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We study the structure of the hydrogen atom when placed in a high-frequency, superintense laser

field, within the framework of a nonperturbative theory recently developed for this purpose. The

theory predicts that in the high-frequency limit the atom is stable against decay by multiphoton ion-

ization, and that its structure is determined by a time-independent Schrodinger equation containing

a "dressed" Coulomb potential. The laser frequency co and the intensity I enter only combined in

the parameter ao=I' co a.u. We first analyze the symmetry of the eigenvalue problem for the

case of linear polarization under consideration and adopt an appropriate classification scheme for
the levels. The small-ao limit of the levels is obtained analytically. In the large-ao limit scaling laws

are derived for the ao dependence of the eigenvalues and eigenfunctions. At finite ao we have car-
ried out a very accurate numerical computation over an extended range of ao values (0~ ao 200
a.u. ) for a number of symmetry manifolds, by diagonalization of the Hamiltonian in a Gaussian
basis. The correlation diagrams relating the small- and large-ao limits exhibit several avoided cross-

ings. The binding energies show an overa11 decrease with ao, in some cases preceded by an increase

through a maximum. For the ground state this decrease is quite steep. The extreme distortion of
the atomic structure accompanying it is studied. It is shown that, with increasing ao, the (oscillat-

ing) electronic cloud undergoes radiative stretching, which eventually culminates at large ao in its

splitting into two parts (dichotomy). The consequences of our findings for the experimental energy

spectrum of the ejected electrons are considered.

I. INTRODUCTION

An atom placed in a radiation field undergoes distor-
tion, while ionizing by absorption of one or several pho-
tons. The distortion sets in gradually with the intensity
of the radiation, but becomes important only when this
attains rather high values. For a hydrogen atom in the
ground state, this will happen around the "atomic unit"
of intensity Io =3.51 X 10' W/cm, at which, by
definition, the amplitude of the oscillating electric field
equals the electrostatic field created by the proton on the
first Bohr orbit. Present-day lasers can already generate
such superintense fields, in the form of radiation pulses of
picosecond duration or less. Intensities orders of magni-
tude higher are expected in the near future. ' It is the
atomic behavior in this regime of intensities that we are
interested in.

Under these circumstances it becomes insufficient to
apply the standard perturbation theory formulas to
lowest nonvanishing order, because higher-order terms in
the perturbation expansion become comparable to the
lower-order ones and should therefore be included, let
aside the uncertainties concerning the convergence of the
summation. The alternative is to devise direct, nonper-
turbative approaches for solving the Schrodinger equa-
tion of the atom in an intense field.

One such theory, valid at sufficiently high frequencies,
was presented a few years ago by Gavrila and Kamin-
ski. ' It has been applied so far to the scattering and ion-
ization of one-electron systems. The case of potential

scattering was treated first. This was followed by the
study of the structure of atomic hydrogen, in linearly '

and circularly polarized fields. An exploratory calcula-
tion for linear polarization, the only case we shall be in-
terested in in the following, has revealed a striking overall
decrease with intensity of the binding energies of the
(nondecaying) states in the high-frequency limit. In or-
der to fully understand the accompanying distortion of
the hydrogen atom, we have initiated a very accurate
structure computation. For the ground state this has al-
ready revealed an unprecedented stretching of the oscil-
lating electron charge density along the direction of the
electric field, culminating in its splitting into two parts
(dichotomy) This oc.curs at intensities within experimen-
tal reach.

In the following we present a full account of our results
on the structure of the hydrogen atom, which includes
the ground state and a number of lower-lying excited
states. The layout is as follows. In Sec. II we briefly re-
call the basic equations and underlying assumptions of
the high-frequency theory we are using. In the high-
frequency limit one needs solve just one eigenvalue equa-
tion, which contains a radiation modified potential de-
pending on the frequency and intensity of the field
through a parameter ao. In Sec. III we discuss the sym-
metry of the eigenvalue problem. This will allow us to
develop correlation diagrams for the eigenvalues E(a )o
when ao is varied from 0 (unperturbed atom) to very
large values (dichotomized atom). In Sec. IV it is shown
that the small-eo dependence of the levels can be ob-
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tained analytically in agreement with the result of stan-
dard lowest-order perturbation theory (at high frequen-
cies). Section V studies analytically the large-ao limit, in
which atomic dichotomy occurs. Scaling laws for the en-

ergy levels and wave functions are deduced for this limit.
The numerical methods are presented in Sec. VI. The
calculation was carried out by diagonalization of the
Hamiltonian in a large Gaussian basis. The results are
given and discussed in Sec. VII. There we first present
the a0 dependence of the lowest-lying eigenvalues for a
number of symmetry classes, and their correlation dia-
grams. Also illustrated is the radiative stretching of the
eigenfunctions, culminating at large a0 in full dichotomy.
We finally discuss the experimental implications of our
results. Among others, it follows that the energy spec-
trum of the ejected electrons (as they are leaving the
atom) is displaced towards higher energies.

II. BASIC FORMALISM

The starting point of the high-frequency theory ' is
the "space-translated" version of the semiclassical
Schrodinger equation for a particle moving under the
combined forces of a potential V(r) and a radiation field.
This was derived by Kramers (see also Pauli and Fierz' )
in the general context of quantum electrodynamics, and
independently by Henneberger" for laser-atom interac-
tions. It assumes that the radiation field can be described
by its dipole approximation in the physically important
region of space; we denote the corresponding vector po-
tential by A(t). By applying the time-dependent transla-
tion r~r+a(t) with

a(t)= — J A(t')dt'
mc 0

to the one-electron Schrodinger equation in the momen-
tum gauge (for the laboratory frame of reference), the
space-translated version emerges

y 1/2 —2a0— (4)

where I is the time-averaged beam intensity in atomic
units, ID=3.51X10'6 W/cm2, and the photon energy is
given in hartrees (2 Ry).

By inserting Eq. (3} into Eq. (2) one gets a differential
equation with periodic coefficients, which can be handled
according to the Floquet method. ' This leads to a sys-
tem of coupled differential equations in coordinate space
for the Floquet components of the wave function f, con-
taining a (in general, complex} quasienergy parameter E
The system has to be supplemented by an appropriate
boundary condition to describe steady decay by multi-
photon ionization of an initial state in the field. An itera-
tive method of solution was devised, proceeding essential-
ly in inverse powers of co. To lowest order in the itera-
tion, i.e., in the high frequ-ency limit, the set of coupled
equations reduces to a single one,

1 P + Vo(ao, r) go=Ego .
2m

(5)

This has the form of a time-independent Schrodinger
equation for the zeroth Floquet component $0, the only
one in the expansion of g to survive in this limit. Thus

g(r, t) -=go(r)exp( iEt Ifi) . —

Equation (5) contains the "dressed potential" Vo(ao, r),
which is the time average over a period of the oscillating
V(r+a(t))

tion (1) then gives

a(t) =aoe sincot,

ao= —(ea/mccoy),

which describes the quiver motion of a classical electron.
In atomic units (Bohr radii) the quiver amplitude ao be-
comes

1
P + V(r+a(t)) /=i'2m ai

(2) 1 2
Vo(ao, r)= V(r+aoesing)dg .

277 0

Note that in passing from the momenturu gauge form of
the Schrodinger equation to Eq. (2},we have removed the
term e A (t)!2mc by a phase-factor transformation. '

We are using in this section the Gaussian system of units.
As easily seen, Eq. (1) represents the field-driven part

of the motion of a classical free electron. Thus, Eq. (2)
characterizes the dynamics of our problem in a moving
frame of reference which follows the field-driven motion
of the classical electron (i.e., in which it moves with con-
stant velocity). This we shall call the "Kramers reference
frame. " In it the center of force (the proton) has a
motion represented by —a(t), as apparent also in Eq. (2).

