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We propose new basis sets for linear algebraic variational calculations of transition amplitudes
for quantum-mechanical scattering problems. These basis sets are hybrids of those that yield the
Kohn variational principle (KVP) and those that yield the generalized Newton variational principle
(GNVP) when substituted in Schlessinger s stationary expression for the T operator. Trial calcula-
tions show that eSciencies almost as great as that of the GNVP and much greater than the KVP
can be obtained even for basis sets with the majority of the members independent of energy.

I. INTRODUCTION

Recent work on linear algebraic approaches for
quantum-mechanical scattering problems has made
significant progress on the formulation of efficient and
computationally advantageous basis-set expansion
methods for molecular scattering problems. ' Particu-
larly noteworthy progress has occurred in the treatment
of chemically reactive molecular collisions, where new
basis-set methods without dimensionality-reducing ap-
proximations have been used for accurate calculations on
several reactions previously treated only by more approx-
imate methods, in particular, the high-energy D + H2 re-
action (Refs. 4, 22, and 28), and the 0 + H2 (Refs. 29 and
30), H + OH (Ref. 30), H + HBr (Ref. 31), 0 + HD
(Refs. 32 and 33), and F + H2 (Ref. 34) reactions. We
have treated these systems by the generalized Newton
variational principle' (GNVP) or a method of mo-
ments related to it, with either real or complex bound-
ary conditions and with a basis-set expansion of the
square-integrable (denoted by the symbol X ) amplitude
density. The GNVP has shown especially rapid conver-
gence as the number of basis functions is increased. ' ' '

Another promising approach is the Kohn variational
principle (KVP) based on an expansion of the (non-X )

scattering-wave function satisfying complex boundary
conditions. "' ' A particularly noteworthy aspect of the
KVP is that many of the required matrix elements are in-
dependent of energy and need not be recalculated if two
or more energies are treated with the same basis set.

It has been pointed out" that results equivalent to a
version of the KVP may be obtained from a scattered-
wave variational principle (SWVP), due originally to
Schlessinger and discussed further by Schlessinger, Nut-
tall, Rescigno, and co-workers, for a special case of a
non-X trial function. In the present work we show that

with another choice of non-X trial function this "Kohn-
type" ' ' or modified Kohn" S%'VP yields the
GNVP. We then propose a new method in which the
SWVP is used with a subset of the basis functions that
yield the GNVP and another subset of those that yield
the KVP. We choose the subsets to retain the computa-
tional advantage that most of the matrix elements are in-
dependent of energy, and we present trial calculations for
a two-channel problem showing that the efficiency of con-
vergence is comparable to the GNVP. We suggest there-
fore that this hybrid-basis-set SWVP approach may pro-
vide a powerful method for more demanding applications
in the future.

For completeness we will also present some calcula-
tions using the KVP on the same trial problem.

II. THEORY

H =T +V (2)

involving the full kinetic energy Tk;„and a distortion po-
tential V, and for use below we define G — as the
distorted-wave Green's operators:

GD+ (E H+ie)—
2p

(3)

We consider a general multichannel scattering prob-
lem. For simplicity we consider the case of a single ar-
rangement, although the extension to rearrangement
scattering is straightforward. The Hamiltonian is writ-
ten as

a=Ha+ V',
where V is a coupling potential, H is a distorted-wave
reference Hamiltonian
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The transition operator T is defined by

Tg '= U%

where U is the coupling operator defined by

(4)

2p
yC (5)

and p is the relative translational reduced mass, no
denotes the initial channel (the index n is an ordinal

+np +np
channel index), f ' and 4 ' satisfy the usual T-

+npmatrix boundary conditions, the unscattered wave g
satisfies a homogeneous Schrodinger equation for the
reference problem

(E H)0—'=0, (6)

and %' ' is the solution of the full Schrodinger equation

(E H)% —'=0 . (7)

The stationary T functional of Schlessinger may be
written

T.. =T.'., +&q "IUI+sw"'&+&+sw"IUly "'&

(+sw (E H) %sw'— (9)

where T„„ is the Born approximation to the amplitude,
0

+np
and %sw is the scattered wave given by the last term of
Eq. (8},and %sw' is its complex conjugate. Equation (9)

+np
is accurate to second order in the scattered waves %'sw

and +sw', hence we sometimes call it the scattered-wave
variational principle.

To use Eq. (9) for practical calculations one writes39 ~'

+n,+sw'= y Ap. ,ep
P=1

(10)

where 4& is a basis-set function, and one determines the
coeScients to make T„„stationary. We now consider

0
two choices of basis functions that yield known methods
and a third (new) choice that appears to have an interest-
ing combination of advantages.

