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Growth of parametric fields in (2+ 1)-photon laser ionization of atomic oxygen
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The multiphoton excitation of an atom by a strong pulsed laser field creates a transient inversion

of the pumped, excited level with respect to a lower-lying intermediate level. This results in a cou-

pled time-and-distance traveling-wave situation appropriate for the growth of auxiliary radiation
fields that are coupled to the excited, intermediate, and ground levels. Under certain circumstances
these fields can suppress the multiphoton excitation process. The two-photon pumping of a ground
P level of 0 to the first excited 'P level and ionization to the continuum by the same field are ana-

lyzed for the growth of amplified spontaneous emission and parametric four-wave mixing. A
threshold growth condition is used to interpret the numerical solutions of the appropriate
Maxwell-Bloch equations. A novel transition from exponential to linear growth of the parametric
waves is observed in the calculations.

I. INTRODUCTION

Laser fields with intensities on the order of GW/cm
are useful for ionizing atoms by means of multiphoton
transitions. The natural selectivity of the excitation pro-
cess, combined with detection of the ions, makes a useful
atomic measurement technique. Atomic oxygen is the
dominant species in the high atmosphere and is the
specific concern of this work. One possible scheme for
ionizing 0 is to apply a two-photon resonant field of 226
nm wavelength. The ground P levels are pumped to the
first excited P levels and ionized to the continuum by the
same photons. This is commonly referred to as a (2+ 1)-
photon process as the first transition is two-photon, fol-
lowed by a single-photon transition.

The recent work of Dixit, Levin, and McKoy' (DLM)
presents quantum-defect calculations of the 0 atomic
data and ionization dynamics of the (2+1)-photon pro-
cess.

The topic of concern here is the growth of auxiliary ra-
diation fields along a channel of ionization created by the
2+1 pumping. This is a combined time-and-distance
evolution problem which is effectively one dimensional
due to the pulsed, unfocused laser used for the excitation.
Auxiliary fields grow in the traveling-wave, transient
response of the atomic medium to the two-photon pump-
ing field. A transient inversion exists between the excited
P and the lower-lying, dipole-coupled, S level of atomic

O. Thus one may expect amplified spontaneous emission
(ASE) to grow along the propagation direction. The
copropagating ASE radiation can affect the amount of
(2+ 1)-photon ionization by deexciting the excited P
population to the S, which rapidly decays to the ground
manifold.

ASE is only one of the major concerns, however. Para-
metric wave growth involving four-wave mixing (FWM)
transitions can occur in this system. Two of the photons
in the FWM process come from the pumping field, and
the other two from downward transitions through an in-
termediate level. Competition between ASE and FWM

in the (2+1)-photon excitation process has been studied
by Boyd, Malcuit, Gauthier, and Rzaszewski (BMGR) in
the steady-state approximation, with a perturbational
treatment of the medium response to the two-photon-
resonant applied pump field. Whereas ASE growth can
only lessen the (2+1)-photon ionization efficiency by sa-
turating the excited P- S transition, FWM growth would
appear to suppress the (2+1)-photon process completely
under the right circumstances.

The objective of this work is to analyze the time-and-
distance-dependent growth of auxiliary fields in the
(2+1)-photon excitation scheme for atomic O. Here the
work differs from BMGR in that the system is time
dependent instead of steady state, and that the exciting
field is treated as a strong field for which one must use a
nonperturbative solution for the density matrix. Because
of these less stringent assumptions, I cannot use the
steady-state saturating wave solution as found by
BMGR.

Physical considerations allow a reasonable approxima-
tion to the 0 system to consist of three levels (each de-
generate) and the ionization continuum, and three radia-
tion fields with the near-resonant condition, co2+N3
=2', . This notation is clarified in Fig. 1. The applica-
tion to the high atmosphere allows a study of a collision-
less medium in which natural radiative decay and the
Doppler effect are the only important broadening effects.

The paper is organized as follows. Section II gives the
basic Maxwell-Bloch equations with multiphoton cou-
plings. Section III analyzes the equations for weak auxi-
liary field growth in the medium as it responds to the
strong multiphoton pump field. Section IV presents the
numerical solutions to the Bloch-Maxwell equations for
strong coupling among all waves and the medium, and
Sec. V is a discussion.

II. BASIC THEORY

Because part of this work contains basic analytical ex-
pressions and also because the phases are treated some-
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The overdot denotes r)/r}t or 8/B~, and I have used the
retarded time variable for the transformation to the ro-
tating atomic frame. Braces denote the anticomrnutator.
The argument v is written explicitly in Eq. (5) to show
that this Bloch equation applied to atoms moving with
velocity v along the propagation direction. The Doppler
effect is included in the fields as an apparent frequency.
The diagonal co matrix is defined from atomic eigenval-
ues, co;; =(8'; —Wo)/A'. The diagonal y matrix contains
the spontaneous atomic decay rates (collisional damping
is unimportant in the application), and the diagonal
source matrix A is due to these decays and is a function
of the populations (diagonal of p). The medium polariza-
tion (dipole density), which acts as the Maxwell equation
source term in Eq. (2), is given by

P"= v Tr expire v~Dexp —ice v v . 6

FIG. 1. One ladder of the coupling used to describe (2+1)-
photon ionization of 0 and parametric growth. g denotes a
2p 'P2 ground state, e denotes a ( S )3p'P2 state, and i

denotes a ( So)3s'S&~ state. The fields are plane polarized on a
common axis. ASH growth involves transitions at co2 from e to
i. FWM involves growth at co2 and co, coupled to the two-

photon transition from g to e.

where F denotes E or P, and F+=F, F =F' (complex
conjugate). co& are a set of carrier frequencies. The
Maxwell equation in one dimension,

r

2 2 2

+ ~
pre

~ pre
"ar' (2)

reduces in the slowly varying envelope approximation to
the set of equations,

iki—
(3)

Coordinate transformations have been used to express re-
lations in the retarded frame (7 and z'):

what unconventionally, I outline the derivation of the
effective Maxwell-Bloch equations for the system. Fol-
lowing the Icsevgi and Lamb procedure, the real electric
(E")and induced polarization (P") fields are decomposed
as

F"=gF" F"=—gF,e-j + +ICO 1

The atomic frequencies in Eq. (6) are corrected by a fac-
tor ro;;(v) =co;;(1+v/c) to account for the atomic veloci-
ty. This completes the outline of the construction of the
close-coupled Maxwell-81och equations.