From now on we shall assume that the radiation field
can be represented by a monochromatic plane waUe of fre-
quency co (i.e., with constant amplitude in space and
time). By so doing we confine ourselves to a regime of
stationary atomic distortion and decay.

For linear polarization, the vector potential of the field
in the laboratory frame can be written as A(t) =ae coscot,
where e is the real unit vector of the polarization. Equa-

The result has a simple intuitive meaning: in the high-
frequency limit the electron is not capable of "feeling"
the rapidly oscillating potential V(r+a(t)), but only its
time average Vo. In the Coulomb case V (r) = e Ir, Eq. —
(7} can also be looked upon as the electrostatic potential
created by a linear (inhomogeneous) distribution of
charges extending from —a& to +o.0 along the line of os-
cillation of direction e passing through the center of force
[see Eq. (2) of Ref. 5].

The dressed Coulomb potential can be expressed as

Vo(ao, r) = —(2e'/~)(r+ r }

XK(2 ' (1— ~ )1' )

where r+=r+aoe [the origin of the coordinates is kept at
the center of V( r }]and K is the complete elliptic integral
of the first kind. V0 has r ' singularities at the end
points of the charge distribution +a0e, and a logarithmic
singularity along the segment between them [due to the
behavior of JC(x) for x ~1]. A graphical representation
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of Vo was given in Fig. 1 of Ref. 2.
It is apparent from Eq. (5) that, in the high-frequency

limit, co and I enter the theory only through the parame-
ter ao [Eqs. (3}and (4)] contained in Vo. Whereas in gen-
eral the quasienergies E are complex, Eq. (5}has obvious-
ly real eigenvalues, indicating that in the high-frequency
limit the atom is stable ("high-frequency stabilization" ),
i.e., cannot decay by multiphoton ionization. On the
other hand, it may be strongly distorted if the potential
Vo difi'ers substantially from V (case of large ao). Ioniza-
tion becomes possible in the second order of the iteration,
which yields an imaginary part to E, ' and, at the same
time, expressions for the n-photon ionization rates in
terms of the solutions of Eq. (5). It is argued else-
where ' that the frequency condition under which the
iteration procedure should converge (in some pragmatic
sense) is

g~ && lEO (ao) I, (9)

where Eo (ao) represents the lowest eigenvalue of the
manifold having the same magnetic quantum number m

as the initial state. ' Note that the condition refers to the
atom in the field, characterized by a given value of ao.
There are no restrictions on ao (except for being kept
finite); i.e., the theory applies as well for ao «1, which is
the realm of perturbation theory, ' as for ao~ 1, where
the theory is nonperturbative. It is in this latter case that
we shall be primarily interested. '

As evident from Eq. (4), the value of ao depends more
sensitively on co than on I. Very high values of co would
more readily satisfy the validity criterion of Eq. (9), but
on the other hand would lead to small values of ao, relat-
ed to perturbation theory. In order to attain interesting,
large values of ao, it is desirable to keep co as low as possi-
ble, compatible with Eq. (9},so that the intensity need not
be prohibitively high. [The validity condition Eq. (9) will
be discussed in Sec. VII A below. ]

The solution P of Eq. (2} and its approximate form for
the high-frequency limit Eq. (5) pertain to the Kramers
reference frame. In the laboratory frame, the solution of
the Schrodinger equation in the momentum gauge corre-
sponding to Eq. (6) is' '
QL (r, t) —=go{r—a(t))exp[( it/fi}(E+e a —/4mc )] .

(10)

and the electronic charge density l ft l
oscillate

without loss of normalization, like a free classical elec-
tron. 's From Eq. (10) it is apparent that the energy spec-
trum (including the continuum threshold) for the
Schrodinger equation in the laboratory frame is shifted
with respect to that given by Eq. (5) by the constant
ea /4mc.

Equation (5) was obtained earlier via other methods by
Henneberger" and Gersten and Mittleman' (see also
Mittleman ), and solved for the ground-state energy in
some cases. ' Gersten and Mittleman were the first to
realize its high-frequency character. From now on, in
the following sections, we shall be using atomic units
(lel =fi=m =1).

III. SYMMETRY MANIFOLDS

For any spherically symmetric potential V(r), the
dressed potential, Eq. (7), obviously has axial symmetry
around the axis of e, and is an even function with respect
to its center. This reduction of the spherical symmetry
implies that now only the projection of the angular
momentum on the e axis (associated quantum number m)
and the parity (quantum number P) are conserved quanti-
ties. In fact, as can be easily seen, the eigenvalues depend
on

l
m l, rather than on m, which implies a twofold degen-

eracy for m%0. The symmetry of the problem (D„t, )

therefore suggests a classification scheme for the states
similar to that for diatomic molecules (although the form
of the potential is quite different in the two cases). Thus
we will designate the states with lml=0, 1,2, . . . by
o, m, 5, . . . , respectively, and even or odd (gerade or
ungerade} parity by P =0 or 1. In order to distinguish a
particular state within a manifold with given l

m
l

and P,
we will label it by the quantum numbers (n, l) of the un-

perturbed state it is connected to continuously in the
field-free limit (a0=0), see Sec. IV. The eigenfunctions
will therefore be denoted by P~„t~ (r); their parity is
necessarily that of l.

One may inquire if for the dressed Coulomb potential
there are no extra constants of the motion besides those
mentioned. This may occur in the form of "dynamical"
(i.e., potential dependent) quantities. The occurrence of
the latter appears to be linked to the separability of the
Schrodinger equation in some special system of coordi-
nates. Whereas for two Coulomb centers (i.e., the H2+
problem with fixed nuclei) this is indeed the case, it does
not happen for more than two centers. The dressed
Coulomb potential is generated by an infinite (continu-
ous) distribution of centers. It is therefore very unlikely
that symmetries, other than the ones mentioned, be
present.

It will be shown in Secs. IV and V that at small and
large ao the eigenvalue problem can be solved separately,
in part analytically. This enables the drawing of "corre-
lation diagrams" for the eigenvalue curves E(ao), which
connect the small- and large-ao eigenvalues lying within
the same symmetry manifold. If all symmetries of the
problem are fully accounted for, the von Neumann-
Wigner "noncrossing rule" should be satisfied. This
leads in general to "avoided crossings" of the eigenvalue
curves at places where in an approximate calculation
with a Hamiltonian of higher symmetry the curves would
have crossed. We have computed the E(ao) curves for
various low-lying levels, and shall discuss the outcome in
Sec. VII. The fact that we have found no crossings
within the [lml, P) manifolds supports the assumption
that there exist no other conserved quantities.

Note that the high-lying states of each manifold are of
the Rydberg type. This is due to the fact that for r ao
the dressed potential [Eqs. (7} and (8)] reduces to a
Coulomb potential corrected by terms in r ' '+", with
s =1,2, . . . . The Rydberg character will be manifest
only for those states whose wave function lies to a good
extent in the Coulombic region of the potential, i.e., at ra-
dial distances well beyond ao.



480 M. PONT, N. R. WALET, AND M. GAVRILA 41

IV. SMALL-ao LIMIT

=
& nlm

I VO
—V~nl'm )

for all possible values of I, l'.
Defining the Fourier expansion of V(r)= —1/r by

V(r)= f V(k)e'"'dk,

we have

(12)

(13)

For small ao the dressed potential Vo differs little from
the original Coulomb potential V and one may apply
(time-independent) perturbation theory with respect to ao
in order to get the corrections to the Bohr levels. As a
basis for the perturbation calculation we shall take the
hydrogenic eigenfunctions

&rlnim &=Wnlm(r)=~nl(r)I'lm(r)

Because of the degeneracy of the unperturbed problem,
we have to diagonalize the lowest order in ao form of the
matrix of Vo

—V in each subspace characterized by a
given n. As the matrix elements of Vo are diagonal with
respect to m (m is a conserved quantum number}, we
need only calculate

was shown that Eq. (17) defines the distribution
I

4~ 2P2(e.r )
U(r) = 5(r)—

T
(18)

where Pz is a Legendre polynomial and [ ]' means that
an integral containing the second term has to be evalu-
ated first over the region outside a sphere of radius e
around the origin, and then let e~O.

