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Photon-antibunching and sub-Poissonian photon statistics
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It is shown by example that sub-Poissonian photon-counting statistics need not imply photon an-

tibunching, but can be accompanied by photon bunching, i.e., by the tendency of two photons to be
close together more frequently than further apart. Some comments on the relation between anti-

bunching and sub-Poissonian statistics are made.
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we can rewrite Eq. (l) for a stationary light field in the
form

P, (t, t+r) =K&I )'[]+A(r)],
because A, depends only on the time difference v and
&I(t)) is time independent. It is then apparent that
bunching, which implies that P(t, t+ ~) falls with increas-
ing r from r=0, occurs when A(0}& A(~), whereas anti-
bunching, which iinplies that P2 ( t, t +r ) rises with in-
creasing r from v=0, occurs when A,(0) (A,(r). The last
condition violates the Schwarz inequality for a field obey-
ing classical statistics, and therefore one can occur only
in a quantum field.

It is well known that the phenomena of photon anti-
bunching and sub-Poissonian photon-counting statistics
are manifestations of certain nonclassical states of lights,
i.e., states having no description in terms of electromag-
netic waves. Both these effects were first observed in the
process of resonance fluorescence from an atom, ' but
they have since been observed in other ways also.
Perhaps because the effects often tend to occur together,
there has been a widespread tendency in the literature to
mix them up or even to regard them as one and the same.
It is the purpose of this paper to emphasize that the two
efFects are distinct and need not occur together.

Let us first make clear what we mean. Photon bunch-
ing is the tendency of photons (or other particles) to dis-
tribute themselves preferentially in bunches rather than
at random, so that when a light beam falls on a photo-
detector more photon pairs are detected close together in
time than further apart. Antibunching is the opposite
effect, in which fewer photon pairs are detected close to-
gether than further apart. As was shown by Glauber,
when light falls on a photodetector, the joint probability
density P2(t, t +r) for detecting one photon at time t and
another one at later time t +~ is given by

P, (t, t +r) =K &Y:l(t)I(t +~):),
where K is a constant characteristic of the detector, I(t}
is the light intensity operator, and the operator product is
written in normal order and in time order. By introduc-
ing the normalized correlation function

By contrast, some authors have regarded negative
values of A, (0) as the signature of photon antibunching,
irrespective of the question whether A,(r) increases with r
from ~=0 or not. This leads to the somewhat strange
conclusion that A,(r)= —const represents antibunching,
even though the photodetection probability density
Pz(t, t+r) would then be independent of r, and would
not favor either short or long time intervals ~ between
photons. Nevertheless, this definition can be found in ar-
ticles reviewing the subject, although some authors have
given both definitions. '

On the other hand, from the probability ' p (N, t, t
+T) that the detector registers N photodetections in the
time interval from t to t + T, it may readily be shown that
for a stationary field

then

A(r)= gn e '"' —gn„gn—gn„

It follows that the sign of A,(r) is crucial in determining
whether &(b,N) ) exceeds &N) or &N) exceeds
& (b,N ) ), i.e., whether the photon-counting statistics are
super- or sub-Poissonian. A negative correlation function
A,(r) 0 for all r always implies sub-Poissonian statistics,
and this is also a signature of a nonclassical state.

It has been shown by Surendra Singh that in the pro-
cess of resonance fluorescence the photon-counting statis-
tics can be either super- or sub-Poissonian, even though
the photons always exhibit antibunching. In the follow-
ing we draw attention to the opposite phenomenon, that
the counting statistics can be sub-Poissonian when the
photons exhibit bunching in time.

Let us consider a plane, polarized electromagnetic field
in the Fock state

~ [ n ] ), in which the occupation number
nk, for the plane-wave mode k, s is zero unless k points in
some given direction and s =so. Hence the nonvacuum
modes can be labeled by the frequency suffix co. It is not
difficult to show from the definition, that if I(t) is the
photon density defined by
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A, (r) =
—,
' cos(co& —co2)r —l/n,

and from Eqs. (4) and (8),

((AN)) —(, N)=(N)
2 (cot co2)T/2

(8)

(9)

It follows that for a single occupied mode,

A, (r) = —l ln

so that the photon-counting statistics are necessarily
sub-Poissonian. However, there is no antibunching in
time because A(r) and Pz(t, t +r) do not depend on r and
long intervals are not preferred over short intervals. On
the other hand, if two modes of frequency co, and co& are
occupied with n„=n = ,'n, —then we find from Eq. (6),

It follows from this that for certain counting intervals,
such as T=2trl ~tot

—
co&~, the photon-counting statistics

are evidently sub-Poissonian. Yet A.(r) falls with increas-
ing ~ from ~=0, so that the photons are more likely to be
close together; they therefore exhibit short time bunching
rather than antibunching.

These considerations, although contrived, show that
sub-Poisson counting statistics need not be associated
with antibunching but can be accompanied by bunching.
Therefore, sub-Poisson statistics and antibunching are
distinct effects, and it is important that the definitions of
these phenomena not be confused.
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