This general description is now specialized to a field
which is two-photon resonant with an excited level and
also coupled to the ionization continuum. Other fields
are assumed to be nearly resonant with the intermediate
level as shown in Fig. 1. Note that no restrictions have
been made as to field strengths or exact resonance of the
carrier frequencies to the atom. Neither has it been as-
sumed that 2'&=co2+co3 in order to remove certain ex-
plicit time dependencies from the rotating-wave Bloch
equation. The factorization of the carrier waves from the
amplitudes as done here allows complete freedom in the
time and space (i.e., frequency and wave number when
transformed) growth of all the fields. In order to do cal-
culations with this Bloch equation, one must develop an
effective Bloch equation for the two-photon couplings
which eliminates all of the weakly coupled and highly
nonresonant intermediate states driven by the strong
pump field at co&. This is done next.

The procedure of iterating the Bloch equation and
evaluating the off-resonance couplings asymptotically in
order to obtain the effective two-photon couplings is well
known. Equation (5) is first converted to a Volterra
equation, including the y in the kernel. E"consists of a
sum of three fields, with frequencies near co&, co2, and co3.
With E" so decomposed, p is iterated once by substitu-
tion into the integral containing E", . Only slowly varying
terms are retained by utilizing asymptotic approxima-
tions based on

z' =z, ~= t —z/c,
a a a a a+

BZ' BZ C Bt Br Bt

(4)

Let D denote the constant, atomic, electric dipole matrix,
then the optical Bloch equation for the response of the
medium to the field is

f dr'f (r')e ' 'e' —f (r)e' '/(i5+I ) .
OO $~ oo

The approximated integral equation can be converted
back to an eff'ective Bloch equation [where H =H(v) is a
Rabi frequency, including phase],

p=(i/2)[H, p] —( —,
'

) Iy, pI +A .

p(v)=(i/l)E"(v)[e'~'De '"',p(v)] —
—,'Iy, p(v)[+A .

(5)

The coupling elements of 0 are evaluated in terms of
atomic parameters, with i, g, and e denoting intermediate,
ground, and excited states, to be
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(8)

of parametric waves E2 and E3. I drop P, from con-
sideration.

III. EARLY GROWTH OF PARAMETRIC WAVES

Hee IE, I
Re g M„(cv, +co, +ie)

(E; ) M, (cu +co, )e2'

Hg, = — (E, ) Mg, ( co, —cu
&

)e
2S

Dik Dkj
M; (z)= —g

Z COk k

5,'~ =b, ,'1(u) =co;i —cui(v),

cui(v) =cui(1 —v/c),

Hgg
= — IE, I' g Mgg (cog+co, ),1

2a

(10)

(12)

(13)

In order to ionize a substantial fraction of the atoms,
E& must be strong, with intensity on the order of
GW/cm . At the beginning of the channel of ionization,
only E, is present; fields E2 and E3 generate from spon-
taneous emission and FWM along the propagation direc-
tion. Because of the weak two-photon coupling and small
ionization cross section from the excited level e, field E,
remains essentially unperturbed throughout the channel
length independent of the strength of E2 and E3 and the
atomic response. In the early growth region, I can obtain
the evolution of E2 and E3 as perturbations upon the
strong-coupled, zeroth-order response of the density ma-
trix of the medium to E, .

To begin this construction of the early parametric
growth, Eq. (7) is converted to Volterra form,

p(r)=p( —00)+(i/2) f di'exp —— y

b,'i =b,'i(u) =co;i —2cui(v) . (14)

Generally H =H, except for. an insignificant difference
m the pair of Eq. (10). Equation (9) contains the dynamic
ac stark shift due to E, . An ionization rate out of e is in-
cluded in y. The ionization rate is

y, =
I
E

& I
Im —g M„(cu, +cu, + i e )2' (15)

The carrier frequencies of the fields are Doppler correct-
ed by cvi(u) =co, (1—v/c), as indicated in Eq. (12).

Equation (7) is integrated numerically for the ioniza-
tion dynamics of an atom subject to the three fields. The
coupling parameters involving the M,. for atomic oxygen
are obtained from the work of DLM. ' These will be
given in a later section.

The response of the medium to the fields in turn affects
the fields' propagation. By equating P" in decomposed
form in Eq. (1) to the expectation value in Eq. (6) and ex-
tracting the proper slowly varying terms, one finds

idL, (v)w
Pi =2f dv D,~p;, (u)e

ih (V)7P3=2f du D;gpg, (v)e
(16)

When combined with Eq. (13), these determine the propa-
gation of the dipole-coupled (single-photon resonant)
fields E2 and E3. The induced medium polarization at
frequency co, , which determines the absorption of the
two-photon field as well as its phase shift, can be derived,
but the extinction and refraction of E, are totally negligi-
ble over the lengths of interest for analysis of the growth

I

X [H,p]exp ——f y

+ f' dr'L. (17)

The velocity dependence is implicit here as it is in Eq. (7).
The effective coupling matrix H is written as a zeroth-
order part H depending on E, and a first-order part H'
depending on E2 and E3. H contains coupling between

g and e. Assume that p is the known solution to Eq.
(17) with H replaced by H . The first-order correction to
p due to H ' is found to be

p'=(i/2) f di'exp( ,' f y—)—
oo 7.'