By using Eq. (18), the calculation of Eq. (12) to lowest
order in ao gives

W„, „,, =a,'[+(~/3)ll„', (0}y„,. (0)

——'(nl~r ~nl')(Im~ P2~
I' m)] . (19)

The first term is nonzero only for I =I'=0, while the
second term should be omitted in this case (see Ref. 27).
The second term contains the radial matrix element
(nl~r ~nl') and the angular one (Im~P2~1'm ). As
known, the latter vanishes unless l and I' have the same
parity, and ~l —2~ &I'&I+2 (for I, I'&0). Consequently,
only the radial matrix elements with I ' =1%0 and
I'=122 (I & 2) are of interest. However, according to
the Pasternack-Sternheimer selection rule

V(k) = -(2~'k')-' (14) (nl ~r ~nl+2& =0 . (20)

Inserting Eq. (13) into Eq. (7) one immediately finds the
Fourier expansion of Vo in the form

This shows that the matrix W of Eq. (20) is diagonal
with respect to l to order ao. We find

Vo(ao, r)= f dk f d8 V(k)e (15) +nlmnl' =
, ( ~E)nl[ m[&ll

( )„l( (= 0[( /3)/@„l (0)I'

(21}

For small values of ao one may expand
exp(ik aoesin8) in powers of ao. By keeping only the
first three terms, the 8 integral can easily be carried out
to give

2

Vo(ao, r) —V(r) -= ap 1 1
(e k}2e'"'dk .

4 (16)

2

U(r) —= e'"'dk,
2m ~ k

(17)

which is singular at r=0, and has a well-defined meaning
only under an integral, as, for example, in Eq. (12). It

I

The expansion in ao cannot be pushed further, because
the coefficient of ao is divergent.

The right-hand side of Eq. (16) contains the generalized
function

(r 3)„l=[n l(1+1)(1+—,')] ' (1&0),

(lm ~P2~lm ) =[1(1+1)—3m ]/(21 —1)(21+3),
(24)

(25)

the value of the level displacement Eq. (22) ("dynamic
Stark shift") becomes

—
—,'(r )„l(lm Pz~lm )], (22)

again with the understanding that the second term in Eq.
(22) has to be omitted when 1=0. This result can also
be derived by inserting the spherical harmonics expan-
sion of Vo in Eq. (12); one may thus show that the correc-
tion terms in Eq. (21) are of order ao.

With
Iy„,.(0)~'=(~n')-'S„, (23)

1
&

I (I + 1)—3m
(1—~lo)

3n 2n l(1+1)(1+—,')(21 —1)(21+3) (26)

This shows that for each
~
m

~
value the first values of I

up to some lo (~m~ & I &Io) yield a AE &0 (i.e., the per-
turbed levels are more weakly bound, whereas from lo
onward, b,E&0. For ~m~=0, 1,2 the values of lo are
1,2,4, respectively.

Equations (12) and (21) indicate that at small ao the un-

I

perturbed hydrogenic eigenfunctions are still approxi-
mate eigenfunctions for our problem. This allows us
then, by continuity with respect to ao, to use the quan-
tum numbers n, I to label the exact eigenstates at all ao (as
mentioned in Sec. III).

Equation (26) represents the level shift of the Bohr lev-
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els when the nuclear charge is smeared along a small seg-
ment of length 2ao, such that it generates the potential
Vp(ap, r) of Eq. (16). It can be easily shown that the
dressed potential Vo is equivalent to the one created by
two Coulomb centers of charge Z =

—,
' situated at a dis-

tance R =2' ap. This is why Eq. (26) coincides with the
generalization of a formula derived by Bethe for the H2+
problem, where two nuclei of charge Z are located at
small internuclear separation R, and the aforementioned
values are given to these parameters.

The level shift Eq. (26} was derived from our high-
frequency limit theory at low intensities, to first order in
ao-I. As such, it should be identical to the result of
time-dependent perturbation theory, to second order in

, at high frequencies. It can be indeed shown that
this is the case. '

V, LARGE cxo LIMIT

We now analyze the large-ap features of the eigenvalue
problem. We shall show that at sufficiently large ao the
eigenfunction of any state splits into two practically
nonoverlapping parts (atomic dichotomy). To this end
we shall use here a consistency argument. ' In the fol-
lowing we denote P(r) =gp(r).

Let us assume that for a given (large) value of ap the
wave function P(r) is concentrated around the two end-
points +aoe of the linear charge distribution generating
Vp. Then P(r) has significant values only in the regions
of space characterized by (r /ap) « 1 and (r+ /ap) « l.
In these regions the potential Vp reduces to [see Eq. (8)]

Vp((xp r) —= Vp(ap, r ) for (r /ap) « 1

Vp(ap, r) = Vp(ap, ——r+) for (r+ /ap) «1, (27)

Vp(ap, r) = —(2/m)(2apr) '~2K sin— (29)

Note its overall r ' radial dependence and the non-
spherical symmetry.

According to our assumption, in the vicinity of the
endpoint +aoe the potential Vo can be replaced in the
eigenvalue equation [Eq. (5)] by the simpler form
Vp( ap, r ). Introducing now the scaled variables
g=ap ' r, the equation becomes

21/2
K sin+ u =Wu,

g
1 /2

where b,
' is the Laplacian with respect to the variables g.

Here u and W are related to P and E by

u(g)=CQ(ap~ /+ape), W=a~p~3E,

(30)

(31)

where C is some constant depending on the normaliza-
tion.

Equation (30) is independent of ap. A bound-state

where

Vp(ap, r) = —(2/m )(Zapr) '~ K(2 ' (1—r e)' ) . (28)

Designating by y the angle between r and e, the "end-
point potential, "Eq. (28), becomes

(square integrable) eigensolution u (g') essentially extends
over a finite region in the space of the variable g', and its
asymptotic behavior for g~ oo is dominated by the factor
exp[ —(2~ W~ )' g]. This means that the corresponding
P(r) has significant values only in regions for which
(r /ap)=(g/ap ) «1, and is exponentially small else-
where. A similar argument can be made for the region
around the endpoint —ape, characterized by (r+/ap)
=(g/ap'") « l.

This then confirms our starting assumption that indeed
(to lowest order in I/ap) the dressed potential Vp can
support eigenfunctions which are concentrated around its
end points +aoe and are vanishingly small in the rest of
space. At sufficiently large ao the conclusion is valid for
any bound state of Vp. This is what we mean by the di

chotomy of the atom; for the ground state it was illustrat-
ed in Fig. 1 of Ref. 6.

Note that Vp [Eq. (29)] still has axial symmetry al-

though no more parity, and hence the eigenvalues 8'wi11
depend only on

~
m~. To order the levels in each manifold

~m~ we need an extra label j. We shall therefore use for
the eigenvalues W the notation W~

~

(occasionally also
W, W, etc.). The eigenfunctions u depend however
on m, and will be denoted u J.

