as to facilitate comparison with previous calculations and
with experiment.

A. Absolute nonadiabatic energies (J =0)

The few results available for comparison of absolute
energies are for J =0 and low U. Those published before
1986 use different masses from those employed in this
paper, and are given in the first half of Table I together
with the results of our calculations using the same masses
as the original investigators. The disagreement with
Bishop and Cheung" becomes greater with increasing U,

although our value for the (0,0) level agrees exactly with
the later calculation of Bishop and Solunac. ' In addi-
tion, no explanation may be offered for the disagreement
with the (0,0) value of Wolniewicz and Poll, ' since our
calculations give the same result whether their masses or
the masses of Bishop"' are used.

It was possible to make similar remarks in Ref. 17,
where the variational results of Moss and Sadler were
compared with those in Refs. 10—12. The reason for this
becomes clear from the second half of Table I, where the
results of the present calculations are compared with
those for the variational calculations of Ref. 17. The
agreement is excellent and it is thought that the small
discrepancies for u =3 and 4 are just a reAection of the
fact that the variational calculations did not converge
satisfactorily for higher U.

TABLE I. Nonadiabatic energies for the J=0 vibration-rotation levels of the ground electronic state
of HD+ together with a comparison with other calculations; relativistic and radiative corrections are
not included. A supposed misprint in Ref. 10 has been corrected. The masses are relative to that of the
electron.

mH

Masses
mD Other work

Energy (Eq )

This work

(0,0)
(1 0)
(2,0)
(0,'0)

(0,0)
(0,0)
(1,0)
(2,0)
(3,0)
(4,0)

'Reference 11.
Reference 12.

'Reference 10.
Reference 17.

1836.152 746

1836.1528
1836.152 701

3670.479 071

3670.4786
3670.483 014

—0.597 897 9674'
—0.589 181 8255'
—0.580 903 6794'
—0.597 897 967 80
—0.597 897 9726'
—0.597 897 9686
—0.589 181 8297
—0.580 903 7004
—0.573 050 5467
—0.565 6110422d

—0.597 897 9678
—0.589 181 8274
—0.580 903 6969
—0.597 897 9678
—0.597 897 9677
—0.597 897 9686
—0.589 181 8297
—0.580 903 7004
—0.573 050 5469
—0.565 611 0424



CALCULATIONS OF VIBRATION-ROTATION ENERGY LEVELS. . .

B. Nonadiabatic dissociation energies for J & 0

For nonzero J all previously published results have in-

cluded relativistic and radiative corrections, except for
those of Ref. 17. However, the latter may not be com-
pared directly with the present work since here the
rotational-electronic coupling term in the transformed
Hamiltonian is neglected. This means that no account
has been taken of the mixing of II states into the elec-

tronic ground state. Nevertheless, the appropriate
corrections are tabulated in Table III of Ref. 10 for J = 1,
3, and 5, and extrapolation to J=8 is thought' to be
justified. In Ref. 17 excellent agreement was found with
these IIg contributions' and so they are used here and in

the remainder of the paper; the effect on these corrections
of the difference in the masses used in the various calcula-
tions is negligible.

In Table II, then, the appropriate comparison is given.
Again the agreement is excellent, although for U =3 it is

slightly poorer, as might be expected. The comparisons
presented in Tables I and II give us confidence in both
the present work and the variational calculations. '

C. Dissociation energies including relativistic
and radiative corrections

Table III contains the bulk of the results of this paper,
namely, the nonadiabatic dissociation energies of
v =0—21 for J =0, 1 and of selected v for J & 1. To these
may be added the H contributions, ' but for comparison
with the results of Wolniewicz and Poll' it is also neces-
sary to add both relativistic and radiative corrections,
since they do not quote these or the uncorrected dissocia-
tion energies. As in Ref. 17 the relativistic corrections
are obtained as a function of R using the results of
Bishop as modified by Gonsalves and Moss, while the

radiative corrections are taken from Bishop and
Cheung, but with the Bethe 1ogarithm chosen to be 2.29
so that the atomic limit is given at large bond lengths.
The corrections for each vibration-rotation level are then
obtained as differences between energies calculated (using
the Numerov-Cooley algorithm ) for an adiabatic poten-
tial both with and without the relevant correction. The
relativistic corrections given in Table III agree to 0.001
cm, with the more sophisticated calculations of Ken-
nedy and Howells. The least secure part of the calcula-
tions is for the radiative corrections, but only the
differences in these are aeeded when experiment is com-
pared with theory in Sec. IV D.

