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The widely used rigid-rotor approximation of low-energy electron-molecule scattering theory

neglects completely the vibrational motion of the target. The errors this approximation introduces

into calculated elastic and rotational-excitation cross sections are larger than other sources of im-

precision in present state-of-the-art electron-molecule collision studies. We have applied an alterna-

tive to the rigid-rotor approximation: an extremely simple vibrational averaging of the interaction
potential. This procedure reintroduces effects due to the zero-point vibrational motion without

incurring in the solution of the Schrodinger equation computational demands beyond those of a
rigid-rotor calculation. Tests on e-H2 and e-N& scattering demonstrate the improved accuracy and

computational efficiency that results from vibrational averaging.

I. INTRODUCTION

The many degrees of freedom of the target in an
electron-molecule collision —electronic, nuclear rotation,
and nuclear vibration —pose computational challenges
that have provoked theorists to design a variety of ap-
proximations to simplify scattering calculations. ' In
studies of vibrationally elastic processes (i.e., elastic
scattering and rotational excitation within a particular
electronic and vibrational state), the most widely used of
these simplifications models the target molecule by a "mi-
croscopic dumbbell with electrons. " This is the rigid-
rotor (RR) approximation.

Operationally, this approximation amounts to fixing
the target's internuclear separation R at its equilibrium
value R, . In such calculations, therefore, the vibrational
motion of the nuclei is completely ignored; this gambit
greatly reduces the computational chore of solving the
Schrodinger equation. Hence the RR approximation ap-
pears in a variety of formulations of electron-molecule
collision theory; e.g., in the R-matrix, laboratory-frame
close-coupling, body-frame fixed-nuclei (BFFN), and oth-
ers. While obviously of little use if vibrational excita-
tion is of interest, in studies of elastic scattering and rota-
tional excitation the RR approximation has become a
mainstay. '

The price one pays for these simplifications is loss of
accuracy. In e-H2 scattering, for example, the RR ap-
proximation introduces error as large as 15% in
rotational-excitation cross sections at energies below
about 10 eV. In state-of-the-art calculations, which aim
to treat very accurately both the interaction potential and
the collision dynamics, so large an error in unacceptable.
While in principle one could fully incorporate the vibra-
tional dynamics —in, for example, rovibrational close-
coupling or body-frame vibrational close-coupling
calculations ' —in practice doing so requires so much
CPU time that it precludes study of complex molecules,
such as CO2, CH4, or benzene.

One computationally viable alternative to full inclusion
of rovibrationa1 dynamics is an adiabatic treatment of the
nuclear motion. In, for example, the adiabatic-nuclear-
vibration (ANV) theory, ' one calculates vibrational-
excitation cross sections from RR scattering matrices
(obtained by solving BFFN equations) at a discrete mesh
of values of R. This method therefore requires solving
RR equations at several values of R. Still, this method is
much faster than a converged close-coupling treatment
and produces elastic and rotational-excitation cross sec-
tions of greater accuracy than their RR counterparts. "

In solving RR scattering equations via a partial-wave
expansion (in a single-center formulation), one faces an
additional technical problem. In order to converge the
calculated cross sections, one must couple an artificially
large number of angular momentum eigenstates of the
projectile (the partial waves). ' ' These high-order par-
tial waves are unphysical because what couples them to
the low-order partial waves —which do contribute to the
cross section —is a singularity in the electrostatic interac-
tion potential located a distance R /2 from the origin of
coordinates. This off-center singularity is, of course,
purely an artifice of the RR approximation; no such
singularities occur in nature, where molecules vibrate.
For large, highly aspherical molecules such as CO2, the
mere calculation of large-order harmonics that do not
contribute to the cross section poses numerical
difficulties. ' But even for less extreme systems, this situ-
ation poses a practical difficulty. Because the computer
time needed to solve the RR coupled radial differential
equations increases as the square of the number of chan-
nels (or worse, depending on the algorithm' ), inclusion
of a large number of partial waves dramatically increases
the time required to attain a desired precision.