From Eq. (31) we find the large-ap scaling laws

—2/3
IJ 0 I IJ

(r) —=N J(ap)u~~(+ ap
' r+),

(32)

(33)

The values of the wave function P (r) throughout
space are interrelated by the parity condition. As is easi-
ly seen, a P 1 of well-defined parity P can be written in
the vicinity of both end points +ape in the form

P J(ap, r) —= (2ap) ' [ u J(ap ' r )

+( —1) u, ( —ap '~ r+)] . (35)

is normalized to 1 because the two terms in Eq. (35)
have a vanishing overlap integral, and we have imposed
Eq. (34). The fact that Eq. (35) contains two linearly in-
dependent wave functions corresponding to the same ei-
genvalue E~ ~~

(or W~ ~, ) shows that in the large-ap limit
we are dealing with a gerade-ungerade degeneracy. At
large but finite ap the energies E~ ~.(ap) of the two states

(ap, r) will become different, and we thus get a
gerade-ungerade level splitting. Let us consider this in
the following.

We first note than an exact eigenfunction of the mani-
fold [~m~, P], like P ~(r), also has a definite symmetry
with respect to reflections in the xy plane (i.e., a change
of z into —z). Indeed, these reflections can be obtained
by first performing reflections in the origin [which multi-
ply the original P J by ( —1) ], followed by rotations of
an angle m around e [which multiply P . by an extra
( —1) ]. Hence, by reflecting P in the xy plane its

where r lies either in the vicinity of +aoe or —aoe, re-
spectively. N j(ap } is a normalization constant for
P, (r), such that

(34)
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value gets multiplied by ( —I )

For our present purpose we shall call a function P
which is invariant at reflections in the xy plane (i.e., for
which m +P is even} "symmetric, " and "antisymmetric"
otherwise (i.e., m +P is odd). States like og, n „,and 5g
are "symmetric, " whereas o „, n.s, and 5„are "antisyin-
metric. " We shall use the notation gJ, Q "J, respectively,
and for the corresponding energies EI Ij,+I"

I

..
It will be shown in the Appendix that an estimate for

the gerade-ungerade level splitting is given by

E~"
~~ Ep —

~J
= A

~

~J(ao)exp[ —2(21IV( (J
I)' ~o ]

(36)
where A

~ ~J
(ao) is some positive, relatively slowly varying

function of ao at large ao.
Equation (36) shows that the gerade-ungerade splitting

of the levels decreases exponentially at large ao. It also
shows that at given ao the splitting is larger for the
higher-lying energy states (smaller

~ IV~ ~J ~ ), than for the
lower ones. Moreover, since A

~
~J(ao) is positive, the en-

ergy of the "symmetric" state lies below that of its "an-
tisymmetric" counterpart. Consequently, for each pair of
coupled states within the cr manifold we have E j & F. j,
within the ~ manifold E.J &E.J, and within the 5 mani-
fold EsJ &EfJ, etc.

From the coalescence of the gerade-ungerade energy
curves and from the noncrossing rule within each mani-
fold [ ~m~, PI it follows that at given ~m~, the lowest
"symmetric" energy curve (m+P even) pairs with the
lowest "antisymmetric" curve (m+P odd), the next
"symmetric" curve with the next "antisymmetric" curve,
and so on. One may inquire how the coalescent curves
behave at small ao, where they are labeled in terms of
(n, I). It is not difficult to see that, considering the i quan-
tum numbers available for each level of the unperturbed
hydrogen atom, at small ao the ordering of the
"symmetric-antisymmetric" pair is the same as at large
ao (i.e., the "antisymmetric" curve is above the "sym-
metric" one}, and that the n quantum number associated
to the "antisymmetric" curve of a pair is one unit larger
than that of the "symmetric" curve. The relation be-
tween the corresponding I quantum numbers is more in-
tricate, and follows from the low-ao ordering of the levels
established by Eq. (26).

Because of the underlying dichotomy, the large-ao lim-
it is in a way similar to the separated atom limit of a
homonuclear diatomic molecule. There are some basic
differences, however. In the molecular case the two
atoms can be physically separated, and the total energy
tends to the finite sum of the atomic energies; in our limit
complete separation cannot occur, and the energy tends
to zero, see Eq. (32). Related to this is the fact that our
endpoint wave functions u (ao ' r) spread out as ao
when ao increases, whereas for the separated atoms there
is no spread. Also, in the large-ao limit, because the end-
point potentials [Eqs. (27) and (28)] becoine stronger
when approaching the segment connecting them, the
electronic charge distributions around the endpoints will
be slightly shifted towards each other.

At given large ao, however, it is only the lower-lying

energy states, for which the spatial extension of the end-
point function u is small with respect to ao, which exhibit
dichotomy. There will always exist highly excited states
which do not have this behavior. These are the
Rydberg-type states (see end of Sec. III), for which the
wave function lies well outside the sphere of radius ao.
This indicates that at given ao the accuracy of Eqs.
(32),(35), and (36) is expected to decrease as we pass from
low-lying energy states to higher excited ones.

VI. NUMERICAL CALCULATION

The numerical solution of the eigenvalue problem Eq.
(5) was carried out by diagonalization of the Hamiltonian
matrix in an orthonormalized Gaussian basis, analogous
to the procedure used in structure calculations for dia-
tomic molecules (e.g., see Ref. 34}. However, a number
of specific features mentioned below distinguish our cal-
culation from the latter.

Each symmetry manifold I ~m~, P I was considered sep-
arately. Since the potential Vo is singular along the line
of charges (see Sec. II), we have distributed the centers of
the Gaussian basis functions g;(r) along this line, chosen
as the z axis. (This is in contrast to the current procedure
for diatomic molecules, where the Gaussians are centered
on the two fixed nuclei. ) Powers of x and y were included
in the y, (r) to be able to reproduce the correct azimuthal
angular dependence imposed by m. Finally the correct
parity P was incorporated from the start. Thus a typical
basis function has the form

y;(r)= x "y "exp[ —y;(x +y )]

XI (z —P;)'exp[ —y, (z —P;) ]

+ ( —I) '(z+P;)'
Xexp[ —y, (z+P;) ]I . (37)

U SU=s, (38}

where s is the diagonal, real matrix containing the eigen-

The first step in the computation was to generate ma-
trices in this basis: the symmetric overlap matt'ix

SJ=(y;~yJ ) (needed for the orthogonalization of the
basis), and the Hamiltonian matrix H; = (y; ~H~yJ ). The
overlap matrix and the kinetic energy matrix I(, .

= (y, /Pity, ) were calculated from known analytic ex-
pressions. The computation of the matrix elements of
Vo is more cumbersome. For this we have used the in-
tegral representation of Vo [Eq. (7)] in terms of the
Coulomb potential of shifted origin

V(r+aoe sing) = —~r+aoe sing~

since the matrix elements of the latter are known analyti-
cally. We are then left with the one-dimensional in-
tegration over g; this was evaluated numerically using an
adaptive quadrature.

Once we have calculated the Hamiltonian and the
overlap matrices we can go over to an orthonormal basis,
by the so-called "canonical" orthogonalization pro-
cedure. Let U be the orthogonal matrix diagonalizing S
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values s, (s; &0). It can be shown that the set of new
functions X,'=g„X„;X„,where X„;=U„;s; '~ form an
orthonormal basis. Hence the transformed matrix

H~=X HX, (39)

with matrix elements H,J
= (X'; ~K~X' ), can be diagonal-

ized by standard procedures. Its eigenvectors can be ex-
pressed 6nally in terms of the original Gaussian basis
functions X, . The advantage of the canonical orthogonal-
ization procedure is that numerical difficulties arising
from the occurrence of near-linear dependence in the
Gaussian set (i.e., some of the eigenvalues s; are close to
zero) can be handled appropriately.