X[H', p ]exp( —
—,
' f y) . (18)

Only the off-diagonal parts of p' are needed and written
in Eq. (18). When Eq. (18) (the induced medium coher-
ences due to Ei and E3) is combined with the field-
growth Eq. (3), I have a description of the growth of
fields E2 and E3 in the presence of the strong field E, .

By a straightforward set of algebraic manipulations,
Eq. (18) is converted into a pair of field-growth equations
for E2 and E3. First, H' is replaced by the fields as given
in Eq. (8); second, Eq. (18) is written explicitly for matrix
elements p,'; and p,'. , and their conjugates; third, Eq. (16)
is used to relate these to the polarization amplitudes; and
fourth, the polarizations are substituted into the field-
amplitude growth Eq. (3). This results in a pair of cou-
pled integrodifferential equations for E2 and E3.

, =(ki/2eofi) f du e " D„f dr'exp( —f I;, )(E3e " D, pg, +Eie " D,,p„),c}z' oo oo T'
(19)

= —(k3/2eofi) f du e 'g D, fdr'exp( —.f I g, )(Eie " D„p, +E3e " D,p ) . (20)
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—iA, r2

y2 =E2e
—ih, ~3

y3 =E3e
(21)

which is equivalent to a specification of the carrier fre-
quencies in terms of the atomic transition frequencies. It
should be noted that "off-resonance" growth of the fields
will appear as highly oscillatory phases in the factored
amplitude functions with this specification of the carrier
waves. Equations (19) and (20) may now be written as a
pair of coupled partial differential equations,

In Eqs. (19) and (20), the b, ,'J are functions of atomic ve-

locity, as well as is the zeroth-order solution p .
I,~=(y, +y, )/2 has been introduced also. Equations
(19) and (20) can be simplified if the Doppler effect can be
neglected compared to other "broadening" effects in the
system. For heuristic reasons, I assume this is true in the
early-growth analysis. With this understanding, define

0 00$ (26)

where

c '=(i /2)H'c' ,' yc—' .— (27)

response to the (2+ 1)-photon pump field E, . It can be
seen that field E2 is amplified (ASE) and E3 absorbed.
This is the case when the atomic coherence is rapidly des-
troyed by collisions.

In general it is incorrect to assume that p is nearly di-
agonal. In the application of interest here, namely, 0 in
the high atmosphere, collisions are almost nonexistent.
The (2+ 1)-photon excitation and ionization process
creates a high degree of coherence in the medium, with
ionization to the continuum being the major source of
coherence damping in the g to e transition. In this situa-
tion the zeroth-order density matrix can be factored into
the outer product of vector solutions to the effective
Schrodinger equation:

where

and

y2

y3

'r„o '

0 I
r=

lg

1 + I (T},y(z', T) =M(T)y(z', T),a a
O'T Bz

(22}

(23)

(28)

The radiative source term is dropped, as the radiative de-
cay from level e is insignificant compared to ionization.
Equation (26) forces an immediate connection of popula-
tions and coherence density, I p,g I

=p„p . The decom-
posability of p leads to a decomposition of M in Eq. (24}:

k2 0 DeI e,*

M=(1/2eofi) 0 k u v, v =
gl g

k2
M = ( I /2evfi)

'

ID;, I'p,',

gi iepeg

—k 3.
0

&et Dig pge

ID„I'p,', (24)

The retarded time dependence of M is contained in p,
that of I in the ionization rate of e in y, . Equation (22)
is the primary result of this analysis for an evolution
equation describing the early growth of the parametric
fields.

M is singular with one zero eigenvalue, say, A, =0. The
nonzero eigenvalue is found to be

++(T) (1/2eoti)(kiID;, I'p'„—k, IDg I'pgog } (29)

This eigenvalue is of importance because the coupled
solution to Eq. (22) may be approximated as the adiabatic
solution of the diagonalized equation [S=S(T)]:

0
y=Sz, S 'MS=A, = (30)

A. Solutions of parametric growth

2k2v,
, , S-'=D-'

k3V2 U ]

U 2

(31)
k3U2 k2v )

If the (2+1)-photon excitation dynamics are such that
the p,z coherence density is small, then Eq. (22) is ap-
proximately decoupled and the evolution of E2 and E3
(i.e., y) may be written down exactly,

D = —k, Iv, I'+k, Iu, I'= 2e,hz+—, (32)

where v, =D„c,' and v2=Dg;cg* as appear in Eq. (28).
The approximate solutions obey

y;(z', T) =f dT'Io 2 z' f M;;(T")dT"—oo +r, z, ——X z
a7. az' (33)

aX, y;(O, T')exp —f I,, (25}

The index i denotes either field 2, in which case p„and
I „appear, or field 3, in which the case p and I, ap-
pear on the right-hand side (RHS). Io is the modified
Bessel function. If the argument of I0 is imaginary due
to negative M... I0 becomes J0. The solution as presented
in Eq. (25) describes the small signal amplification or ex-
tinction of waves E2 and E3 as they evolve in a
traveling-wave medium consisting mainly of population

z (z T) z (0,T)

z+(z', T)= f dT'Io 2 z' f dT"A. +(T")
QO T'

1/2

(34}

X, [z, (0 T')e-"' "]
7-' (35)

where the adiabatic coupling term involving S has been
dropped, and I has been approximated by the scalar
I =y; /2, where y, is the constant rapid decay rate of in-
termediate level i. The explicit solutions are
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B. Discussion of solutions

The early evolution of parametric fields E2 and E3
along the traveling-wave excitation channel can be under-
stood in terms of the adiabatic eigenvalue A. +. First, one
must determine how X+ controls the evolution of solu-
tions to the equation,

a2
, Z(z', r)=A, +(r)Z(z', r),8~az' (36)

Because of the zero eigenvalue, the z solution does not
evolve. The solution for z+ in Eq. (35) is much the same
as Eq. (25). These solutions are discussed below.