We here propose a very simple alternative to the RR
approximation for calculation of Uibrationally elastic
cross sections. This "vibrational-averaging" (VIBAV)
procedure takes account of vibrational effects (approxi-
mately) but does not require either the coupling of vibra-
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tional target states (as in a coupled-states method) or the
solution of scattering equations with an unphysical singu-
larity. To illustrate the procedure, we have applied it to
the e-H2 and e-N2 systems; the former highlights the im-

proved accuracy of VIBAV cross sections and the latter
the improved computational efficiency for larger mole-
cules with several electrons. In Sec. II we describe this
simple technique as an approximation to coupled-states
theory. In Sec. III we summarize details of our calcula-
tions and in Sec. IV discuss the results. Unless otherwise
stated, atomic units are used throughout and the notation
is that of Ref. l
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II. THEORY 2 ~ 5

A. VIBAV procedure

Off-center singularities in the RR electron-molecule
potential arise from Coulomb interactions between the
projectile and the nuclei. The scattering equation for
electronically elastic collisions (assuming excited elec-
tronic states are omitted') is just the projection of the full
Schrodinger equation onto the (Born-Oppenheimer) elec-
tronic wave function of the ground state of the target; for
H2 this X 'Xg+ state corresponds to a closed shell with
configuration lo g. This projection leaves only the spatial
variables of the internuclear axis R and the projectile r.
In the resulting "reduced" scattering equation, the two-
particle bound-free Coulomb interactions are averaged
over the ground state in the static potential term, which
for e-H2 is
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FIG. 1. Legendre projections A, =O, 2, and 4 of the static e-H&

interaction potential [Eq. (2)]. The RR projections (solid
curves) exhibit Coulomb cusps at r =R /2 that disappear when
these projections are vibrationally averaged (dashed curves).

v &'(r; R ). Figures 1 and 2, for example, show the cusps in
selected Legendre projections for e-H2 and e-N2.

In RR matrix elements these cusps compound the con-
vergence difficulties inherent in the nonspherical charac-
ter of the interaction potential. For example, in a BFFN
calculation' molecular vibrations are "frozen out" (via
the RR approximation), while rotational effects are intro-
duced asymptotically via the fixed-nuclear-orientation
(FNO) approximation. ' As its name implies, this ap-
proximation "freezes" the orientation of the internuclear

In practice, we calculate V„(r,R) from the Hartree-Fock
(HF) lo molecular orbital g, (r, R ) as

g

2

V„(r,R)= —g
@=1 p

2

+
&=1

(lb)

In the matrix elements that appear in coupled-channel
scattering equations [like Eqs. (3) below], there appear
the Legendre projections of this potential. Using single-
center coordinates with the origin at the center of mass of
the molecule, we expand Eq. (lb) in Legendre polynomi-
als as'

I I I I I I t I I I I I I I I I I i I I I I I I I I I I I0

-6
' let

0
c4 8
Q

M

max

V„(r;R)= g v z'( r; R )Pz(cos0) .
A,

(2)

In practice one truncates this summation at a maximum
order A, ,„ that is sufficient to converge the desired
scattering quantities. The o8'-center singularity r=R„ in
the electron-nuclear term in Eqs. (1) manifests itself as a
cusp at r =R /2 in each radial Legendre projection
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FIG. 2. Rigid-rotor (solid curve) and VIBAV {dashed curve)
e-Nz Legendre projections (with increasing magnitude) for
A, =16, 20, and 24.
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axis during the collision. The resulting Schrodinger
equation is written in a body-fixed (BF) reference frame in
which the z axis is coincident with the internuclear axis
R. In this frame, the appropriate angular basis for reduc-
tion of the scattering equation to radial form is the set of
spherical harmonics (i.e., partial waves) labeled by quan-
tum numbers I and A, where l corresponds to the orbital
angular momentum of the projectile and A to the projec-
tion of this observable along z =R. Projecting the
scattering function onto this basis leads to the coupled
equations"

d2

Gr

l(l+1)
' 0

=2+ [V&& (r;R)+V, , (r;R)]ul" I (r;R) . (3)
I'

In these equations R appears parametrically and so is
offset by a semicolon. The matrix elements that couple
partial waves come in two types: elements VI I (r) of local
terms in the potential (e.g., static and local polarization
terms) and elements V &&.(r) of nonlocal terms (e.g., ex-

change and nonlocal polarization-correlation terms}. The
caret on the second matrix element reminds us of its
essentially nonlocal character [see Eq. (11}below].

Because cusps are present in the electron-nuclear part
of each static matrix element, the solution of Eqs. (3) may
require an enormous number of channels; e.g., in e-CO2
scattering' one must couple as many as 32 channels, the
actual number depending on the scattering energy and
the electron-molecule symmetry (i.e., parity and value of
A). Yet, in the BFFN T matrix T&& (R), one needs only

0

elements corresponding to the lowest few partial waves to
calculate accurate cross sections,

If one extends this RR treatment to include vibrational
effects via the ANV approximation, the CPU time re-
quired by the cusps is aggravated by the need to solve RR
scattering equations at several geometries. Doing so is
necessary because the ANV transition amplitude for vi-
brational excitation is an integral (over R) of the BFFN T
matrix with respect to initial-state and final-state vibra-
tional wave functions: (P, ~TII (R)~P, ). For example,

0 0

in a recent ANV study of e-H2 collisions we solved the
RR equations for 11 values of R ranging from 0.7ao to
2.6a0.

