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We analyze a type of spurious resonance recently identified [see, for example, B. Apagyi, P.
Lévay, and K. Ladanyi, Phys. Rev. A 37, 4577 (1988)] in the Schwinger variational method. It is
found that this type of anomaly is associated with ill conditioning of the potential matrix ¥, and
that this fact allows the identification and removal of any such resonances by straightforward nu-
merical procedures. We therefore anticipate that such anomalies will have little relevance to practi-

cal applications of the Schwinger method.

I. INTRODUCTION

Apagyi and his co-workers' 3 have recently examined
the application of the Schwinger variational method* to
several simple problems, and have found spurious reso-
nances in two cases, specifically 'S electron scattering by
the H atom in the static-exchange approximation! and
scattering by a local potential which changes sign.? Since
anomalous behavior has not been previously reported in
applications of the Schwinger method, these results
deserve study both for their own interest and as they may
affect practical applications of the Schwinger principle.

The anomalous resonances seen by Apagyi and his co-
workers' ~? are closely associated with zero eigenvalues
of the N X N matrix representation ¥ of the potential, in
the sense that they are seen only when V is either ill con-
ditioned or actually singular. Such an association was ex-
plicitly noted by Apagyi, Lévay, and Ladanyi' for the
IS¢~ —H atom problem, and can be readily verified for
the local potential® as well. We have found that this ob-
servation is the key to understanding the numerical ori-
gin of these resonances; furthermore, we show here that
resonances of this type can be readily distinguished from
physical resonances and can, in fact, be avoided entirely
by the use of fairly standard computational techniques.
In spite of their possible theoretical interest, therefore,
anomalies of this type should be of little practical
significance.

In the present paper we first review some relevant as-
pects of the Schwinger variational method and discuss
how anomalous resonances may arise in it. We then
show how spurious resonances associated with the behav-
ior of ¥ can be identified and eliminated. A simple nu-
merical example illustrates the main points presented,
followed by a brief discussion and conclusions.

II. THEORY

To simplify the discussion, we consider s-wave elastic
scattering using standing-wave boundary conditions and
real basis functions. The Schwinger principle for a linear
trial function®

N
Ylkr)= 3 x;x,(r)

i=1

(2.1

then takes the form

tand=—2b7x, 2.2)
where x is the solution of the linear system

Ax=b, (2.3)
with

A=\ V=VGPVIx;) (2.4)
and

b;={x;|V|sin(kr)) , (2.5)

for i and j running from 1 to N. In (2.4), G'P is the
principal-value free Green’s function for / =0.
If A is nonsingular, we solve Eq. (2.3) in the form

x=A47'b, (2.6)
and we then may write
tand= — %bTé “b. 2.7)

Since a resonance is signaled by tand= oo, it is clearly a
necessary condition for a resonance that 4 be singular.
However, it is important to understand that this is not a
sufficient condition for a resonance to exist. For instance,
suppose that

Az=0 (2.8)
is satisfied for exactly one nontrivial z, but also that
b7-z=0. (2.9)

Then, according to the Fredholm alternative, solutions to

Eq. (2.3) exist® and take the general form
x=x'+pz, (2.10)

where x’ is orthogonal to z and S is arbitrary. If we then
use Eq. (2.2) to evaluate tand, we obtain

tans=— 2bTx’ , 2.11)
k
in light of Eq. (2.9). Equation (2.11) for tan$ is indepen-
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dent of z and finite, and consequently, there is no reso-
nance. For a true resonance to exist, we therefore have
the additional condition

bT-z540 .

When Egs. (2.8) and (2.12) together hold, then the inho-
mogeneous equation (2.3) has no solution,® and we are
justified in taking tand= oo.