The final column in Table III gives the differences be-
tween our results and those of Wolniewicz and Poll. ' In
general the agreement is good for low v and high v, but
for intermediate v the discrepancies are significant.
Indeed, the differences are seen to follow a systematic be-
havior and are greatest for those v values for which the
nonadiabatic corrections due to mixing in of Xg states are
expected to be largest. No explanation can be offered for
the lack of agreement; sample calculations show that the
use of different masses makes at most 0.002 cm
difference and using the dissociation energy or conversion
factor from E& to cm ' in Ref. 10 has even less effect.

D. Transition energies

All the available experimental data are given in Table
IV, except for transitions involving v =21, J =2, 3 (Ref.
6) and v =22, J =0, 1 (Refs. 8 and 9). As expected from
the accord of the present calculations with the variational
calculations of Ref. 17 the agreement of theory with ex-
periment for low U is excellent. The agreement with the
data of Carrington and colleagues for transitions in-

volving levels with high U is also splendid, with the ma-

TABLE II. Comparison of the dissociation energies of selected vibration-rotation levels of the
ground electronic state of HD+ calculated in this paper with the variational calculations of Moss and
Sadler (Ref. 17). Relativistic and radiative corrections are not included. Corrections for Xg-Hg mixing
induced by rotational-electronic angular momentum coupling are taken from Ref. 10.

Uncorrected
dissociation

energy (crn ')

n,
correction'

(cm ')
Dissociation energy (crn ')

This work Ref. 17

(0,1)
(0,3)
(0,5)

(1,1)

(1,3)
(1,5)

(2, 1)
(2,3)
(2,5)

(3,1)
(3,3)

'Reference 10.
Reference 17.

21 472.1483
21 254. 1493
20 867.1365

19 561.1792
19 353.1439
18 983.8693

17 746.2812
17 547.9078
17 195.8378

16024.6014
15 835.6253

0.0014
0.0083
0.0204

0.0014
0.0081
0.0201

0.0013
0.0080
0.0198

0.0013
0.0078

21 472.1497
21 254.1576
20 867.1569

19 561.1806
19 353.1520
18 983.8894

17 746.2825
17 547.9158
17 195.8576

16024.6027
15 835.6331

21 472.1497
21 254. 1575
20 867.1571

19 561.1806
19 353.1520
18 983.8894

17 746.2825
17 547.9156
17 195.8575

16024.6024
15 835.6327
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TABLE III. Dissociation energies in cm ' for vibration-rotation levels of the ground electronic state of HD+, including relativis-

tic and radiative corrections, together with a comparison with the values of Wolniewicz and Poll (Ref. 10) (the differences are given

to three decimal places).

(v, J)

Uncorrected
dissociation

energy

Corrections
Relativistic Radiative

Dissociation
energy

Difference
between values
of Ref. 10 and

this work

(0,0)
(1,0)
(2,0)
(3',0)
(4,0)
(5,'0)

(6,0)
(7,0)
(8,0)
(9,0)
(10,0)
(11,0)
(12,0)
(13',0)
(14,0)
(15,0)
(16,0)
(17,0)
(18,0)
(19,0)
(20,0)
(21,0)

(0,1)

(1,1)

(2,1)

(3,1)
(4, 1)

(5,1)

(6,1)

(7,1)

(8,1)

(9,1)

(10,1)
(11,1)
(12,1)
(13,1)
(14,1)
(15,1)
(16,1)

(17,'1)

(18,1)

(19,1)

(20,1)
(21,1)

(o,2)

(1,2)
{2,2)
(3 2)

(14,2)
(15,2)
(16,2)
(17,2)
(18,2)

21 516.0096
19 603.0382
17 786.1989
16062.6309
14429.8484
12 885.7300
11 428.5124
10056.7886

8769.5098
7565.9926
6445.9306
5409.4124
4456.9446
3589.4847
2808.4802
2115.9191
1514.3886
1007.1436

598.1587
292.1173
94.0754
10.2140

21 472.1483
19 561.1792
17 746.2812
16024.6014
14 393.6611
12 851.3464
11 395.9014
10025.9266

8740.3812
7538.5897
6420.2547
5385.4743
4434.7660
3569.0995
2789.9365
2099.2818
1499.7442
994.6048
587.8761
284.2921