The offending cusps do not appear, however, in formu-
lations that treat rigorously the dynamical effect of vibra-
tions on the scattering function. For this reason it is use-
ful to present the VIBAV procedure in the context
of such a formulation. The best known of these is rovi-
brational laboratory-frame close-coupling (LFCC)
theory. ' ' But because we have implemented the
VIBAV method in a body-fixed frame, we shall present it
as an approximation to body-frame vibrational close-
coupling (BFVCC) theory. '

The starting point for the BFVCC theory is an approx-
imate treatment of rotations: working in the FNO ap-
proximation in the body frame, we neglect the rotational
Hamiltonian in the Schrodinger equation and thus obtain
the reduced Schrodinger equation

[T,+&'"+V„(r,R)+V,„(r,R) —E]

X FNoqtA ( R ) ()
0 0

(4)

where we label the reduced body-frame wave function

VE» (r, R) by the total energy F. and the vibrational

and orbital angular momentum quantum numbers for the
initial channel. Clearly, this formulation retains the
dynamical effects of the vibrational Hamiltonian &'" on
this function.

These effects appear as vibrational coupling when Eq.
(4) is transformed via eigenfunction expansion into a set
of coupled equations. The appropriate basis functions
4„1(r,R) are products of eigenfunctions IP, (R)I of &'"'
and the aforementioned spherical harmonics I YI (O, p) I,
and the BFVCC expansion is

%z „& (r, R)=—g g u„& „ I (r)4,1(r,R)1

u I

(Sa)

g g u„i, I (r)P„(R)Y& (r) . (Sb)

When inserted into the FNO Schrodinger equation (4),
this expansion leads to the BVFCC coupled
integrodifferential equations

Gr

l(l+1)
r ' 0 02 +"u uul, u I r

=2 g [V,I, &
(r)+V vt, l'(ur)]u 'r, u I (r) .

I II
0 0

U,

(6)

d2

d1

1 (l +1)
2

+ b u II r
r

=2 g [ V I I (r)+ V I I (r)]u I I (r) (8)
I'

(Ref. 21). The overbar on the local and nonlocal matrix
elements in (8) denotes that these are uibrationally auer
aged quantities. For example, the vibrationally averaged

Here the channel energy k, (in Rydbergs) corresponding
to the radial function u, l „& (r) is defined by energy con-

servation as the difference between E and the energy of
the vth vibrational state,

-'k'= E —e
2 U

The essential difference between the BFVCC equations (6)
and the RR equations of BFFN theory (3) is the presence
in the former of vibrational coupling. The integration
over R implied by the static matrix element V,» I (r) in

(6) "washes out" the offending cusps, and thus decreases
the number of partial waves required for convergence.

In fact, only this integration —and not vibrational cou-
pling per se —is required to eliminate the cusps. So if
one is interested in vibrationally elastic scattering
(u =uu), one can simplify the BFVCC equations by trun-
cating the uibrational expansion in (5) to a single term:
the ground vibrational state. This reduces the coupled
equations (6) to their one state counterparts-
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static matrix element is

Y,",(r)=&iAI&P, IY„(r,R)lg, &Ii'A& . (9)

By implementing the Legendre expansion (2), we can
reduce the implied vibrational integral in (9) to a sum of
simple averages over the probability density of the
ground vibrational state; viz. ,

&yol Y,t(r R)Iyo&

f uz'(r;R)~$0(R)~ R dR Pz(cos8) .
0

(10)

One can easily evaluate these integrals by simple quadra-
tures over a small mesh of values of R (see Sec. III).

The effect of vibrational averaging on the static Legen-
dre projections is illustrated for e-H2 and e-N2 in Figs. 1

and 2. Figure 1 shows that in e-Hz, vibrational averaging
acts on low-order static projections [i.e., small values of A.

in Eq. (2)] mainly to eliminate the electron-nuclear cusps.
But averaging also weakens slightly the minimum and
widens slightly the "well" in each term; these alterations,
however slight, do significantly improve the accuracy of
rotational-excitation VIBAV cross sections over their RR
counterparts (see Sec. IV).

Most electron-molecule systems are much more as-
pherical than e-H2, so one must include Legendre projec-
tions of higher order in the expansion of the static poten-
tial. As illustrated in Fig. 2, these projections for e-N2 (in

the RR approximation) narrow with increasing A, and
contain a cusp (of equal magnitude) at r =R/2. Vibra-
tional averaging eliminates these cusps and significantly
weakens each minimum —differences that are responsible
for the increased computational e%ciency of a VIBAV
over a RR calculation for a system such as e-N2 (see Sec.
IV).