Although the work here concerns strong time depen-
dent effects, it is worth mentioning that Eq. (22) as well as
Eq. (33) can be solved for the Fourier components of
exp(icos) assuming that M and I are constant. This leads
to an examination of the eigenvalues of (ical+I'} 'M,
namely, k+ which are now constant, and contain wave
numbers modified by the replacement of k, by
k;/(iso+ I,, ) in Eq. (29). The spatial growth is thus seen
to be Lorentzian in frequency dependence. The adiabatic
approximation is not valid if strong Rabi oscillations
occur on the two-photon excitation. Likewise it must be
modified to accommodate a large detuning of co&.

or

2 k2De; C~ Z+

k3Dgi cg z+
(39)

tion difference between the two-photon-pumped level e
and the ground level g as given in Eq. (29). One expects a
sufFiciently strong E& field to cause the retarded time
dependence of A, + to rise from the negative value associ-
ated with the ground-level density to a possibly positive
value depending on the populations of levels e and g, and
the dipole couplings to state i. The maximum value at-
tained by p„during the pump pulse is roughly deter-
mined by the balance between two-photon pumping rate
and ionization rate out of e. This indicates the very
atom- and transition-specific nature of the growth condi-
tion.

It is of interest to know the energy balance of the grow-
ing fields. If p were diagonal, that is consisting of popu-
lations, then Xq. (25) shows that Ez and E3 evolve in-

dependently. The only growing field is ASH in E2. How-
ever, the coherence of g and e, as shown by p, , and the
outer product decomposition of p in Eq. (26), forces the
growing solution to be a coupled combination of E2 and

E3. The mixing of E2 and E3 is given by the adiabatic
approximation in Eqs. (30)—(35). I find

where the damping term of Eq. (22) or Eq. (33) has been
dropped. The exact solution is

Z(z', r}=f dr'I 2 z'f A,
00 7'

I'p',
I

IEp I'=ki Dg, I'pgg lz+ I' .
(40)

or

X,Z(0, r'),a

1/2
Z(z', r)= f dr'Jo 2 z'f —it+

QO r'

X,Z(0, r')
7'

(37)

(38)

Thus it is seen in Eq. (40) that the fields are not required
to grow in any particular photon number ratio in the ear-
ly growth region. Later, in Section IV D, the numerical
solutions in the strong coupling region will show that the
fields evolve into a growing combination of waves that
does have equal photon numbers in co2 and cu3. There is,
however, a connection of the photon numbers to the
growth eigenvalue; from Eqs. (29) and (40) one finds that
(I( =ceo I E, I'/2)

for negative regions of the integral in the argument of the
Bessel function. Analysis shows that positive A, + results
in growth, and negative A, + in absorption. These solu-
tions may be shown to exhibit considerable pulse disper-
sion (drag), which will show up markedly in the numeri-
cal solutions to be presented later. Simple analytical ap-
proximations and/or assumptions may be made on the
RHS of Eq. (37) or (38) in order to explore the evolution
of the solution. It should be noted that the damping
terms in I are not necessary for growth or absorption of
the coupled solutions contained in Z. This is not so when
one solves Eqs. (19) and (20), or Eq. (22), in the steady-
state approximation by the substitution of steady waves
[exp(ivor)] for the fields. In that limit the damping term
is crucial for coupled-wave growth or loss. This would
appear contradictory, but the Fourier width of the tirne-
dependent pulse apparently can substitute for the medi-
urn damping.

Thus, I conclude that the approximate threshold for
parametric growth is conditional on the real quantity X+
being positive, which depends on the weighted popula-

I2/Are& 13/iriCO3 eolz—+ I A+ (41)

T, =k, ID„I'p„,
T3 k 3 I D;g I 'pgg

and I have set

lpegl fpggpee .

(43)

(44)

The positive number f ranges from zero to one, and mea-

Thus a positive A, +, which results in a growing z+, causes
I2 to grow faster than I3 in photon number. This could
be regarded as an ASE component in the solution.

This raises the question as to why the equations do not
contain distinct positive eigenvalues for ASE and FWM
growth. The structure of p determines this. The eigen-
values of M are

A ~ = ( 1/4eoA') [ T2 —T3+[T2 + T3 —2 T2 T3 ( 2f —1 ) ]' ~ j,
(42)

where
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sures the amount of coherency in the (2+1)-photon
pumping process. The coherent case (f =1, discussed
above) has eigenvalues

A. + =(T~ —T3)/2eofi, A, =0, (45)

and the incoherent case (f =0, ASE and absorption) has

A + = T~ /2eoA' A = T3 /2eofi (46)

Analysis shows that, for 0 &f ~ 1, at most one of the ei-
genvalues can be positive. Consequently I do not see in-
dependent early growth of FWM and ASE. The growing
waves are a close-coupled mixture of the two frequencies
and are inseparable insofar as the adiabatic approxima-
tion to Eq. (22), as given in Eqs. (30)—(35), is a valid solu-
tion. An upper bound on the eigenvalues is T~ /2epfl.

In the collisionless environment of the upper atmo-
sphere that is being studied here, the only mechanisms
that lower the coherency of p (drive f to a small value)
are a noisy E, and a large Doppler effect. The detuning
of co& from the two-photon transition and the ac Stark
effect can play an analogous role in affecting the growth
of the parametric fields.

IV. NUMERICAL SOLUTIONS
FOR ATOMIC OXYGEN

In this section I apply the Maxwell-Bloch description
to a simplified model of the (2+ 1)-photon ionization of 0
and growth of parametric waves. The early-growth
analysis of Sec. III was useful for deriving the threshold
condition, A, +)0, but it did not address gain saturation
effects, laser detuning, or the Doppler effect. This section
will explore these effects.