The first choice is to take ( 4pI p'"," as a set of functions
satisfying energy-dependent scattered-wave boundary
conditions in n, ,„open channels and I@p)„+,as a

open

set of L functions. For this choice of trial functions the
stationary T expression (9) yields a version of the
Kohn"' variational principle in which the non-X
function with incoming wave boundary conditions
satisfies (6}. One advantage of this approach is that most
of the basis-set functions are independent of energy.

The second choice of basis set is based on writing the
scattered wave as

+np
The state + also satisfies the usual Lippmann-
Schwinger equation

'+G +U%

*Ilo D+ Ilo

+
where g

' is the X amplitude density defined as either
side of Eq. (4). Substituting Eq. (11) into the stationary T
functional (9) and using Eqs. (1), (3), (5), and (8) results in

=Z & + " UGD+ 0 + " GD+U

GD+ —G++UGD+ g ) (12l

which is the generalized Newton variational principle for
the X amplitude density. To utilize the GNVP as a
linear algebraic method we write

+n, M
A p„C&p,

P=1
(13)

G+=GD+
P 13' (15)

Notice that in this case all the scattered-wave basis func-
tions in (9) are non-5 and depend on energy. In addi-
tion, they are complex, and this lessens the likelihood of
spurious singularities. Finally we note that the asymptot-
ic behavior of (11) is governed by G *. Outside the in-

D+ +np
teraction region G *g ' and G *4p only differ by a
constant factor. Therefore, using even one HIGF as the
non-X basis-set function may be sufficient to give rapid

D+ knp
convergence. G ~g ' and G +—4p are regular at the
origin.

The main point of the present paper is to propose a
third possibility for the basis, motivated by both the
GNVP and the KVP. In particular, we suggest

Ml Ml ™2
%sw g Apn G +4p+ (16)

P=1 P=Ml+1
A p„4p,

where the first M, functions are of the GNVP type used
in (14) and the next Mz functions are X . If Mz) M„
then most of the matrix elements will be independent of
energy. The questions to be determined computationally
then are whether the new hybrid basis set leads to rapid
convergence comparable to that of the GNVP and —if
so—how small can we make M, ? In addition, we will
compare the rate of convergence to Kohn variational cal-
culations for the same problem.

The premise for suggesting Eq. (16) as a trial function
is based on interpreting the HIGF as a "prepared" or
"dynamical" basis-set function. The operation of the
Green s function on the basis has a similar effect to iterat-
ing the Lippmann-Schwinger equation, i.e., it leads to a
higher-order trial function. This effect was observed

where the I@p) are now all X functions. The equivalent
procedure for the SWVP is obtained by substituting (13)
into (11),which yields

%'sw = QApn Gp ~

P

where 6& is a quantity introduced previously' ' ' for
computational eSciency and called a half-integrated
Green's function (HIGF):
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clearly in earlier comparisons of variational principles,
where each action of Green's function led to a general
improvement in accuracy. ' We propose then that the
optimum basis may involve a compromise between the
most efficient basis set, in which all basis-set functions
contain a Green's function, as in the GNVP, and a basis
set leading to simpler and more energy-independent in-
tegrations. The choice of one "prepared" basis-set func-
tion per open channel is particularly interesting for fur-
ther investigation since it involves the same number of
energy-dependent basis-set functions as the KVP but a
greater number of prepared basis-set functions.

III. CALCULATIONS

For a computational test of the efficiency of the new
kind of hybrid basis set, we consider a two-channel test
problem corresponding to nonreactive scattering of I by
H2. This problem has been used as a test case in previous
work ' as well, and we consider the same potential en-

ergy surface, ' total energy (0.045 hartree), total angular
momentum (J=0}, and vibrational-rotational-orbital
functions P„as previously. The channels included are

n=1: v=0, j=1=0
n =2: v=0, j=l=2

(+)no (+ )no (+)nO
QW (17)

(+)n,
where g

' satisfies (6) with unit amplitude for the in-
(+)no

coming wave, (1) ' satisfies (7) with unit amplitude for
(+ )no

the incoming wave, and Vow
' is the outgoing wave due

to scattering by U. We consider three types of expansion:

where v, j, and I are vibrational, rotational, and orbital
quantum numbers, respectively. We use a single-channel
distortion potential, which is also defined in previous
work. ' The results are well converged with respect to
all numerical parameters except those associated with the
basis set, and we concentrate our attention in particular
on the size of the radial translational basis required for
convergence with each type of basis set.