The diagonalization of H poses no special difficulties.
It leads to a number of lower-lying eigenvalues within
each symmetry manifold, which are approximations
(upper limits) to the true eigenvalues of the problem.
How good they actually are depends on the choice made
for the parameters P, and y, contained in Eq. (37). To
achieve convergence towards the best possible result is a
more difficult task, and was done by varying the P;,y, in
the vicinity of an appropriately chosen set P;,y;. (This is
another feature contrasting our computation from the
ones done for diatomic molecules. )

If all P;,y; were allowed to vary simultaneously, we
would end up with too large a number of parameters to
be able to handle in the optimization problem. We have
therefore adopted a procedure currently used in quantum
chemistry calculations: if several basis functions of the
same type [i.e., having common I;, see Eq. (37)] are locat-
ed at the same point (i.e., have a coinmon P;), we have
chosen the exponents y; in a geometric progression with
as ratio some number M(l;), such as to reduce the
difficulties caused by near-linear dependence. Since we
have on the average some five functions of the same type
on each center, this limits considerably the number of
variables to be optimized. Eventually, only a few of the
y; were allowed to vary simultaneously.

A nonhnear optimization of the energy was then per-
formed by applying an automatic minimization routine.
This calculates the gradient of the energy numerically in
the vicinity of the chosen (P;,y, ) [the diagonalization
problem is carried out anew for each value of the
(P;,y; )], and determines the direction of steepest descent.
The procedure was iterated until convergence within the
accuracy desired was achieved.

With all these restrictions, there still remains consider-
able freedom in choosing the basis functions Eq. (37), e.g,
their total number, the number located on each center,
and the values of the l;. The adequacy of the choice
made was checked by varying these features independent-
ly, and considering the effects on the energy and by in-
spection of the graphical representation (smoothness, sta-
bility) of the eigenfunctions.

We have investigated the four symmetry manifolds o',
cr „, ns, and . n„for v. alues of ao ranging from 0 to 200.
Due to the fundamental importance of the hydrogen
atom problem we have deemed it worthwhile to carry out
a very accurate computation. Up to ten different centers
and a maximal number of 100 basis functions were used
to obtain the lowest lying level in each symmetry class to
Sve signi6cant figures for the 0. states and to four 6gures
for the m states. The accuracy for the excited states is
somewhat lower.

VII. RESULTS AND DISCUSSION

A. Energy eigenvalues

The numerical results of our computation of the eigen-
values, grouped according to their symmetry manifold

t ~
m ~, P ], are given with all relevant digits in Tables

I—IV. In order to facilitate the discussion we have also
displayed them graphically in Fig. l. [The solid curves
E(ao) in the figure were obtained by interpolation from
the values in the tables; however, the curves were drawn
only up to a0= 100.]

TABLE I. Energy (in a.u. ) of the lower-lying cr, states of hydrogen as function of ao (in a.u.).

ao

0
1

2
3
4
5
7

10
15
20
30
40
50
60
70
85

100
200

1$

—0.5
—0.402 37
—0.31974
—0.266 20
—0.229 17
—0.201 96
—0.164 43
—0.13009
—0.098 136
—0.079 869
—0.059 703
—0.048 808
—0.041 883
—0.037 000
—0.033 335
—0.029 236
—0.026 182
—0.016402

2$

—0.125
—0.1119
—0.099 23
—0.090 20
—0.08406
—0.080 99
—0.082 25
—0.082 21
—0.074 72
—0.066 26
—0.052 79
—0.043 46
—0.036 92
—0.032 18
—0.028 59
—0.024 74
—0.021 84
—0.013 53

3d

—0.055 56
—0.055 92
—0.057 20
—0.059 73
—0.063 25
—0.065 75
—0.062 83
—0.05491
—0.045 36
—0.039 50
—0.038 56
—0.035 49
—0.032 14
—0.029 11
—0.02644
—0.023 13
—0.020 23
—0.01202

3$

—0.055 56
—0.051 58
—0.047 53
—0.044 52
—0.042 34
—0.040 93
—0.039 66
—0.038 39
—0.037 29
—0.037 94
—0.030 61
—0.025 59
—0.023 89
—0.023 14
—0.022 09
—0.020 34
—0.018 29
—0.011 12

4d

—0.031 25
—0.031 41
—0.031 95
—0.033 01
—0.034 29
—0.034 99
—0.033 94
—0.030 97
—0.027 50
—0.027 92
—0.025 43
—0.023 96
—0.022 06
—0.01953
—0.017 57
—0.01625
—0.015 22
—0.01032
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TABLE II. Energy (in a.u. ) of the lower-lying o „states of hydrogen as function of ao (in a.u. ).

0
1

2
3
4
5

7
10
15
20
30
40
50
60
70
85

100
200

2p

—0.125
—0.132 59
—0.145 87
—0.151 49
—0.149 86
—0.144 70
—0.131 52
—0.11333
—0.091 428
—0.076 912
—0.059 125
—0.048 706
—0.041 860
—0.036 992
—0.033 326
—0.029 235
—0.026 179
—0.016402

3p

—0.055 56
—0.057 65
—0.060 33
—0.060 46
—0.059 19
—0.057 51
—0.054 42
—0.052 60
—0.054 45
—0.053 20
—0.046 63
—0.040 33
—0.035 30
—0.031 36
—0.028 22
—0.024 64
—0.021 82
—0.013 53

—0.031 25
—0.032 11
—0.033 09
—0.033 00
—0.032 39
—0.032 81
—0.035 08
—0.039 39
—0.038 03
—0.034 37
—0.030 14
—0.029 77
—0.028 25
—0.026 37
—0.02446
—0.021 93
—0.018 96
—0.01202

—0.031 25
—0.031 30
—0.031 35
—0.031 71
—0.032 13
—0.031 60
—0.030 21
—0.028 92
—0.028 04
—0.027 71
—0.027 73
—0.024 14
—0.021 29
—0.01978
—0.019 33
—0.018 36
—0.016 11
—0.011 16

5f
—0.02
—0.02044
—0.020 90
—0.020 83
—0.020 51
—0.020 83
—0.022 01
—0.023 49
—0.022 57
—0.021 22
—0.021 33
—0.020 23
—0.019 59
—0.018 89
—0.017 23
—0.015 23
—0.013 65
—0.01020

The E (ao) curves belonging to the same manifold form
a "correlation diagram" connecting the unperturbed
atom (ao=0) eigenvalues to their fully dichotomized
(large-ao) counterparts. For all ao the correlation curves
E(ao) obviously have to satisfy the noncrossing rule (see
Sec. III). Assuming m to be fixed at some convenient
value [large enough to satisfy Eq. (9)], the correlation
curves E(ao) then represent the dependence on the inten-
sity (strictly speaking on I' ), as this varies from zero to-
wards high values. The correlation diagrams of Fig. 1

resemble those encountered in the structure of diatomic
molecules, the internuclear distance R corresponding to
our ao, and the united and separated atom limits to our
unperturbed and dichotomized atom limits, respectively.

A general feature of the correlation curves E(ao) is

their global tendency to increase to zero at large ao
values. In some cases this increase is monotonical [e.g.,
(is)os, (2p)n.„],in others it may be preceded by extrema
[e.g. , (2s)os, (3d)os, (2p)o „]. In the range ao (40 the in-
crease is rather sharp for the lower states. It is quite
dramatic for the ground state (ls)o (not fully represent-
ed in Fig. 1), whose binding energy drops at a0=40 to
about —,', its value at a0=0 (iE(0)

~

=0.5 a.u. ). However,
for the higher excited states, which start at a0=0 with an
already small value of the binding energy, the increase is
much slower and takes place over large ao intervals.