Operationally, the essential point for implementation
of this procedure is that Eqs. (8) of the VIBAV method
are mathematically identical to Eqs. (3}of BFFN theory.
Hence one can use without alteration existing computer
programs that solve the BFFN equations ' by simply

l

replacing RR Legendre projections in the BFFN matrix
elements by the corresponding VIBAV projections (10).

One can, of course, implement vibrational averaging in
other formulations of electron-molecule collision theory.
For example, in the rotational LFCC method, one merely
replaces uz'(r;R, ) in the coupling matrix elements

V,&
'&. by their vibrational averages.

However it is formulated, the VIBAV method remains
a one-state approximation and thus neglects coupling to
(open and closed) excited vibrational states [u' & 0 in the
sum in Eqs. (6)]; the extent to which this approximation
affects vibrationally elastic cross sections depends on the
system and scattering energy being studied. But in any
case VIBAV cross sections will be at least as accurate as
RR results, which ignore vibrational effects altogether.

B. Further simpli6cations: The nonlocal potential

The potential in the VIBAV equations (8) includes con-
tributions from static, exchange, and polarization-
correlation interactions. Since the singularity in the
Coulomb potential appears only in the (electron-nuclear)
static term, one can simplify further the VIBAV scatter-
ing calculations (while incurring very little loss of accura-
cy) by averaging only that term. For example, it is partic-
ularly useful to approximate nonlocal operators in the po-
tential by their equilibrium values.

For many systems, exchange or correlation effects can
be accurately represented by local model potentials,
but if such models are inapplicable or inappropriate, then
the nonlocality of these effects markedly complicates the
solution of scattering equations. For example, the ex-
change operator in the BFVCC coupled equations for e-

Hz scattering [Eqs. (6)] acts on one component of the ra-
dial function as

V,„(r,R}u,"&. „& (r)= K,&„& (r, r')
0 0

Xu„ i U ( (r )dr
0 0

where the BFVCC exchange kernel is

K,&„.& (r, r')=rr'f +„t(r,R)'
g& (r,R), g, (r', R) 4„.&(r', R)drdr'dR . (12)

Although exchange significantly influences low-energy
electron-molecule cross sections, the exchange operator
varies weakly with R over the region of the ground-state
vibrational probability density ~$0(R)~ . So approximat-
ing the matrix elements V

& &
(r) in Eqs. (8) by their equi-

librium values V
& & (r;R, ) should be an excellent approx-

imation. Similarly one can approximate the polarization
interaction —another bound-free electron-electron
effect —by its equilibrium value, as illustrated by the e-N2
calculations reported in Sec. IV B.

III. DESCRIPTION OF THE CALCULATIONS

A. H2 and N2 interaction potentials

We calculate the static, exchange, and polarization
components of the interaction potentials for both systems

from near-Hartree-Fock electronic ground-state wave
functions on a grid of internuclear separations R deter-
mined by the probability density of the ground vibration-
al state. As Fig. 3 shows, this range is more compact for
N2 than for Hq.

To obtain these electronic functions, we solve the elec-
tronic Schrodinger equation of the molecule variational-
ly using symmetry-adapted bases of contracted
nucleus-centered gaussian-type orbitals. These bases in-
clude compact polarization functions that allow for bond
formation in the neutral molecule; when used to deter-
mine the polarization potential described below, each
basis is augmented by additional diffuse functions to al-
low for distortion of the neutral by the scattering elec-
tron. The R variation of the electronic wave functions is
carried entirely by the linear variational parameters.

For e-Hz we use a (5s2p/3s2p) basis for the neutral and
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TABLE I. Properties of the ground X 'Xg states of H2 and
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FIG. 3. Ground-state X 'Xg near-HF potential energy curves
and associated ground-state vibrational wave functions for H2
(solid curves) and N2 (dashed curves). To facilitate comparisons
(see Sec. III) all curves are plotted as a function of R —R, and
the electronic energies (plus the internuclear repulsion poten-
tial) are plotted as 8"(R)—6"(R,). The vibrational wave
functions were calculated by solving the nuclear Schrodinger
equation (13) as described in Sec. III C and are here scaled by —,'o

and plotted on a horizontal axis chosen to indicate the corre-
sponding vibrational energy: co=0.0104E& for H2 and
~o=0.0062E& for N&.

a (6s3p/4s3p) basis for the polarized molecule. The ex-
ponents and contraction coefficients for these bases ap-
pear in Table I of Ref. 30. For e-N2, we use the
(9s5p ld/Ss3p ld) neutral basis of Ref. 31 and augment
this basis to allow for polarization as described in Sec.
III A of Refs. 32 and 33.