(k)noFor convenience, we use wave functions f ' and
'" satisfying S-matrix boundary conditions rather

than those above, g*" and )p*", satisfying T-matrix
boundary conditions. Analogous to (8) we write

(+)n, g R
n=1

f (R)Rh)( )(k„R)+ „c„)A(„+)+g c„„„i,„, KVP
@=2

(18)

(+ )no
+OW

'= g R '(}I)„gc„„„g„„,GNVP
n=1

2

n=1

ml

g c&„„g„&+ g c„„A,„, HBS (20)

f(R) —+ 0,
R~0

f(R) ~ 1,

(21)

(22}

and it involves hI '(k„R), which is the incoming spheri-
n

cal Hankel function, and k'„+', which is taken as an out-
going wave basis function of the form

which yield the KVP, GNVP, and hybrid-basis-set (HBS)
methods when the coefficients c„„„arefound variation-pnno

ally. In all cases the A,„will be taken as distributed
Gaussians in the radial scattering coordinate R, and the
other functions are explained in the next two paragraphs.

Equation (18) also involves f (R), which is a cutoff
function:

improved S-matrix KVP of Zhang, Chu, and Miller.
However, even though V =0, the non-X functions in
(18) do not satisfy (6), and so we cannot use the SWVP,
Eq. (9) [or its S-matrix analog, Eq. (24) below]. Thus the
KVP equations for the trial function (18) must be ob-
tained from the Kohn variational functional.

Equations (19) and (20) also involve g„which is the
radial half-integrated Green's function2 ~7 associated
with X function )(,„in channel n The distorti. on poten-
tial for generating the Green's function is taken in this
study to be the diagonal element of the potential matrix.
When Eq. (19) is inserted into

A,'„+'=f(R)Rh) "(k„R),
n

(23) @(—)n 2I (E 0) (p( ) o (24)

where h&")(k„R) is the outgoing spherical Hankel func-

tion. The parameters ln and k„are the orbital angular
momentum quantum number and wave number in chan-
nel n. Notice that both kinds of non-X functions in (18)
contain the same regularizing function f (R), as in the

which is the S-matrix version of Eq. (9), the results are
equivalent to the complex Green's function version ' of
the GNVP.

The transition probabilities are related to scattering-
matrix elements in the usual way:
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(25)

Since we use complex boundary conditions, the scattering
matrix is not automatically unitary. Therefore we moni-
tor both P» and P,2 as measures of convergence. We
also monitor the eigenphase sum g,„,defined in the stan-
dard way.

For the eSciency tests we always used equally spaced
Gaussians with widths determined such that the overlap
parameter ' c is 1.0. The Gaussians used to generate
the dynamical basis functions are located at

R =R& +(a —1)b„a=1,. . . , m& (26)

Thus the parameters that need to be specified are m, R z,

in the mass-scaled coordinate system, ' and the centers
of the X Gaussian basis functions are located at

Ro=R +, +(a—m, —l)h, a=m, +l, . . . , m .
l

(27)

R G, and the parameters Ro and P (see below) in f (R ) for
the KVp; m, R &, and R for the GNVp; and m, m

&

and R for the Gaussians used to generate the HIGF's,
1

and R + &
and R for the X basis for the HBS calcula-

1

tions.

IV. RKSUI.TS AND DISCUSSION

Converged values for P» and P&2 and for the eigen-
phase sum g,„were calculated by the finite-difFerence
boundary-value method 2 and confirmed by the GNVP
with 30 narrowly spaced Gaussians. The converged re-
sults are given in the first row of Table I. Table I also
gives examples of the results for all three types of basis
sets in the Schlessinger outgoing-wave variational princi-
ple, and the Kohn variational principle.

For all the basis-set methods we define m
&

as the num-
ber of energy-dependent basis functions per channel, ex-
cluding f (R)Rh&' '(k„R) in the KVP, and m is the total

N

TABLE I. Comparison of results of calculations for quantum-mechanical scattering problems using
different algebraic methods.

Basis

Converged

GNVP

HBS

KVP

20
13
12
11
12
10

18
14
10

8

11
10
10
13
12
11
10
9

53
45
43
41
40
32
31
21
16

m&

20
13
12
11
12
10

9
7
5
4
4
2
2

la

la

la

la

la

la

lb

1b

lb

1b

1b

lb

1b

1b

1b

HIGF's
I ml

4.65-9.40
5.25-8.85
5.55-8.85
5.85-8.85
5.65-8.95
5.95-8.65

5.50-7.90
5.50-7.30
5.50-6.70
5.50-6.40
5.50-6.40
5.85-6. 15
5.85-6. 15
5.95
5.65
5.65
5.65
5.65
5.65

functions
G G~m +1 ~m

1

5.50-7.90
5.50-7.30
5.50-6.70
6.40-7.30
5.95-6.85
6.15-7.90
6.15-7.60
5.50-7.90
5.50-8.80
5.50-8.50
5.50-8.20
5.50-7.90
5.80-7.90

5.35-13.00
5.05-11.50
5.35-11.50
5.65—11.50
5.35- 12.95
5.35-12.85
5.65- 10.00
5.65-8.50
5.65—8.45