It is worth observing that the well-known”®
equivalence between the Schwinger principle for linear
trial functions and the use of a separable approximation
for the potential,

(2.12)

N
Vep(r)=3 V(nlx ¥ "1,{x;IV(r),

Lj=1

(2.13)

provides a simple physical interpretation of these elemen-
tary facts. From the separable-potential point of view,
Eqgs. (2.8) and (2.9) characterize the presence of a bound
state in the continuum, in contrast to a true resonance.
Such a bound state is asymptotically decaying, and thus
does not affect the phase shift. On the other hand, the
solution associated with z is degenerate with a scattering
solution (associated with x'), so that the phase shift is still
well defined and is, in fact, given by Eq. (2.11). These is-
sues have been discussed in some detail by Gourdin and
Martin® and in particular by Martin;'© the latter refer-
ence also makes the key observation that any slight al-
teration in a separable potential which supports a bound
state in the continuum is likely to convert that bound
state into a resonance. Since a bound state in the con-
tinuum is an artifact of the separable approximation to
the potential, so also are any such resonances associated
with it. Here, then, we have a category of spurious reso-
nances associated with separable potentials, or,
equivalently, with the Schwinger variational method.

The preceding discussion immediately suggests a
means of identifying and dealing with any such reso-
nances. Since they are very closely related to actual
bound states, we anticipate that Eq. (2.9) will be very
nearly satisfied for such resonances, i.e., that the overlap
of the normalized vectors b and z,

T
A=—D0CZ_ (2.14)
IIbll fizl

will be small. In such a case we are justified in proceed-
ing as if Eq. (2.9) held exactly, that is, by requiring that
the solution x to Eq. (2.3) be orthogonal to z. Such an
approach is simply the standard procedure in solving in-
homogeneous equations when a solution to the corre-
sponding homogeneous system exists,!! with the
difference that we do not necessarily require that 4 be
numerically singular, or that A be numerically zero, for it
to be appropriate to proceed in this manner.

As already mentioned, the anomalies seen by Apagyi
and his co-workers' ~* are associated with singular behav-
ior of the matrix ¥. Since the separable potential, Eq.
(2.13), is not even defined when ¥ is singular, the reso-
nances they observe cannot be directly associated with
positive-energy bound states. However, in terms of the
linear equations, these resonances originate in a closely

analogous manner. Assuming for convenience that our
N-term basis in Egs. (2.4) and (2.5) is a subset of a com-
plete orthonormal set of functions, those equations may
be written as

4,= 3 xN1=VG6 Py, Xx.Vix,) 2.4)
m=1
and
b= (X;IVIx, ) {x,,lsin(kr)) . 2.5

m=1

Moreover, since we can only expect meaningful results
when the basis adequately represents the potential, for
any useful basis Egs. (2.4') and (2.5") must very nearly be
satisfied even when the m sum is truncated at m =N. Put
another way, we must have

A=A4A'V+A (2.15)
and

b=Vb'+6, (2.16)
with

Al <<ll4| (2.17)
and

18] <<{iv]| (2.18)
the matrix A’ and vector b’ being given by

A, =, N=vG"x;) (2.19)
and

b/ ={x,lIsinlkr)) , (2.20)
respectively, for i,j=1,..., N. When an eigenvalue of ¥

equals zero, we then have for the corresponding normal-
ized eigenvector §

AL=ACL 2.21)

and

b75=8"-¢ . (2.22)
Because A and & have small norms, we see that § very
nearly satisfies Egs. (2.8) and (2.9). It is thus quite possi-
ble that, by making slight modifications to the basis or by
tuning the scattering energy (which modifies 4 and b), we
may find a vector z, close to or identical to &, that
satisfies Eq. (2.8) exactly. We thereby produce a ‘“reso-
nance,” unless Eq. (2.9) happens to be satisfied simultane-
ously, which is unlikely. However, the quantity A given
by Eq. (2.14) will be approximately equal to ||8]| /||b||. As
we have shown, this ratio must be small for any adequate
basis, and goes to zero as the basis representation of the
potential improves. It is therefore clear that such a reso-
nance is of the type we have been discussing, arising
when there is a solution to the homogeneous equation,
Eq. (2.8), nearly orthogonal to the inhomogeneous term
in Eq. (2.3). As already mentioned, the natural way to
deal with such cases is to require the solution to be or-
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thogonal to the “resonant” state. In this particular in-
stance, we have not only the smallness of A but the condi-
tioning of the matrix ¥ as diagnostics of possible anoma-
lous behavior, so that there should be no danger of
confusing such artifacts with true resonances.