A. Atomic and laser data for the oxygen transitions

Consider a collisionless low-density gas of 0 atoms
subjected to an intense pulsed laser field E, with wave-

length k, around 226 nm. The pulse amplitude is as-
sumed to be a transform-limited, plane-polarized, tem-
poral and spatial Gaussian with a nominal intensity
FWHM of 0.3 ns. With I.S-coupled atomic states quan-
tized on the electric vector direction, the laser field cou-
ples states JMJ to J'MJ, remaining diagonal in MJ.
Spontaneous emission from excited levels weakly couples
MJ to MJ. The 226-nm laser is tuned to be two-photon
resonant with the transition from the ground (g) J =2
level of the ground PJ manifold to the J=2 level of the
first excited (e} P~ manifold. The e states are pumped to
the structureless ionization continuum by the same laser.
There are five MJ ladders involved in the pumping, each
resembling the ladder of Fig. 1. In addition to the pump
laser E„I wish to allow for fields Ez and E3 arising from
growth of spontaneously emitted radiation. These fields
couple to the intermediate (i) 'S, level consisting of three
states. Ez and E3 are assumed plane polarized on the
direction of E, . In order to reduce the dimensionality of
the Bloch equations, the weakly coupled MJ =+2 ladder
is neglected in the (2+1)-photon pumping, leaving the
MJ=O, +1 ladders, each of three levels, coupled by the

three fields and spontaneous emission. The MJ=+1
ladders are equivalent, which leaves a pair of weakly cou-
pled 3 X 3 density matrices. An accounting of the
Doppler effects expands the Bloch system into an array of
density matrices which are solved independently for each
velocity bin and subsequently summed to give the medi-
um response to the fields.

Most of the atomic data for (2+ 1)-photon ionization of
0 have been calculated by quantum defect theory by
DLM. ' One needs the ac Stark shifts, the effective two-
photon couplings, and the ionization rates for the g Pz~
to e Pz~ transitions. DLM report their results in terms
of rates per W/cm . Writing the ionization rate in Eq.
(15) as

l e +JM(ce0~+1 ~
/2~~1)

the DLM values become

0 ion 7 15 X 10
—19 cm20

Odyl =5 ~ 65 X 10 ' cm

0 =1.13X 10 & cm

(47)

(48)

These ionization cross sections compare favorably with
literature values. ' The ac Stark terms of Eq. (9) are
proportional to intensity. One identifies my H, , in Eq. (9}
as —2S;, where the S; =S;J~ are level shifts calculated by
DLM to be, in rad/s per W/cm,

Sgzo 0.4 10, Sgz+, ——0.32 1

Sepp=6. 24, Sep+& =6.37 .
(49)

The effective two-photon coupling in Eq. (10) can be ex-
pressed in terms of intensity if the field amplitude is real.
Identification of a Rabi rate as

0 = —H t.ge ge (50)

Qg,
' = —3. 18,

0+—= —1.21 .

(51)

The M&=+2 value is included here and in Eq. (48) to
show that its 2+1 pumping efBciency is small. The
square of the Rabi rate is a good measure of the pumping
to e, and this shows that my neglect of the MJ=+2
ladder is less than a 10% error in the absence of satura-
tion of the MJ =+2 ladders.

The data for the dipole-coupled e to i and i to g transi-
tions consists of the D„and D; matrix elements of Eq.
(8). These can be evaluated from oscillator strengths,
using observed values. ' For the states at hand, in units
of 10 Cm, I find

D,; = —20.0, D,—; '= —17.3,
(52)

D; =3.39, D;—'=2.93 .

The spontaneous (natural) decay ratess' are

from Eqs. (7) and (10) is straightforward. DLM report, in
rad/s per W/cm, for the J =2 to J=2 transitions,

Qg, = —3.84,
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y",- =0.67 ns ',
@~=0.028 ns '

(53)

y, , =y (2J+1)
m = —1,0, 1

—MJ m MJ

(54)

The repopulation of lower levels due to spontaneous de-
cay is included here for completeness. In terms of the J
to J' rate y JJ I have derived the JMJ to J'MJ rate to be,
using 3-J symbols,

J 1 J'

f (z'+ h, ~). Propagation is done only on the spline
points r, . The corrected field values are evaluated from

E(z'+h, r)=E(z', r)+ —,'h [f(z', r)+f (z'+h, r)] .

The numerical error is monitored by comparing
E(z'+h, r) and E (z'+h, r), with revision of h when a
norm of the error is outside certain bounds. This explicit
propagation scheme is low order and requires two Bloch
solutions per space step. It has been quite successful on
the (2+ 1)-photon ionization problem with parametric
field growth.

One notes from Eq. (53) that level e decays slowly to i,
which in turn decays rapidly to all levels in the ground
manifold. The specific decay rate of i S, to g Pz is 0.37
ns '. '

A further comment should be made regarding the rath-
er closely spaced excited PJ levels. The J=2 and J=0
separation is 0.16 cm ' (5 GHz), which means that the
Bloch equations should treat these as degenerate levels.
The (2+1)-photon ionization studies of DLM treated all
of the e PJ as degenerate. However, the e P0 coupling
to the ground Pz is fairly insignificant compared to the
rest, so I ignore the J=O level. The P, excited level is
0.54 cm ' away from the Pz, which is sufficient separa-
tion not to be strongly pumped by the laser when it is
tuned to the dominant fine structure line.

B. Numerical methods for the Maxwell-Bloch equation

I follow the basic outline of the Icsevgi-Lamb pro-
cedure, but replace as much as possible of the integra-
tion by automatic error-control logic. The optical Bloch
equations can be difficult to integrate in time if the fields
are highly nonresonant. Because of this, a packaged
Adams or Range-Kutta method with variable step con-
trol is used for the numerical solution of Eq. (7). In order
to alleviate the frequent evaluation of the fields at closely
spaced intervals when the time solution is difficult, I have
used complex spline representations for all laser field en-
velopes and medium polarizations as a function of retard-
ed time at each point in z. The splines allow an adequate
interpolation from a fixed set of field values and time
points. Typically a few hundred time points ~, are ade-
quate for the spline "basis." The Doppler integration
over atomic velocities is reduced to a finite sum and test-
ed for accuracy on each distinct problem. Typically the
Doppler sum is evaluated to a few percent accuracy.