88.9982
8.5495

21 384.6882
19477.7141
17 666.6898
15 948.7775

2753.0229
2066.1804
1470.6294
969.7062
567.4983

0.0014
0.0014
0.0013
0.0013
0.0013
0.0013
0.0012
0.0012
0.0012
0.0012
0.0011
0.0011
0.0011
0.0011
0.0010
0.0010
0.0009
0.0008
0.0008
0.0007
0.0005
0.0000

0.0041
0.0040
0.0040
0.0039

0.0030
0.0029
0.0027
0.0025
0.0023

0.1407
0.1087
0.0796
0.0532
0.0293
0.0079

—0.0109
—0.0272
—0.0412
—0.0529
—0.0623
—0.0695
—0.0744
—0.0768
—0.0770
—0.0745
—0.0696
—0.0621
—0.0520
—0.0391
—0.0233
—0.0045

0.1390
0.1072
0.0782
0.0519
0.0281
0.0068

—0.0119
—0.0282
—0.0421
—0.0537
—0.0630
—0.0702
—0.0749
—0.0773
—0.0774
—0.0749
—0.0699
—0.0622
—0.0519
—0.0389
—0.0229
—0.0040

0.1358
0.1041
0.0754
0.0493

—0.0781
—0.0754
—0.0701
—0.0624
—0.0519

—0.0812
—0.0732
—0.0657
—0.0587
—0.0522
—0.0461
—0.0405
—0.0352
—0.0304
—0.0258
—0.0217
—0.0180
—0.0146
—0.0115
—0.0088
—0.0064
—0.0044
—0.0027
—0.0015
—0.0005

0.0000
0.0000

—0.0809
—0.0730
—0.0655
—0.0584
—0.0519
—0.0458
—0.0402
—0.0350
—0.0302
—0.0257
—0.0215
—0.0179
—0.0145
—0.0114
—0.0087
—0.0064
—0.0044
—0.0026
—0.0014
—0.0004

0.0000
0.0000

—0.0803
—0.0724
—0.0648
—0.0579

—0.0085
—0.0062
—0.0042
—0.0026
—0.0013

21 516.0691
19 603.0737
17 786.2128
16062.6254
14 429.8255
12 885.6918
11 428.4610
10056.7262

8769.4382
7565.9139
6445.8466
5409.3249
4456.8556
3589.3964
2808.3944
2115.8382
1514.3146
1007.0788

598.1052
292.0777
94.0521
10.2095

21 427.2078
19 561.2148
17 746.2952
16024.5962
14 393.6386
12 851.3087
11 395.8505
10025.8646

8740.3101
7538.5115
6420. 1713
5385.3873
4434.6777
3569.0119
2789.8514
2099.2015
1499.6708
994.5408
587.8236
284.2535

88.9758
8.5455

21 384.7478
19477.7498
17 666.7044
15 948.7728

2752.9393
2066.1017
1470.5578
969.6437
567.4474

0.002
0.004
0.005
0.007
0.008
0.010
0.010
0.011
0.012
0.013
0.014
0.015
0.014
0.015
0.014
0.013
0.012
0.010
0.010
0.006
0.003
0.000

0.001
0.004
0.005
0.006
0.008
0.009
0.009
0.010
0.012
0.013
0.014
0.015
0.014
0.014
0.014
0.012
0.012
0.010
0.009
0.005
0.002
0.007

0.001
0.003
0.005
0.005

0.014
0.012
0.011
0.009
0.008
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TABLE III ~ (Continued) ~

(v,J)

Uncorrected
dissociation

energy

Corrections
Relativistic Radiative

Dissociation
energy

Difference
between values
of Ref. 10 and

this work

(20,2)

(0,3)
(1,3)

(2,3)
(3 3)

(14,3)
(15,3)
(16,3)
(17,3)
(18,3)

(20,3)

(14,4)

(16,4)
(17,4)
(18,4)

(20,4)

(0,5)

(1,5)

(2,5)

(14,5)

(15,5)

(16,5)

(17,5)
(18,5)

(15,6)
(16,6)
(17,6)
(18,6)

(15,7)

(18,7)

(17,8)

'Reference 10.