Figure 3 shows the electronic energy curves for the
ground states of N2 and H2. At equilibrium, our elec-
tronic energies are —1.132 895EI, for H2 and
—108.974 556E& for N2', the corresponding Hartree-Fock
(HF) limits are —1.133 63E& and —108.9928El„re-
spectively.

Important properties of these electronic wave functions
are their permanent and induced moments. In particular,
accurate calculation of low-energy cross sections requires
wave functions that yield accurate values for at least the
permanent quadrupole moment (q), spherical polarizabil-
ity (ao), and nonspherical polarizability (a2). In Table I
we compare our near-HF values for these moments, aver-
aged over the ground vibrational state of the target, with
corresponding experimental values. ' As discussed in
Sec. III C, we calculate these averaged moments from the
vibrational wave functions that solve the appropriate nu-
clear Schrodinger equation with the potential energy
curves of Fig. 3.

We calculate the static potential (lb) and the exchange
kernel (12) from the bound lo orbital of the neutral. In
solving the BFFN scattering equations (3), either for RR
or VIBAV studies, we can treat this kernel directly. In

'Reference 37.
Reference 38.

'Reference 39.
~Reference 40.
'Reference 41.

solving the BFVCC equations (6), however, we represent
the kernel via a separable expansion using an exchange
basis consisting of bound and virtual molecular orbitals
from the aforementioned structure calculations. Details
of our use of a separable representation of the exchange
kernel in BFVCC calculations will appear elsewhere.

The final component of our interaction potential ac-
counts for (long-range) polarization and (short-range)
correlation effects with a local, energy-independent po-
tential. This function includes all adiabatic polarization
effects exactly via linear variational calculations on the
polarized and unpolarized target. (Refs. 30 and 31 detail
the calculation of these potentials for e-Hz and e-Nz, re-
spectively). This potential allows for nonadiabatic (corre-
lation) effects via a nonpenetrating approximation ac-
cording to which the two-electron bound-free electrostat-
ic interactions are set to zero whenever the radial coordi-
nate of the projectile is less than that of the one-particle
density function of the target.

For both systems considered here, this potential can be
very accurately represented by the dipole term in the mo-
ment expansion of this potential; hence we have adopt-
ed the forms christened by Gibson and Morrison the
"better than adiabatic dipole" (BTAD) potential. Unlike
the widely used semiempirical heuristic polarization po-
tentials, which account for short-range effects via a
cutoff function that includes an adjustable parameter, the
BTAD potential is parameter-free. Analytic forms for
the equilibrium BTAD potentials for e-Hz and e-Nz are
given in Eqs. (6) and (7) of Ref. 47 and Eqs. (21) of Ref.
32, respectively. From the asymptotic form of this poten-
tial at each R we extract the polarizabilities ao(R) and
az(R) in Table I.

B. Solution of the scattering equations

To obtain benchmark cross sections we solve the cou-
pled integrodifferential BFVCC scattering equations (6),
including exchange via the separable representation de-
scribed above. To do so we apply an integral equations
algorithm in which standard Green's functions are used
to convert Eqs. (8) to a set of integral equations. These
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equations are then solved via numerical quadrature; de-
tails of our implementation of this algorithm and an ex-
tensive set of references appear in Refs. 12 and 13.

To obtain RR and VIBAV results, we solve the BFFN
equations (3). In solving these equations, since R is fixed
at R„ it is feasible to treat exchange directly, and we do
so in several of the calculations reported in Sec. IV. We
use the linear algebraic method of Schneider and Col-
lins ' according to which Eqs. (3) are first transformed
into integral equations that incorporate scattering bound-
ary conditions via a Green s function. Subsequent impo-
sition of simple quadratures on all integrals further trans-
forms these equations to a set of simultaneous linear alge-
braic equations that are ideal for vectorization and
efficient solution on a supercomputer.

In both sets of calculations we converged all integrated
cross sections and eigenphase sums to better than 1%.
To do so for e-H2 we included (in both BFVCC and
BFFN calculations) six partial waves in the X~, X„, and
H„symmetries and five partial waves in the H and 6
symmetries. We integrated all coupled e-H2 equations to
170ap. In the vibrationally coupled BFVCC e-H2 calcu-
lations we included four vibrational states.

To converge our Xg e-N2 calculations we included 32
partial waves and integrated the coupled equations to
85ao. (For more details on the RR and VIBAV e-Nz cal-
culations see Sec. IV B.)

Finally, in the expansions (2) of the static potential for
both systems we include terms up to A, ,„equal to twice
the maximum order partial wave required for conver-
gence. Note that for e-Nz, the electron-nuclear terms
dominate the high-order static Legendre projections (see
Fig. 2).