The propagation in z' (coordinate z) for the solution of
Eq. (3) is basically a Heun method' '" with error analysis
introduced on the "corrector" step. Let

. C. (2+1)-photon ionization of atomic oxygen
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The dynamics of the (2+1)-photon process have been
explored by DLM (Ref. 1) in the limit of constant pump
pulses of 5 and 10 ns, degenerate excited PJ levels, and
no Doppler effect. DLM include the excited Pp and P,
levels as well as the MJ =+2 ladders in their calculations,
which I do not. Allowing for this, my calculations agree
semiquantitatively with their saturation and tuning
curves, except that I do not reproduce the narrow sub-
peak structure in their Fig. 1(c) and at the peaks of their
Fig. 2. These sharper structures are due to the small
MJ =+2 ionization cross section. My ionization proba-
bilities, shown in Fig. 2, saturate at precisely —, because
the missing MJ=+2 ladder omits —', of the initial J =2
ground level density. An examination of DLM's Figs. 1

and 2 shows the tendency of their results to saturate at
0.6 also. My calculations in Fig. 2 include the effect of
excited PJ degeneracy by increasing the two-photon
Rabi rates to the geometric mean of the Rabi rates of the
individual J components. This is somewhat appropriate
as the assumption of degeneracy allows a new excited
state to be defined as a superposition of the tabulated
JMJ representation. '

In the (2+ 1)-photon ionization process, it is interesting

where f contains the medium polarization. The "predict-
ed" field values are

E (z'+h, r) =E(z', r)+hf (z', r),
which are used to solve the Bloch equation at space point
z'+h, determining a new set of medium responses and

FIG. 2. Saturation of ionization probability from the ground
'P~ level of 0 as a function of 226-nm laser intensity for a 5-ns
constant pulse. The labels on the curves denote the detuning of
the laser from the half transition energy in cm '. The
MJ 0, + 1 ladders are included and the excited 'PJ manifold is
assumed degenerate as discussed in text. The asymmetry in the
+0. 1 saturation curves is due to the ac Stark shifts produced by
the field.
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to explore variations in laser intensity, pulse duration,
and frequency, and in the Doppler effect of the medium.

My investigation of parametric growth should also cover
all these variations, but the amount of computation and
data is too great, considering that this is a massive multi-
state, multifield, Doppler, distance- and time-dependent
calculation. Some restrictions in scope are in order. The
generation of the 226-nm radiation in our envisaged sys-
tem suggests that the pump field will be a train of sub-

nanosecond pulses with the cumulative effective resulting
in a large ionization probability. Each pulse will ionize
only 10% to 20% of the atoms. Moreover, the pulses
may be continually displaced in frequency (chirped) so as
to sweep over the Doppler profile. This suggests treating
the pulses as incoherent with respect to one another and
limiting the calculations to a fixed short pulse length.

Another savings is obtained by limiting the Bloch solu-
tion to a single MJ value. For a particular J =2 to J'=2

1 0-1

I~
~

1 0 2

C$

0
CL

C0S~
lO
N
C 100

1 0-4

1 0-5
0.1 1.0 10.0 100.0

Peak Intensity (GW/cm2}

FIG. 3. Saturation of the ionization probability from the ground P2 level of 0 as a function of 226-nm laser peak intensity for a
0.3-ns FTHM Gaussian pulse. The numeric labels on the curves denote the laser detuning in cm ' from the half transition energy to
the 'P, level. The solid curves are 0 K calculations based on the MJ =1 ladder through the e'P» excited state. The solid dots next to
these curves are multiladder calculations based on e'P», M =MJ=O, +1. The curve designated as —0—is a zero-detuned 800-K
Doppler calculation and —X—is a 0.1 cm (laser) detuned 800-K Doppler case. 81.bins were used in the Doppler distribution.
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transition and ionization of interest, one sees in Eqs. (48)
and (51) that this is not a major error. It is also true that
the dipole-coupled transitions are nearly the same for
MJ=O and MJ=+1 as seen in Eq. (52). To do the
Maxwell-Bloch calculations on a single MJ ladder, I have
tested Bloch solutions with four methods of
simplification: (1) MJ = 1 with e P2 state, (2) MJ = 1 with
e Pz effective Rabi rate, (3) M& =0 with e P2 state, and
(4) MJ =0 with 'PJ effective Rabi rate. The effective Rabi
rate is the geometric mean of the PJ Rabi rates of
DLM. ' The results are very similar in the 3 to 10
GW/cm region. From these I have selected the MJ =1
ladder with Q,s =3.74 s ' per GW/cm for use in the en-

suing propagation calculations. In Fig. 3 I give the ion-
ization probabilities for the J =2 to J'=2 transition as a
function of laser peak intensity for a 0.3-ns FWHM
Gaussian pulse. Three tunings of the laser are shown for
a 0 K Doppler situation, and two tunings for an 800-K
Doppler distribution. Also shown is the effect of replac-
ing the MJ =0,+1 ladders by just the MJ = 1 ladder. The
error is generally less than 15% in terms of ionization
probability. When this "one-ladder" approximation is
made, the ground-state number density is increased by a
factor of 3 to compensate for the missing ladders.