79.0841

21 254.1493
19 353~ 1439
17 547.9078
15 835.6253

2698.0839
2016.9579
1427.3896
932.8002
537.3933

64.8274

2625.6298

1370.5384
884.4144
498.1184

47.0040

20 867.1365
18 983.8693
17 195.8378

2536.3285
1872.3437

1300.7514
825.2455
450.4137

1778.4377
1218.8600
756.1564
395.2060

1671.3648

333.6150

592.4871

0.0015

0.0083
0.0081
0.0080
0.0078

0.0060
0.0058
0.0054
0.0050
0.0045

0.0029

0.0100

0.0090
0.0083
0.0074

0.0046

0.0204
0.0201
0.0198

0.0150
0.0142

0.0134
0.0123
0.0110

0.0198
0.0186
0.0171
0.0151

0.0262

0.0198

0.0284

—0.0223

0.1311
0.0997
0.0712
0.0454

—0.0791
—0.0762
—0.0707
—0.0625
—0.0516

—0.0211

—0.0805

—0.0713
—0.0627
—0.0513

—0.0195

0.1171
0.0867
0.0590

—0.0822
—0.0783

—0.0719
—0.0628
—0.0508

—0.0796
—0.0726
—0.0627
—0.0501

—0.0809

—0.0489

—0.0621

0.0000

—0.0794
—0.0715
—0.0641
—0.0571

—0.0082
—0.0059
—0.0040
—0.0023
—0.0010

0.0000

—0.0077

—0.0036
—0.0021
—0.0008

0.0000

—0.0767
—0.0689
—0.0616

—0.0072
—0.0050

—0.0032
—0.0018
—0.0006

—0.0044
—0.0027
—0.0013
—0.0003

—0.0039

0.0000

—0.0004

79.0633

21 254.2093
19 353 ~ 1802
17 547.9229
15 835.6214

2698.0026
2016.8816
1427.3203
932.7404
537.3452

64.8092

2625 ~ 5516

1370.4725
884.3579
498.0737

46.9891

20 867.1973
18 983.9072
17 195~ 8550

2536.2541
1872.2746

1300.6897

825.1932
450.3733

1778.3735
1218.8033
756.1095
395.1707

1671~ 3062

333.5859

592.4530

0.002

0.000
0.003
0.003
0.005

0.013
0.012
0.012
0.010
0.007

—0.001

0.012

0.010
0.009
0.006

—0.006

—0.002
0.001
0.002

0.013
0.011

0.011
0.009
0.006

0.012
0.012
0.008
0.005

0.014

0.005

0.011

jority of the calculated values agreeing with experiment
to 0.001 cm ', which is the experimental error.

These results are a significant improvement on those of
Wolniewicz and Poll. ' Broadly speaking, the discrepan-
cies between their calculated values and experiment
reAect the differences between our results and theirs for
the dissociation energies given in Table III ~ This suggests
that our results in Table III are to be preferred.

V. DISCUSSION

This paper presents calculated dissociation energies for
many vibration-rotation levels of the ground electronic
state of HD+. Unlike Ref. 17, which concentrated on
high J, results are reported for high as well as low v.

However, for J & 0 it is necessary to use the published'

corrections for the effect of rotationally induced X -Hg
mixing. Agreement with experiment is excellent, but as
the experiments yield only energy differences, there could
still be significant errors in the nonadiabatic, relativistic,
or radiative corrections. Our comparison with experi-
ment only provides support for the accuracy of calculated
differences in these corrections between vibration-
rotation levels. The radiative corrections are thought to
be the weakest part of the calculation. Nevertheless, we
are confident that the energy of any transition involving
v &21 and J &9 could be predicted to 0.001 cm '. The
only reason that all these vibration-rotation energies have
not been calculated is that a separate calculation is need-
ed for each.

The same method may be applied to H2+and D2+, al-
though in these cases symmetry breaking does not occur
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and i is a true symmetry operation, unless account is tak-
en of nuclear spin. In addition, vibration-rotation levels
of the shallow potential minima associated with the first
excited electronic states are experimentally accessible. '

However, these levels have large average bond lengths
and, like the U =21, J =2, 3 and U =22, J=0, 1 levels of
the ground electronic state of HD+, it may be that the

calculations will not be computationally feasible. At
present our computer program spends about 95%%uo of its
running time inverting matrices, which is very time con-
suming.

A more demanding problem than HD+ is (dt p)+, for
which the breakdown of the Born-Oppenheimer approxi-
mation is much more serious, since the Inuon has a mass

TABLE IV. Comparison of calculated and experimental transition frequencies in cm ' for the ground electronic state of HD+.