C. Evaluation of vibrational wave functions

d2
~

+ V„„(R)+NO'(R)—c„g„(R)=0,
dR

(13)

where V„„ is the potential of internuclear repulsion.
Operationally, we begin by fitting the potential energy in
this equation to a Simons-Parr-Finlan-Dunham form

For both BFVCC and VIBAV calculations we require
vibrational wave functions of the target. Since the
ground-state potential of N2 (Fig. 3) is deep, narrow, and
nearly symmetric, one could approximate these functions
by eigenfunctions of the simple harmonic oscillator
(SHO) Hamiltonian using the natural frequencies in
tables such as those in Ref. 49. But in H2 these condi-
tions are not met (see Fig. 3) and one must solve the nu-
clear Schrodinger equation numerically using as a poten-
tial the HF X'X+ electronic energy. In the event, we
solved this equation for both systems.

To simplify the solution of the nuclear Schrodinger
equation we neglect vibrational-rotational coupling, i.e.,
we replace the centrifugal potential by its equilibrium
value. Thus the equation for vibrational eigenfunctions
P, (R) with energies e, is

6o"(R)+V„„=bor 1+ g b;r' —e, (14)

where e is the depth of the potential well and
r =(R —R, )/R W. e then solve (13) via the linear varia-
tional method, expanding the vibrational wave function
P„(R ) in a basis of SHO eigenfunctions and diagonalizing
the resulting matrix of the vibrational Hamiltonian. In
practice, we can save considerable CPU time by evaluat-
ing the desired wave functions at the points of a Gauss-
Hermite quadrature ' whose points are the values of R
we will subsequently need to evaluate vibrational matrix
elements and averages in scattering equations.

IV. RESULTS

A. e-H2 collisions

Compared to other molecules, hydrogen is nearly
spherical. So converging e-H2 coupled-channel calcula-
tions requires only a few partial waves whether or not
one implements the RR approximation (see Sec. III). Un-
der these special circumstances, elimination of the
Coulomb cusps saves little CPU time. But vibrational
effects significantly influence e-Hz cross sections, particu-
larly those for rotational excitation.

The VIBAV transition matrix T && approximates the

Up U 0 block of the full BFVCC matrix T„& „& . There-

fore VIBAV (and RR) cross sections approximate Uibra

tionally elastic BFVCC cross sections, e.g. , those deter-
mined in vibrationally converged calculations described
in Sec. III. (Since the FNO approximation is implicit in
the BFVCC formulation, these cross sections are
equivalent to the sum of the elastic and all rotational ex-
citation cross sections. )

Before examining the effect of various approximate
treatments of the vibrational motion, we shall consider
the exchange kernel. As noted in Sec. IIB, in many of
our calculations we expand this kernel in a separable rep-
resentation. In Fig. 4(a) we compare vibrationally elastic
cross sections based on such a representation with those
from calculations in which exchange effects are treated
exactly. We obtain the vibrationally averaged —static, ex-
change, and polarization (VIBAV-SEP) results in this
figure by vibrationally averaging all three constituents of
the interaction potential —static, exchange, and
polarization —and expanding the kernel. The exact-
exchange cross sections in this figure derive from adiabat-
ic nuclei calculations, i.e., from vibrationally averaged T
matrices obtained from solution of the BFFN equations
(3) at 11 values of R (see Sec. II A).

Also noted in Sec. IIB was the idea of simplifying
VIBAV calculations by approximating the exchange ker-
nel (12) by its equilibrium value. This simplification pro-
duces vibrationally averaged —static and polarization
(VIBAV-SP) results, which can be seen in Fig. 4(a) to
closely parallel those of the VIBAV-SEP and ANV calcu-
lations.

Figure 4(b) shows the effects of various treatments of
vibrational motion on these e-H2 elastic cross sections.
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As benchmarks for these comparisons we use cross sec-
tions from BFVCC calculations that are fully converged
in vibrational states (and partial waves). [In these as in

all calculations in Fig. 4(b), we use the separable repre-
sentation of the exchange kernel. ] Except for a slight
shift in the position of the enhancement at 3.0 eV, the
VIBAV-SEP results agree well with these benchmarks. It
is hardly surprising that the effects of the R variation of
the exchange kernel are greatest near 3.0 eV: this sensi-
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tivity should be greatest near a shape resonance, where
localization of the scattering function near the target
enhances exchange effects. [See, in this regard, Fig. 6(a)].
The further approximation of treating exchange at equi-
librium, which yields the VIBAV-SP numbers in this
figure, induces only small additional changes in these
cross sections.