The small-ao part of the correlation curves can be
compared with the analytic formula Eq. (26), derived
from perturbation theory. This can indicate under which
circumstances E(ao) behaves at small ao as a decreasing

TABLE III. Energy (in a.u. ) of the lower-lying m; states of hydrogen as function of ao (in a.u.).

ao

0
1

2
3

4
5

7
10
15
20
30
40
50
70

100
200

3d

—0.055 56
—0.055 72
—0.056 12
—0.056 53
—0.056 74
—0.056 63
—0.055 52
—0.052 52
—0.046 80
—0.041 74
—0.034 19
—0.029 02
—0.025 33
—0.020 37
—0.01604
—0.01004

—0.031 25
—0.031 31
—0.031 47
—0.031 59
—0.031 59
—0.031 44
—0.030 80
—0.029 44
—0.027 19
—0.025 69
—0.024 35
—0.022 71
—0.020 97
—0.017 89
—0.014 54
—0.009 068

5d

—0.02
—0.02003
—0.020 11
—0.020 16
—0.020 15
—0.020 25
—0.02049
—0.021 06
—0.022 18
—0.022 49
—0.020 33
—0.01800
—0.016 18
—0.014 38
—0.012 67
—0.008 524

5g

—0.02
—0.02000
—0.02003
—0.02008
—0.020 14
—0.02004
—0.01968
—0.018 94
—0.017 76
—0.016 88
—0.015 90
—0.015 34
—0.01508
—0.01341
—0.010 85
—0.007 792
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TABLE IV. Energy (in a.u. ) of the lower-lying ~„states of hydrogen as function of ao (in a.u.).

ao

0
1

2
3
4
5

7
10
15
20
30
40
50
70

100
200

2p

—0.125
—0.1214
—0.1141
—0.1062
—0.098 92
—0.092 40
—0.081 58
—0.069 58
—0.056 30
—0.047 64
—0.036 88
—0.03041
—0.026 07
—0.020 57
—0.01605
—0.01004

3p

—0.055 56
—0.054 51
—0.052 34
—0.049 97
—0.047 70
—0.045 61
—0.042 04
—0.038 01
—0.034 85
—0.033 49
—0.029 66
—0.026 22
—0.023 41
—0.019 19
—0.015 07
—0.009 064

4f
—0.031 25
—0.030 78
—0.030 85
—0.031 06
—0.031 35
—0.031 69
—0.032 79
—0.033 52
—0.031 32
—0.027 92
—0.022 98
—0.01967
—0.018 13
—0.01624
—0.013 68
—0.088 698

4p

—0.031 25
—0.030 71
—0.029 85
—0.028 80
—0.027 74
—0.026 73
—0.025 38
—0.023 43
—0.021 34
—0.020 61
—0.019 38
—0.018 77
—0.017 24
—0.01402
—0.01148
—0.008 169

W i
= —0.56094,

W~2= —0.46272 .
(41)

These we have used to draw the straight lines of slope
( ——', ) representing Eq. (32) in the logarithmic plot of Fig.
3. For the ground state the agreement with the comput-
ed values at a0=100 and 85 is quite good and represents
a check on both the computation and the asymptotic for-

repel each other at an avoided crossing characterizes the
breakdown of the approximate calculation. This appears
to be particularly severe within the rectangles connecting
the cr states (2s) and (3d), and the o„states (3p) and

(4p). '
The large ao beh-avior of the correlation curves can be

discussed in terms of the result of Eq. (32). Figure 3 con-
tains the comparison for the states (ls)os and (2s)crs
Since the W~ ~J

entering Eq. (32) are not known, we shall
assume this equation to be valid at a0=200 a.u. , and, by
inserting the numerical values of E~ ~,

(200) frotn Tables
I—IV, we extract the corresponding W~ -~ . We find

mula. In fact, the agreement extends to unexpectedly low
values of ao; for example at ao=30 the variance of the
two calculations is of the order of 2%. For the (2s)os
state the agreement sets in at larger values of ao,
reflecting the fact that dichotomy sets in later for excited
states, as mentioned at the end of Sec. V.

The gerade ungera-de sp/itting occurring at large ao can
be followed in Tables I—IV. In view of the results of Sec.
V and of the noncrossing rule for the energy curves, the
successive gerade and ungerade states of o, m., 5, etc. ,
type should coalesce in pairs at large ao. Thus, for the cr

type, the gerade states 1s, 2s, 3d, etc. , coalesce with the
ungerade states 2p, 3p, 4p, etc. , respectively, and for the m

type, the gerade states 3d, 4d, 5d, etc. , with the ungerade
ones 2p, 3p, 4f, etc. , respectively. This is clearly borne
out by the results of Tables I-IV. Furthermore, the "an-
tisymmetric" state (in the sense of Sec. V) of coalescent
pair has always higher energy than the "symmetric"

0.08 -i

-0.12495

004-

-0.12500

PQ -0.12505

0.02-

0.01
20

I ~ ~ ~ ~ I

50 100 200
—0.12510

0
a I ~ ~ ~ ~ I

0.005 0.010

ao (a.u. )
2

FIG. 2. The energies of the (2p)cr„and (2p)m„states at small
a& (in a.u.). The straight lines through the points are the predic-
tions of perturbation theory, see Eq. (40).

ao (a.u. )

FIG. 3. The ao dependence of the binding energy Eb = ~E~ of
the ground state (1s}erg and of (2s)o.g at large ao, on a logarith-
mic scale (in a.u. ). The drawn straight lines represent the
asymptotic law of Eq. (32), with an approximate W~~~, given by
Eq. (41).
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0.00

—0.02

B. Energy eigenfunctions

In view of the y dependence of the eigenfunctions
(r), we may write

(x,y, z) =e'
gi„&i (r, 8) . (42a)

—0.04 By setting y=0, we find

(x,O, z) =g~„&~ (r, 8) for x )0 . (42b)

—0.06

—0.08

0 20 40 60 80 100
O'.

O B.Ll.

FIG. 4. Large-a0 gerade-ungerade splitting of the eigenvalues
for the lowest-lying three o~ and cr„states. The o~ eigenvalues
are fully drawn, the O.„eigenvalues, dashed. The (n, 1) labels of
the states are as indicated. a0 and E are in a.u.

state, in agreement with Eq. (36). These statements are il-
lustrated in Fig. 4, which shows the pairwise coalescence
of the first three gerade and ungerade 0. states. Tables
I—IV and Fig. 4 also show that the coalescence sets in at
lower-ao values for the lower-energy states than for the
higher ones, in agreement with what was said at the end
of Sec. V.

At this point we would like to mention that the conuer-
gence of the iteration procedure of the high-frequency
theory, ' and, in particular, the validity of the high-
frequency limit Eq. (5), are favorably influenced by the
global decrease of the binding energies at large ao. The
exact Eq. (1) (or its equivalent Floquet version considered
in Refs. 2 and 3) describes the structure of the atom in a
field of given co and ao (or cv and I). From the mathemat-
ical point of view, the high-frequency iteration will apply
at any combination of to and aii (or to and I) such that the
condition, Eq. (9), is well enough satisfied. The decrease
of ~Eo(ao) ~

at large ao implies that at any given to, if we
choose I high enough that it will give a sufficiently large
ao, condition Eq. {9)will be satisfied for the ground state
and the theory applies. In fact, the condition can be
moderately well satisfied for already existing superintense
lasers. With to= 5 eV =0.18 a.u. and I =10.5 a.u. (corre-
sponding to the upgraded KrF* excimer laser of Ref. 16),
yielding ao=100, we have co/~EO(ao)~ —=7. The ioniza-
tion of atoms under experimental circumstances, howev-
er, differs somewhat from the idealized situation de-
scribed above; this will be discussed in Sec. VII C.