The change in slope of the O-K, zero-detuning curve in
Fig. 3 occurs at the point in intensity where the density
matrix begins to exhibit strong Rabi oscillations on the
two-photon transition. The slope of all the curves at low
intensity is three, refiecting the (2+1)-photon dynamics
prior to the onset of saturation. The splitting of the
—0.1- and 0.1-cm ' detuning curves, as well as the cross-
ing of the 0- and 0.1-cm ' curves is a reflection of the
intensity-dependent ac Stark shifts. The high-intensity
portion of Fig. 3 will be in error if the intensity-
dependent ac Stark shift (near 0.036 cm ' per GW/cm
for all transitions) is sufficient to force e Pi into closer
resonance with the applied field than the e P2 level. For
an applied field with +0. 1 cm ' (laser) detuning from
P2, this intensity is 13 GW/cm; for zero detuning, the

intensity break point is 7.5 GW/cm; for —0. 1 detuning,
the break is 2 GW/cm . The latter is particularly low be-
cause the two-photon laser is already tuned 0.2 cm ' to
the red on the transition, which is 0.2/0. 54 of the separa-
tion of the P2 and P, lines. The error due to the level
shifting will not be important as the main thrust of this
work is parametric growth in the situation that the laser
is tuned to match the Stark-shifted e P2 line component.

At 800 K, the Doppler effect tends to smooth out the
dependence of the ionization probability on pump laser
frequency; this is shown by the two dashed curves in Fig.
3. In the operation region of interest (Sec. IVD), the
Doppler effect gives less than a factor of 2 correction to
the ionization probability.

D. Growth of parametric waves

The calculations of Sec. IV C show where one may ex-
pect efficient (2+ 1)-photon ionization of O. In Fig. 3 one
sees that peak intensities from 3 to 10 GW/cm with a
laser detuning of 0.1 cm ' are good. It is difficult to gen-

crate collimated beams at higher intensities, and more-
over, the single resonant exicted state used in my compu-
tations is not a good approximation at very high intensi-
ties. The time-dependent ac Stark shift places the g P2-
e P2 transition into exact resonance at the half-intensity
points of a 5.56 GW/cm peak-intensity pulse detuned by
0.1 cm ' (laser) from the J=2, J'=2 fine structure line.

In Figs. 4—6, parts (a), I give the time behavior of the
populations of the g, i, and e levels as well as the ion pro-
duction for peak intensities of 10" GW/cm n =2, 3,4
(i.e., 3.16,5.62, 10 GW/cm ). The ground level density is
2.5X10 cm, which is 0.5X10 cm in each MJ state,
increased by a factor of 3 to compensate for the three,
nearly equivalent, strongly coupled, MJ=O, +1 ladders.
These are numerical solutions of Eq. (7) responding to E,
only. In Fig. 4—6, parts (b), I give the A, + growth "con-
stant" for each of the intensities, evaluated from the den-
sity matrix as in Eq. (29). A, + is negative for all retarded
times at 3.16 GW/cm, it increases to positive values at
5.62 GW/cm with a positive tail due to the residual pop-
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FIG. 4. In part (a) the number densities as a function of re-
tarded time are given for the ground state (0), the intermediate
state (0), the excited state (6), and the ions (+). In part (b), the
FWM growth "constant" is given as evaluated from the density
matrix as described in the text. These calculations were based
on a 0.3-ns FWHM pulse with 3.16 GW/cm peak intensity,
tuned 0.2 cm ' to the blue on the transition energy of the J =2
to J=2 line.
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FIG. 5. Same as Fig. 4 except the peak pulse intensity is 5.62
GW/cm .

FIG. 6. Same as Fig. 4 except the peak pulse intensity is 10
GW/cm .

ulation left unionized in e, and it has a positive double
peak at 10 GW/cm in Fig. 6(b). The peak in Fig. 6(b) is
not significantly greater than peak in Fig. 5(b). If the ear-

ly growth theory of Sec. III is correct, this span of inten-
sity from 3 to 10 GW/cm should cover the transition re-

gion for the onset of parametric wave growth for the 0.3-
ns, (2+ 1)-photon ionization of O.

The parametric fields are initialized at z =0 as smooth
envelopes of carriers at the e to i and i to g frequencies.
Exploratory calculations with random phase noise, ran-
dom amplitude noise, and greatly disparate magnitudes
did not affect the growth or nongrowth in any significant
way. Because of the general nature of the carrier-
amplitude factorization used here, the growing fields es-
tablish their phase matching subject only to the single
major restriction that the propagation vectors are col-
linear. Figure 7 gives the intensity profiles used to ini-
tiate these particular propagation calculations. The peak
I2 and I3 are 10 W/cm, and this I, peak is 10
G%/cm . The populations evolve at z =0 just as sho~n
in Fig. 4—6 for the three peak intensities of I, chosen for
study: 3.16, 5.62, and 10 GW/cm . At z = 100 m, the in-
tensities are given in Figs. 8 —10 for the three cases. The
extinction of the leading edge of the I3 pulse is due to the
interaction with the ground state prior to the atomic
response to I, . One notes the extensive pulse distortion
of both I2 and I3. This pulse drag was noted in the ana-
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FIG. 7. Retarded time dependence of intensities of fields at
z =0. The I, shown here (6) is a 0.3-ns FWHM Gaussian with

a peak of 10 GW/crn . I2 (U) and I, (0) coincide and are each
a sum of Gaussians with peak value 1 pW/cm'.
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FIG. 8. Intensities at 100 m of propagation into a medium at
0 K. I l I2 and I3 are labeled 6, 0, and G. This is peak Il of
3.16 GW/cm2.

FIG. 10. Same as Fig. 8 except peak I& is 10 GW/cm .

lytic solutions to the early-growth regime in Sec. III B. It
would be necessary to extend the retarded time range
considerably in order to compute the tails of the growing
waves. At z =200 m, Figs. 11—13 give the intensities.
To be noted is the insignificant growth at 3.16 GW/cm,
and the very abrupt onset of growth as a function of re-
tarded time at the higher I

&
intensities.

The Doppler effect at 800 K shows the field growth as
shown in Figs. 14 and 15 for I, =5.62 GW/cm . The
hole-burning effect is shown in Fig. 16 for this intensity
and temperature. It is seen that the Doppler effect great-
ly inhibits the growth of the parametric waves.