One can simplify the VIBAV procedure even further
by replacing the polarization potential by its equilibrium
value, leaving only the static interaction to be vibration-
ally averaged. The resulting vibrationally averaged—
static (VIBAV-S) cross sections in Fig. 4(b) show that the
effect of doing so is negligible: these results differ from
those obtained with full R variation of the polarization
potential (the VEBAV-SP curve) by less than 1%.

Finally, we note that equilibrium approximations to
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FIG. 4. Various treatments of (a) exchange and (b) the vibra-
tional dynamics in the calculation of vibrationally elastic e-H&

cross sections. In (a) results from VIBAV-SEP (solid curve) and
VIBAV-SP (short-dashed curve) studies, in which the exchange
kernel is expanded in a 132-function separable basis, are com-
pared to (benchmark) ANV cross sections (pluses) from calcula-
tions in which exchange is treated exactly, as described in Sec.
II. In (b) fully converged (benchmark) BFVCC cross sections
(stars) are compared to VIBAV-SEP (solid curve), VIBAV-SP
(short-dashed curve), VIBAV-S (crosses), and RR (long-dashed
curve) results —all of which were calculated using the
aforementioned separable expansion of the exchange kernel.
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FIG. 5. Partial e-H2 cross sections in the (a) X~ and (b) X„
symmetries from calculations using the VIBAV-SEP (solid
curve), VIBAV-SP (short-dashed curve) and RR (long-dashed
curve) approximations. Also shown are fully converged
BFVCC results (stars).
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electron-electron interactions such as exchange and po-
larization should be more accurate for most molecules
than for Hz. For example, because of the comparative
narrowness of the Nz potential energy curve (Fig. 3), the
excursions of the nitrogen nuclei from equilibrium (in,
say, the ground vibrational state) are less than those of
H2, so equilibrium-exchange and -polarization approxi-
mations should be correspondingly more accurate for the
larger system. (See Sec. IV B for illustrative VIBAV-S e-

N2 results. )

The agreement of VIBAV vibrationally elastic cross
sections and converged BFVCC results shows that for
this scattering process the coupling of the ground vibra-
tional state to states with v )0 is comparatively unimpor-
tant; i.e., the one-state approximation is excellent. One
might also conclude from this figure that the RR approx-
imation is adequate for this system. But this conclusion
is not correct for all scattering processes.

To see why, we turn to partial cross sections in various
electron-molecule symmetries. In Figs. 5 we examine the
dominant partial cross sections, those in the X and X„
symmetries. These cross sections and the corresponding
eigenphase sums (given at selected energies in Table II)
show that vibrational e6'ects are far greater in the X„
symmetry than in the Xg symmetry. At low energies,
elastic scattering is primarily X in character, so elastic
cross sections show minimal vibrational effects (vide Figs.
4). But rotational excitation is dominated by X„, so the
differences between RR and VIBAV cross sections should

be more pronounced for this process.
Figures 6 show that this is indeed the case. Figure 6(a)

displays the jo=0~j =2 e-H2 cross section, o.
o 2, as

determined from BFVCC, VIBAV-SEP, VIBAV-SP, and
RR T matrices via the scaled adiabatic-nuclear-rotation
approximation. From threshold (44. 1 meV) to about
2.0 eV, the error in o.

o 2 due to the RR approximation
ranges from 8% to 15%; from 2.0 eV to 10 eV, this error
is from 4% to 5%. The corresponding VIBAV cross sec-
tions at all energies are accurate to better than 5%; at en-
ergies above 1.0 eV they are accurate to better than 1%
(see also Table III). One finds similar improvement in the
j0=1~j =3 cross section. 54
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TABLE II. e-H2 eigenphase sums at selected energy as calcu-
lated in the VIBAV-SP (upper values) and RR (lower values) ap-
proximation. In both sets of calculations, exchange was includ-
ed exactly (at equilibrium) and polarization via the BTAD po-
tential (see text). (1.0[—2]=1.0X10 .)
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FIG. 6. (a) Approximations in the calculation of rotational
excitation (0~2) e-H& cross sections. Results from BFVCC
(stars), VIBAV-SEP (solid curve), VIBAV-SP (short-dashed
curve), and RR (long-dashed curve) calculations are based on a
separable expansion of the exchange kernel. Also shown are
ANV cross sections (pluses), for which exchange is treated ex-

actly. In (b) VIBAV-SP (solid lines) and RR cross sections for
the 0~2 and 1~3 excitations are compared to experimental
(swarm-derived) data (stars) from Ref. 55.
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Op p &o-2