Thus; knowledge of Pi„&i (x,O, z) is sufficient to deter-
mine P~„&i (r) throughout space. Some of the

(x,O, z) functions are represented in Figs. 5 —7. The
xz axes define the horizontal plane in Figs. 5 and 6, and
the vertical axis gives the values of P~„&~ (x,0,z). In Fig.
7 the xz plane coincides with the plane of the figure, and
the values of P~„,~

(x, O, z) are represented in terms of lev-
el lines.

We first consider the distortion of the eigenfunctions
with increasing ao. In Fig. 5 this is given for the states
(Is)o~ and (2p)cr„, the first coalescent gerade-ungerade
pair of the cr type.

The case of the ground state wave function (Is)o ~ was
presented in more detail in Fig. 1 of Ref. 6. Note that the
wave function does not change sign and maintains its
value at reflections in the xz plane with respect to both
the x or z axes. This follows from the fact that it has
even parity (P =0) and is "symmetric" at reflections in

the xy plane (P +m =0), see Sec. V.
From both Fig. 5 and Fig. 1 of Ref. 6 it is apparent

that, with increasing ao, the wave function undergoes ra-
diative stretching in the z direction, following the elonga-
tion of the line of charges (length 2ao) generating the
dressed potential Vo (for the shape of the latter see Fig. 1

of Ref. 2). However, as ao approaches 20 a saddle ap-
pears, and by ao= 30 two pronounced maxima are
formed around the end points +aoe of the line of charges.
Beginning with ao=50, dichotomy sets in, and is com-
plete by a0=70. While splitting, the wave function also
becomes more diffuse around the endpoints (note the
change of scale in the pictures of Fig. 5 for growing ao}.
At large ao (e.g. , a0=200), the ground-state wave func-
tion attains a truly Rydberg-state size (some 2ao=400
a.u. linear extension).

In Fig. 5 we also show the parallel evolution of the
(2p)cr„eigenfunction. This can take both positive and
negative values, in such a way that it remains unchanged
at reflections in the xz plane with respect to the z axis,
and changes sign at reflections with respect to the x axis.
Both properties follow from the fact that it has odd pari-
ty (P =1) and is "antisymmetric" at reflections in the xy
plane (P +m = 1), see Sec. V.

The (2p}cr„and the (ls)oz wave functions are totally
unrelated at lower ao values (e.g., ao= 10). With increas-
ing ao dichotomy sets in in both cases, and is complete by
+0=100. By the time this happens the wave functions of
the two states become related according to Eq. {35),illus-
trating the fact that we are dealing with a gerade-
ungerade pair of states. The isolated peaks in the figures
for ao = 100 represent replicas of the ground-state
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eigenfun etio n of the end point potential Eq. (29)
[(2ap) ' u, (ap '~ r) in the notation of Sec. V].

The evolution with ao of the first gerade-ungerade pair
of the n type, (3d)ns and (2p)n„, is given in Fig. 6. The
(3d)n wave function changes sign at rellections in the xz
plane with respect to both x or z axes, whereas the (2p)n „
wave function changes sign at rejections with respect to
the z axis and retains its value at re6ection with respect
to the x axis. These properties follow from the corre-
sponding P and P+m values. Again, the shapes of the
two eigenfunctions are totally unrelated at values of ao
up to 50. It is apparent that dichotomy now sets in some-
where below a0=200, that is, at higher values than for
the lower-lying states (ls)o and (2p)o„, in agreement
with the remarks of Sec. V. However, by the time this
happens, the two wave functions become again related by
Eq. (35) and we are dealing essentially with replicas of the
u, eigenfunction of the end-point potential Eq. (29).

Figure 7 illustrates the behavior of the eigenfunctions
of the (2s)og and (3d)os states in the vicinity of the
avoided crossing of their energy curves E (ap) in the vi-

cinity of ao= 5, see the corresponding dashed rectangle in

Fig. 1. Whereas at arbitrary values of ao changes in the
form of the wave functions occur only over extended ao
intervals, in the present case the wave functions change
their shape rapidly within 1 a.u.

The (2s)a wave function evolves from the spherically
symmetric hydrogenic wave function R2p(r) at ap=O. A
remnant of this behavior is still seen to survive at a0=4,
e.g., the shape of the positive peak and the circular nodal

line around it (represented by the dashed line in Fig. 7).
As we pass the crossing point, however, deep minima ap-
pear on the z axis around z =+ap (tL.g., the case of
ap=6), and the resemblance is lost. The (3d)cr wave
function, on the other hand, evolves from the hydrogenic
wave function R32(r)P2(cos8) at ap=O, its angular
dependence being characterized by the Legendre polyno-
mial P2(cos8) which vanishes for cos 8= —,'. A remnant
of this behavior can still be seen at ap =4 (e.g., the quasis-
traight, although interrupted, nodal lines). Beyond ap=5
the shape is completely changed. Note that, because of
the strong interaction of the energy curves E(ap) around
the avoided crossing, the shape of each of the wave func-
tions below the value ao= 5 is not transmitted to the oth-
er one above this value.

The stable, high-frequency limit eigenfunctions we
have calculated and discussed pertain to the Kramers
frame of reference. Their form in the laboratory frame
can be obtained from Eq. (10).'

C. Experimental implications

The atomic structure we have been discussing so far
pertains to the high-frequency limit of our theory. In
fact, co will be finite no matter how large. As mentioned
in Sec. II, this can be taken into account by passing to the
second-order approximation of the theory, which allows
for atomic ionization. The latter manifests itself in the
fact that the eigenvalues become complex, i.e., there is a
shift and a broadening of the physical levels with respect
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to the values obtained here, and, at the same time, the
wave functions lose their square integrability while ac-
quiring diverging spherical waves. The latter yield the
decay amplitudes for the various channels of multiphoton
absorption. Nevertheless, the better the condition Eq. (9)
is satisfied, the closer the exact results will be to the ones
calculated here.

The energy spectrum of the photoelectrons depends on
the binding energy Eo(ao) of the initial (e.g. , the ground)
state of the atom at the time of emission, according to

E„=—
1 EO(ao}I+vcr (43)

[Recall that in our case one photon ionization, v= 1, is al-
ready possible, see Eq. (9}.] The decrease of the ground-
state binding energy ~EO(ao)~ with respect to its unper-
turbed value implies that the whole energy spectrum of
the ionized electrons at the time they are leauing the atom
is shifted towards higher energies than in the low intensi-
ty case. This is a prediction which can be compared to
experiment, if the empirical data are appropriately inter-
preted (see below). It contrasts with the findings from
multiphoton experiments performed in the infrared or
the visible at intensities up to 10 a.u. on noble-gas
atoms, e.g., see Refs. 39 and 40. (The fact that the
effective potential for the noble-gas atoms is not
Coulomb, as in our case, should not play a role in the fol-
lowing. ) Under those circumstances an increase of the
ground-state ionization potential occurs and the lowest-
energy ionization peak may be suppressed (see Ref. 41).
There is no contradiction with our results, however, since
the increase or decrease of ~EO~ will depend on co and I,
and our theory does not apply in their case [the frequency
condition, Eq. (9), is not satisfied]. Obviously, there can
be no suppression of ionization peaks in our regime.

Our formulas for the high-frequency ionization rates
[see Ref. 3, Eq. (18)] should be calculated from matrix
elements having as initial and final states, bound-state
eigenfunctions and continuum scattering solutions of Eq.
(5), respectively. A calculation of the transition rates ac-
cording to these formulas is now underway. The extreme
atomic distortion (radiative stretching and dichotomy) we
have found for the bound states will impose its signature
on the features of the ionization. Concerning the angular
distributions, interference oscillations are expected to ap-
pear due to the peculiar concentration of the electron dis-
tribution around the end points +aoe of the line of nu-

clear charge; small changes in ao in the vicinity of avoid-
ed crossings may induce large variations in the cross sec-
tions, due to the rapid change in the wave functions. The
total decay rates and lifetimes on the other hand will be
essential for assessing quantitatively the stability of the
atom at high frequencies, a problem which has not been
considered before.