A final point for computational exploration is the satu-
ration of the parametric growth. The early growth is
nearly exponential, but this quickly converts into linear
growth where I2 and I3 become large enough to compete
with I, in the driving of the atomic response. To avoid

voluminosity, I present the results of the propagation cal-
culations by showing the growth of the pulse fluences
with distance; the intensity profiles generally retain the
shapes of Fig. 12. The initial fluences, F2 and F3, of the
injected pulses are —10 " J/cm (10 W/cm ) in these
calculations. The reported fluences are the time integral
of the intensities of the computed fields over the retarded
time interval shown in the figures. This measure of the
wave growth contains some error as the pulses have not
died off at the end of the retarded time interval. Howev-
er, the effect of the parametric waves on the ionization
process is totally contained in the displayed time interval.
Recall that the ordinate scale is logarithmic on the inten-
sity plots, so that the pulses are not so broad as appears.
In Fig. 17 I show the nearly linear growth of I2 and I3
and the suppression of ion production for I, =4
GW/cm . The transition region from exponential to
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FIG. 9. Same as Fig. 8 except peak I l is 5.62 GW/cm'.
FIG. 11. Same as Fig. 8 except propagation distance is 200

m.
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FIG. 14. Intensities at 100 m after propagation through
Doppler-distributed medium at 800 K. This growth should be
compared to Fig. 9 which did not include the Doppler effect.
Peak Il is 5.62 GW/cm .

linear growth occurs where the growth of I2 and I3 reach
roughly 10 to 10 W/cm and F2 and F3 are about 10
to 10 Jjcm .

The limiting form of saturated wave growth and densi-
ty matrix evolution is diScult to analyze analytically.
Generally, I expect the traveling-wave solutions to settle
into stable waveforms of slow z' dependence. With this
assumption, the dipole densities driving E2 and E3
should nearly vanish [Eq. (16)], and this implies from Eq.
(18) that

(55)

The ratio of I3 to Iz in the early growth region is given
by Eq. (40). Combining Eqs. (40} and (55} leads to the
statement that growth suppression is contingent upon

photon-number balance in fields 2 and 3:

(56)

This in turn may be combined with Eq. (55) to show that
I,+ of Eq. (29) should be suppressed to zero. I interpret
this to mean that the fields 2 and 3 evolve to affect the
density matrix such that their growth constant (A, +) is
suppressed, resulting in the observed linear behavior in
the larger propagation distances in Fig. 17. Examination
of I,+ at these distances (not shown) indeed shows that it
is driven into rapid oscillation about a zero mean. Thus
the above arguments are supported by the calculations.
The ionization fraction of atomic oxygen is seen to stabi-
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FIG. 13. Same as Fig. 10 except propagation distance is 200
FIG. 15. Same as Fig. 14 except propagation distance is 200

m. This should be compared to Doppler-free (i.e., 0 K) results
given in Fig. 12 for peak I& of 5.62 GW/cm .
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f (v) at z = 0.000 km breakup increasing with distance (thus strength of the E2
and E3 fields).
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FIG. 16. Velocity distributions of ground state (0), inter-
mediate state (0), excited state (6), and ions (+) at the begin-

ning of channel for peak I& of 5.62 GW/cm' after passage of
laser pulse.

lize around 0.05 in Fig. 17; other calculations demon-
strate analogous suppression of ionization, with the den-
sity matrix settling into a highly overdriven mode of os-
cillation at large propagation distances.

The spectral density of the growing fields has been
found by Fourier analysis of the computed pulse en-
velopes. The spectral densities are generally localized
about the transition frequencies. In the early growth re-
gion for the case of a pump pulse peak intensity of 5.62
GW/cm detuned 0.1/cm ', the e to i (r02) transition
shows a growth shifted to higher frequency, probably due
entirely to the ac Stark effect of the pump, which
predominantly affects the e level. The later stages of
growth show a breakup of the spectrum of the I2 and I3
fields on the order of a few GHz, with the amount of

V. DISCUSSION

The growth of parametric fields (FWM and ASE) in
two-photon excitation is a complex phenomenon. This
work is directed toward the short, on-resonant, intense
pulse limit of a (2+1)-photon process for producing
channels of ionized atomic oxygen. The earlier work of
BMGR (Ref. 2) was directed toward a long, weaker pulse
regime in alkali vapor in which the results were quite dis-
tinct from the present. Whereas I find partial suppres-
sion of excitation and ionization due to the growing fields
for A, + )0, BMGR predict complete suppression of the
(2+ 1)-photon process.

The early growth theory used here in Sec. III can be
extended to the perturbational limit used by BMGR,
with the major difference being my retention of the
single-photon coupling terms (in the Bloch equation) to
the states. With this coupling retained in the analysis,
the conditions for wave growth with distance are
different, displaying a threshold similar to Eq. (29). '

The origin of this threshold is the competition between
the FWM growth and linear absorption of co3 by the
ground state.

As to the experimental verification of a threshold for
the FWM onset and the amount of suppression of excita-
tion, one must verify that the theoretical analysis present-
ed here applies to the physical problem. I have assumed
short, transform-limited pulses, collisionless atoms, and a
moderately important Doppler effect.

In the situation which I am addressing in the high at-
mosphere, it appears that 0.3-ns pulses of less than 3
GW/cm, detuned to the ac-Stark-shifted position of the

g P2-e P2 fine-structure line, will produce channels of
ionization without significant degradation due to FWM
growth.
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FIG. 17. Growth of pulse fluences [I2 (- X -) and I, (-0-)] and decrease in ionization fraction for 0 K case with a 0.3-ns Gaussian I&
with peak intensity of 4 GW/cm . The linear growth region is characterized by nearly equal photon densities in the I2 and I3 fields.
The very slight change in slope at the 2-km point may be numerical error.
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