TABLE III. e-H2 cross sections (in square bohr) at selected
energies (in eV) from benchmark converged BFVCC calcula-
tions (top line), VIBAV-SP calculations (second line), and RR
calculations (third line). In all cases, exchange was included ex-

actly at equilibrium.
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FIG. 7. Total e-H2 cross sections in the VIBAV-SP (solid
curve) and RR (dashed curve) theories compared to experimen-
tal results of Ferch (Ref. 56) (stars), Dalba et al. (Ref. 57) (open
circles), and Jones (Ref. 58) (open squares). (Exchange was
treated exactly in all calculations. )

18 i

tional averaging on partial-wave coupling in the e-N2 sys-
tem we have therefore focused on this symmetry, calcu-
lating X RR, VIBAV-S, and (converged) BFVCC cross
sections. In these calculations, exchange effects were
represented via the tuned free-electron-gas potential at
equilibrium. Figure 8 shows that in this symmetry the
RR approximation introduces errors as large as 16% at
0.01 eV; by contrast, the VIBAV cross section at this en-

ergy is accurate to 4%.
The CPU time required to converge these cross sec-

In Fig. 6(b) we compare RR and VIBAV-SP cross sec-
tions for both excitations to experimental values derived
from transport coefficients measured in swarm experi-
ments. And, for completeness, we show in Fig. 7 how
RR, VIBAV and BFVCC total cross sections compare to
recent experimental data.

B. e-N2 collisions

The greater asphericity of the nitrogen molecule makes
converging e-N2 scattering calculations considerably
more difBcult than doing so for e-H2. Far more coupled
partial waves are required, ' so the effect of the off-center
Coulomb singularity is correspondingly greater. Hence
remocal of these cusps results in a greater saving in CPU
time.

Partial wave coupling is greatest in the X partial cross
section (because the X T matrix admits even-parity an-
gular momentum scattering states beginning with the ful-
ly penetrating l=0 wave). To study the effects of vibra-
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FIG. 8. Analysis of the accuracy of partial e-N2 cross sec-
tions in the X~ symmetry: percent difference of VIBAV-S (solid
curve) and RR (dashed curve) cross sections from converged
BFVCC results.
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puter) for calculation of e-N~ cross sections in the Xg symmetry
to the indicated degree of convergence.
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FIG. 9. Dependence of CPU time {on a MicroVax II comput-
er) on number of channels (partial waves) for solution of the
BFFN scattering equations (3) using the integral equations
method (Ref. 13). For this illustrative case, the e-N2 Xg equa-
tions were solved using a local exchange potential (Ref. 25).

V. CONCLUSION

The computational difficulty of fully converging a vi-
brational close-coupling calculation has often led to the
omission of the nuclear Hamiltonian from the
Schrodinger equation, i.e., the RR approximation.
Averaging the interaction potential over the ground vi-
brational state restores the zero-point nuclear motion and

tions increases dramatically with the number of coupled
partial waves. Figure 9 illustrates this effect for the
BFFN radial scattering equations (3). But because the
VIBAV procedure eliminates the e-N2 Coulomb cusps
(Fig. 2), it decreases the number of partial waves required
to attain a specified degree of convergence. For example,
to calculate RR X cross sections at 0.01 eV accurate to
1% requires 32 channels; to calculate the corresponding
VIBAV cross sections requires only 28 channels. This
reduction translates into a saving in computer time of ap-
proximately 40%. In particular, Table IV shows the
CPU time needed to calculate RR and VIBAV cross sec-
tions to various degrees of convergence. Note that be-
cause of the strong dependence of CPU time on number
of channels (Fig. 9), the savings introduced by the
VIBAV method increases with the desired precision.
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thereby approximates effects that are completely ignored
otherwise. Implementing the VIBAV procedure requires
only writing a program for simple radial quadratures
over R [Eq. (10)];one need not modify the far more com-
plicated programs that solve RR scattering equations. In
fact, for most electron-molecule systems, solution of the
VIBAV equations actually requires less CPU time than
solving the corresponding RR equations.

These improvements result from elimination of cusps
in the electron-nuclear Coulomb interaction. Other
terms in the potential reflect electron-electron interac-
tions, and one can further simplify the VIBAV procedure
by approximating these terms by their equilibrium values.
Such simplifications are particularly desirable if the in-

teraction is nonlocal, e.g. , exchange.
In e-H2, vibrational averaging changes both elastic and

rotational-excitation cross sections. But because vibra-
tional effects for this system are most pronounced in the
X„symmetry, the improvements of VIBAV over RR
values are greatest for the excitation cross sections. In e-

N2, vibrational effects are important in the X symmetry
and so affect the elastic cross section as we11. This system
also provides a laboratory to demonstrate the practical
advantages of using vibrational averaging to reduce the
number of partial waves required for convergence.
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