III. NUMERICAL EXAMPLE

In this section we briefly illustrate the ideas developed
in Sec. II for the simple example of s-wave scattering by
the potential

(3.1

using Slater-type basis functions

o (r)=r"e" % m=1,...,N . (3.2)

Lévay and Apagyi found for this problem that anomalous
resonances arose in the Schwinger method for certain
combinations of the basis set parameters and the scatter-
ing energy. Their results for a seven-term basis are repro-
duced in Fig. 1, which shows the variation of tand with
the parameter a for k =1. The anomalous behavior near
a=3.7 is obvious. In Fig. 2, we show how the smallest
eigenvalues of the matrices 4 and ¥ vary over the same
range of . When a resonance is induced A4 of course is
singular. We see that V is also singular very near by,
identifying the origin of the anomalous behavior. Also
shown in Fig. 2 is the quantity
b’-x

=%

ol =l

corresponding to the A of Eq. (2.14), which according to
Eq. (2.22) should very nearly vanish for an anomalous

(3.3)
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FIG. 1. Variation of tand with the basis parameter a for the

model problem defined by Eq. (3.1), for a fixed value k =% and

basis size N=7. The correct value of tand is approximately
—0.0104.
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FIG. 2. Variation with a of the smallest eigenvalues of 4
(solid line) and ¥ (long dashes), and of the overlap A’ of Eq. (3.3)
(short dashes), for the same case as Fig. 1. Note that all three
quantities pass through zero at almost the same value of a, indi-
cating the anomalous origin of the “resonance” signaled by the
zero eigenvalue of A. The discontinuity in A’ arises from an
abrupt change of sign at the location of the spurious resonance.

resonance.
present case.
Since, as discussed in Sec. II, the behavior of ¥ and A’
illustrated in Fig. 2 provides a means of identifying the
resonant behavior shown in Fig. 1 near a=3.7 as spuri-
ous, it is appropriate to eliminate the linear combination

This condition is clearly satisfied in the
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FIG. 3. Variation of tand with a as in Fig. 1, but with the
eigenvector of 4 corresponding to the near-zero eigenvalue ex-
cluded from the solution space by singular value decomposition
(solid line). For comparison, results for tand using a basis size
N =6 are also shown (dashed line).
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causing the anomalous behavior from the solution space.
This is conveniently accomplished by singular value
decomposition,'! with the result shown in Fig. 3. Clearly
the behavior of tand is much improved. In fact, the re-
sults are comparable to those obtained for N =6, i.e., us-
ing one basis function fewer from the outset, also shown
in Fig. 3. We thus can be confident that the procedure
outlined here is capable of dealing with such anomalies if
and when they arise.

IV. DISCUSSION AND CONCLUSIONS

We have seen that the anomalous resonances ob-
served' 73 in the Schwinger variational method can be
understood as artifacts induced by the behavior of the po-
tential matrix ¥, and that they are similar to a type of
anomaly identified earlier®'° as arising for nonlocal ap-
proximate potentials in general. Fortunately, the “paren-
tage” of these anomalies implies numerical criteria for
identifying them. Still more importantly, we have shown
that the nature of the anomalous solutions to Eq. (2.8)

implies that, to a very accurate approximation, there
simultaneously exist solutions to Eq. (2.3) which provide
finite, and in our example reasonable, values for tand. It
should also be clear from the foregoing discussion that
such anomalies, unless deliberately sought out, should be
quite rare in practice, arising as they do from a highly
artificial choice of basis set. Indeed, the apparent absence
of such anomalies in the many practical applications of
the Schwinger method since its formulation* provides a
strong indication of their unlikelihood. We conclude that
the behavior seen by Apagyi and his co-workers, al-
though of some theoretical interest, has little relevance to
the usefulness of the Schwinger variational method as a
computational tool.
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