Transition Experiment This work
Theory

Ref. 10

Difference between experiment
and calculated values

This Work Ref. 10

(1,0)-(0,1)
(1,1)-(o,2)
(1,2)-(0,3)

(2,1)-(1,0)

(3,1)-(2,0)
(3,2)-(2,1)
(3,3)-(2,2)
(3,1)-(2,2)

(17,1)-(14,0)
(17,2) -(14,1)

(17,3)-(14,2)

(17,4)-(14,3)
(17,5)-(14,4)
(17,6)-(14,5)
(17,0)-(14,1)

(18,1)-(16,0)
(18,2)-('j6, 1)
(18,3)-(16,2)
(18,4)-(16,3)
(18,5)-(16,4)
(18,6)-(16,5)

(18,7)-(16,6)
(18,0)-(16,1)
(18,1)-(16,2)

(17,0)-(15,1)
(17,1)-(15,2)
(17,2) -(15,3)
(17,4) -(15,5)
(17,5)-(15,6)
(17,8)-(15,7)

(20,0)-(17,1)
(20, 1)—(17,2)
(20, 1)-(17,0)
(20,2)-(17,1)
(20,3)-(17,2)
(20,4)-(17,3)

(21,0)—(17,1)
(21,1)—(17,0)

'Reference 1.
Reference 2.

'Reference 4.
Reference 3.

'Reference 5.
Reference 6.

1869.134'
1823.533'
1776.459

1856.778'

1761.616'
1797.522'
1831.083
1642.108'

1813.852'
1820.209'
1820.200'
1813.645'
1800.358'
1780.145'
1782.772'

926.4895
932.2237
933.2129
929.2471
920.1001"
905.5191
885.2183~
901.5648
882.7312

1092.124'
1071.561'
1047.239'
987.917'
953.180'

1078.8532

900.488'
880.668'
918.102'
915.476'
904.833'
885.749'

984.330'
998.533

1869.1341
1823.5330
1776.4595

1856.7785

1761.6166
1797.5224
1831.0830
1642.1082

1813.8536
1820.2077
1820.1989
1813.6447
1800.3584
1780.1446
1782.7726

926.4910
932.2234
933.2126
929.2466
920.0992
905.5190
885.2174
901.5656
882.7342

1092.1227
1071.5609
1047.2379
987.9167
953.1803

1078.8532

900.4887
880.6679
918.1030
915.4775
904.8345
885.7513

984.3313
998.5333

1869.131
1823.530
1776.456

1856.778

1761.616
1797.522
1831.083
1642.107

1813.857
1820.212
1820.203
1813.649
1800.362
1780.149
1782.776

926.494
932.228
933.217
929.252
920.104
905.525
885.224
901.568
882.736

1092.125
1071.563
1047.241
987.919
953.184

1078.856

900.496
880.675
918.111
915.486
904.845
885.767

984.341
998.536

0.000
0.000

—0.001

—0.001

—0.001
0.000
0.000
0.000

—0.002
0.001
0.001
0.000
0.000
0.000

—0.001

—0.002
0.000
0.000
0.001
0.001
0.000
0.001

—0.001
—0.003

0.001
0.000
0.001
0.000
0.000
0.000

—0.001
0.000

—0.001
—0.002
—0.002
—0.002

—0.001
0.000

0.003
0.003
0.003

0.000

0.000
0.000
0.000
0.001

—0.005
—0.003
—0.003
—0.004
—0.004
—0.004
—0.004

—0.004
—0.004
—0.004
—0.005
—0.004
—0.006
—0.006
—0.003
—0.005

—0.001
—0.002
—0.002
—0.002
—0.004
—0.003

—0.008
—0.007
—0.009
—0.010
—0.012
—0.018
—0.011
—0.003
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207 times that of the electron. Our present program is
not expected to rival the results of other workers (see, for
example, Ref. 32), unless we avoid the approximation of
retaining only the erst few terms in the Taylor expansion
of p'~2 V' in the transformed Hamiltonian, Eq. (27).

An obvious extension of this work would be to include
II functions in the electronic basis used, as in the varia-
tional calculations of Moss and Sadler. ' This would re-
move our reliance on the corrections of Wolniewicz and
Poll' for part of the coupling of rotational and electronic
angular momentum. In addition, it might make accessi-

ble high-u, high-J levels, which are of current experimen-
tal interest.
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