The previous comments referred to predictions of our
high-frequency theory. We want to discuss now some of
its underlying assumptions and the extent to which they
are fulfilled in experiment.

As all (semiclassical) theories of stationary decay based
on the Floquet method, ours too uses a plane-wave
description for the radiation field. Obviously, this is an
idealized situation, only approximately realized in experi-

ment. What happens in practice is that high intensities
can be achieved only in the form of very short laser
pulses. Thus the amplitude of the laser pulse acting on
the atoms has a space and time variation, and, besides,
may vary from shot to shot (in an unknown way). Since
the linear extension of the laser pulse, as determined by
the focusing lenses, is larger than the wavelength of the
light, the variation of the amplitude over the size of each
particular atom can be disregarded and, therefore, in this
respect plane-wave results are satisfactory. On the oth-
er hand, if the time dependence induced by turning on
and off the pulse is too rapid, it may well happen that the
plane-wave results are not applicable. This difficulty can
be avoided if one assumes that the amplitude varies
sufficiently slowly ("adiabatically" ) during: (i) a light
period, so that the notion of frequency is still meaningful,
(ii) a typical period of the (classical) electronic motion, so
that the atom has time to adjust continuously to this vari-
ation, without making quantum transitions other than
those implied by multiphoton ionization. Under these
circumstances our plane-wave results for the eigenvalues
and eigenfunctions can still be expected to describe in-
stantaneously the situation, if we replace the constant
field amplitude by the slowly varying time function (on
the atomic scale) it actually is. To accommodate for the
existence of statistics in the photon beam would require a
reformulation of the present theory.

It has been pointed out by Lambropoulos that under
currently prevailing experimental conditions (infrared to
ultraviolet frequencies, nanosecond to picosecond pulses,
outer atomic shells) the electrons being ionized may not
have the chance to feel the high peak intensities at all, be-
cause they will have been ejected from the atom before
that. It should be emphasized that the situation is
different in the high-frequency regime we are studying,
because the ionization is slowed down. In fact we believe
that this is the best suited frequency regime to study the
effects of high intensities on the atom. In order that this
be the case, however, it is not sufficient that condition (9)
be satisfied only for the atom in the field at its peak inten-
sity [for which ~E (ao) ~

may indeed be quite small] but
rather for all its intermediate values during the rise of the
pulse, so that the atom is not ionized in the process. This
implies that, in fact, co should be large with respect to the
unperturbed value of the initial energy ~EO (0)~, corre-
sponding to I =O. To date there are no intense lasers at
frequencies satisfying Eq. (9) for the unperturbed ground
state (~EO(0)~=1 Ry), although considerable progress is

being made towards achieving high intensities at high fre-
quencies. This is why in order to observe the high-
frequency effects predicted here, for the time being one
could turn to ionization from excited (Rydberg} initial
states of high m. In this case the condition, Eq. (9), can
already be quite well satisfied at low intensities (ao—=0)
by the frequencies of the existing superintense infrared
lasers.

We now return to the practical possibility of observing
the high-frequency shift of the energy spectrum of the
ionized electrons, see Eq. (43), taking into account the
pulsed nature of the laser radiation. In most experiments
done in the past, the duration of the pulse was long
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enough (e.g., several picoseconds or longer) to allow the
electron to escape towards the detector while the pulse
was still on. Under these conditions the field amplitude a
should be considered as a function of r, slowly varying on
the atomic scale. The term e a (r)/4mc appearing in
Eq. (10) then acts as a "ponderomotive potential" for the
escaping electron, and is eventually entirely converted
into kinetic energy. In the case of the low-frequency ex-
perirnents done so far (e.g., Refs. 39 and 40), this kinetic
energy has a compensating effect on the increase of the
binding energy of the ground state due to the field. ' The
net result is that the detected electron energy spectrum is
shifted (practically} back to its low intensity position (i.e.,
as if the Eo(ao) in Eq. (43) had been equal to that for the
unperturbed initial energy). In our high-frequency case,
however, the effect of the increase in kinetic energy due
to the ponderomotive potential and the decrease of the
binding energy of the ground state are additive so that
the detected electron spectrum should be shifted towards
higher energies than predicted by Eq. (43).

On the other hand, more recently, ionization experi-
ments have been carried out with laser pulses short
enough (in the 100-fs range ' ) that they vanish before
the emitted electrons have had the time of leaving them.
In this case the energy peaks should indeed be located
around the positions predicted by Eq. (43).

and 1. This requires some comments. The function u

is a solution of Eq. (30) containing the endpoint potential
Eq. (29). For r ~~, u has the dominant behavior

Xexp[ —(2[&~ ~J()' ao ' r],
(A3)

where the C&'J ' are constants. Equation (A3) is obtained
by neglecting the potential asymptotically in Eq. (30).
The xy plane, over which the surface integral of Eq. (A2)
should be carried out, is located at a distance ap from the
end points kaoe. However, at distances of order ao (or
larger) from both end points, the potential Eq. (29) is a
bad approximation to the exact Vp and one may question
if our wave functions Eqs. (35) and (A3) are adequate.
That this is nevertheless the case for the purpose of es-

timating to dominant order the value of the surface in-

tegral, simply follows from the fact that the exponential
in Eq. (A3) can be obtained either from Eq. (5) or from
Eq. (30) by completely ignoring the existence of a poten-
tial in the area of interest.

For simplicity, we shall introduce in Eq. (35) the nota-
tion
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(E A Es)f ysey~dr
v

(A 1)

where V is an integration volume confined by the surface
X. Allowing V to extend over the entire space above
the xy plane (i.e., z )0), Eq. (Al) can be written as

(E A Es)f yseyAdr I f ps'
A

V x Bz
(A2}

where X now reduces to the xy plane, as the rest of the
confining surface does not contribute. We have taken
into account that P" vanishes in the xy plane.

This equation is exact. We want to apply it now to the
limiting case of large ao. As specific P .,P" we would
like to use the two forms P,. given by Eq. (35) for P =0

APPENDIX: GERADE-UNGKRADE SPLITTING

For two arbitrary solutions P J,P" of the Schrodinger
equation, Eq. (5), the following, well-known equation
holds (we drop the subscripts rn,j for a while}:

u (r}=au '~ u (ao '~ r ),
(A4)

u J( —r)=au ' u ~(
—ao ' r+) .

By inserting the P,P" of Eq. (35) into Eq. (A2), we find

where the upper signs hold for m even and the lower ones
for m odd (see Sec. V). Since u ( —r) is vanishingly small
for z )0, and u (r) is normalized to 1, see Eq. (34), the
left-hand side of Eq. (A5) is equal to (E" E) To- .
evaluate the right-hand side of Eq. (A5), we note that u

of Eq. (A4) has the form of Eq. (42a), see also Eq. (A3).
As a consequence, the surface integral in Eq. (A5) has the
value

(A6)

for both m even or odd. Equation (A5) thus becomes

E" Es= f f ' dxdy—. (A7}

The large-ap behavior of the integral can be obtained by
inserting the large-ao behavior of u from Eqs. (A3) and
(A4). We thus end up with the order of magnitude esti-
mate given in Eq. (36).

(E" F. )f [—u'(r)+u "(—r)][u(r)+u( —r)]dr
v

=—f [u'(r)+u'( —r)] [u(r)+u( —r)]dS,1, , 8
2 x Bz

(A5)
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