0.593

0.593
0.604
0.604
0.603
0.591
0.593

0.592
0.592
0.589
0.602
0.592
0.593
0.595
0.593
0.592
0.592
0.592
0.592
0.593

0.594
0.602
0.602
0.628
0.603
9.568
0.637
0.734
0.980

0.407

0.407
0.412
0.412
0.411
0.411
0.409

0.409
0.411
0.416
0.415
0.419
0.412
0.413
0.411
0.410
0.410
0.411
0.412
0.413

0.407
0.409
0.409
0.385
0.416
2.863
0.412
0.609
0.854

gsum

0.237

0.237
0.232
0.231
0.228
0.236
0.216

0.238
0.238
0.241
0.241
0.238
0.239
0.241
0.238
0.233
0.234
0.235
0.236
0.226

0.215
0.217
0.212

-0.059
-0.052
0.071

-0.040
0.038
0.097

When m, = 1, the width of the Gaussian for the HIGF is the same as for the X Gaussian basis func-
tions.
" @=30,R„=6.81ao.
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or the channel-dependent cutoff function
I +1—(aR)" (29)

which removes the singularity near the origin even when
some channels have l„40 (in the present two-channel ex-

ample, 1, =0 and 12 =2), we were unable to get reasonable
results for any values of a, and we attribute this to the
fact that neither cutoff procedure is sharp enough to
simultaneously remove the unphysical behaviors of
hi"'(k„R) and ht' '(k„R) at small R and yet reach its

large-R limiting form at a distance which is not
significantly larger than where the potential becomes
negligible. (Similar difficulties may explain the difficulties
in converging the KVP for some test problems in Ref.
18.) We obtained much better results with

—(R /Ro)~f (R)=1—e (30)

with P=30 and Ra=6. 81ao, and these results are shown
in Table I.

We found that the KVP needed much more closely
spaced Gaussians than either the GNVP or the new HBS
approach and that, very critically, the KVP needs the
Gaussians to extend to much larger R than with the
GNVP or hybrid basis set. Good convergence requires
45 basis-set functions. Although it is hard to be com-
pletely systematic in choosing nonlinear parameters for
cutoff functions, we experimented with various forms of

number of basis functions per channel for the outgoing
wave, as specified in Eqs. (18)—(20).

We will use 1 —2% in the probabilities and 0.01—0.02
in the absolute eigenphase sum as a criterion of "good"
convergence in the present discussion. The GNVP sec-
tion of the table shows that we can achieve this with
10—11 basis functions per channel. In this method all
basis functions are energy dependent (m i

=m ).
The next section of Table I, based on the hybrid basis

set, shows we can obtain good convergence with a com-
parable number of basis-set functions (8 —11) as the
GNVP, even when only one basis function is energy
dependent.

The final section of Table I shows results obtained with
the KVP. Using either the conventional cutoff func-
tion' ' '

f (R)=1—e

non-X functions for the KVP basis set and convinced
ourselves that we cannot obtain efficiencies close to those
obtained with the GNVP or hybrid basis set.

V. CONCLUDING REMARKS

We have proposed a different approach to basis-set
selection in linear-algebraic quantum-mechanical-
scattering calculations based on the stationary T func-
tional of Schlessinger, which is employed as a scattered-
wave or outgoing-wave variational principle. We propose
a hybrid basis set approach, illustrated by Eq. (20) and
motivated by the generalized Newton and Kohn varia-
tional principles (GNVP and KVP). This approach ap-
pears to offer a promising combination of computational
advantages, as demonstrated by calculations on a two-
channel test problem which was also solved by the
GNVP and KVP for comparison.

Further work to explore the computational efficiency
of other hybrid-type basis functions in the Schlessinger-
type variational principle would be very interesting. For
example, we have carried out calculations for potential
scattering problems (no =1) without introducing a distor-
tion potential and using basis sets of the form

I—1

%s+w'= A „G+ VQ+'+ g Ati, @ti .
P=1

(31)

ACKNOWLEDGMENTS

This work was supported in part by the National Sci-
ence Foundation.

This is like (20) except the first basis-set function is ob-
tained by approximating ~p+' in (4) by its Born approxi-
mation g+' and inserting the resulting amplitude density
in (11) to make a basis function for (14). Although only
one basis-set function depends on energy we found (for
three different cases tested) very similar convergence
rates to those obtained with the Newton variational prin-
ciple where all basis-set functions depend on energy. The
implication is the same as for the two-channel studies
presented above, namely, that hybrid basis sets contain-
ing a few dynamical basis functions augmented by a con-
venient X basis can provide a very efficient computation-
al approach to linear-algebraic basis-set calculations of
quantum-mechanical scattering amplitudes.
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