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The applicability of multireference many-body perturbation theory is considered by numerically

investigating the practical convergence properties of a common variant. Perturbation energies

through 20th order are reported for BeH2 at geometries near the Be~H2 symmetric-insertion tran-

sition state and for BH in its equilibrium region. The recursive perturbation-theory equations are
solved using a computationally intensive, but conceptually simple, configuration-based algorithm.
In the study of diverse regions of molecular potential-energy surfaces, the difficulties involved in

selecting appropriate zeroth-order models, which consist of the choice of reference functions, orbit-
als, and zeroth-order Hamiltonian, are addressed. We also consider convergence-acceleration tech-

niques such as series resummation using Fade approximants.

INTRODUCTION

Many-body perturbation theory (MBPT) based on a
single reference (SR) has proven to be a powerful tool in

studying the electronic structure of molecules. ' It has
been applied with great success to a wide variety of prob-
lems. However, at practical levels of truncation it cannot
be profitably used for quasidegenerate problems, or when
there are important effects from several configurations.
This frequently occurs in the calculation of energies for
excited states and when treating the bond-breaking re-
gions of potential-energy surfaces (PES's). Infinite-order
coupled-cluster (CC) generalizations of single reference
MBPT resolve some quasidegenerate problems but not
all.

A natural solution to the shortcomings of SR-MBPT
has been the generalization to multireference (MR)
MBPT. The fundamental idea is that of an effective
Hamiltonian whose eigenvalues coincide with a subset of
the eigen values of the exact Hamiltonian. Several
different MR approaches have been proposed. The first
complete linked diagram theory was formulated by Bran-
dow. This approach employs a complete reference
space. This method has been applied by Stern and Kal-
dor and by Freed and co-workers. An incomplete refer-
ence MR-MBPT approach has been proposed and ap-
plied by Hose and Kaldor. Numerical comparison of
the various MR-MBPT approaches, however, has been
limited since most previous molecular studies have been
carried out to no more than third order (see Ref. 10
for an exception). As a result, the practical convergence
behavior of any of these methods (as opposed to

mathematical convergence) beyond low order is largely
unknown.

In this paper we discuss the convergence properties of
a common MR variant of Rayleigh-Schrodinger pertur-
bation theory (RSPT) that does not require a complete
reference space. ' ' Employing a MR generalization of
our earlier configuration-based SR algorithm, " we can
compute MR perturbation energies through arbitrarily
high order for cases in which the corresponding complete
configuration-interaction (CI) calculation can be per-
formed. Though this MR-RSPT procedure is computa-
tionally expensive due to inclusion of mutually cancelling
size-inextensive terms arising from different categories of
excitation, provided that all possible excitations are in-
cluded at any order, it should yield energies identical to
its MR-MBPT counterpart containing only size-extensive
terms.

Specifically, we present MR-MBPT results for BeH2 in

its Be~H2 symmetric-insertion transition state region.
This prototype multireference problem has been previ-
ously studied with single' and multireference CC (Refs.
13 and 14) methods, and with low-order MR MBPT. '

We also consider BH near its equilibrium geometry, and
we discuss divergent MR calculations on BH at several
stretched geometries and HzO along its symmetric 0—H
bond dissociation pathway. These BeH2, BH, and H20
results illustrate the difficulties in selecting a consistent
zeroth-order model (reference space, orbitals, and
zeroth-order Hamiltonian) that will lead to a rapidly con-
vergent series over an entire PES. In the process we will
investigate the nature of the so-called intruder state prob-
lern, and the use of convergence-acceleration techniques
such as series resummation using Pade approximants.
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THEORY
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(2)
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The MR-MBPT approach we adopt is a straightfor-
ward generalization of RSPT to multireference cases as
given by Lindgren. ' This yields an expansion based on
the Bloch equation, which provides a clear order-by-
order breakdown and is particularly suited to the algo-
rithm we use.

We introduce two projectors, P for the reference space
and Q for its orthogonal complement, '

[Q"',H ]p.=QVp

n"'p, =R, Vp, ,

[Q' ', H ]p =QVQ'"p~ Q"—'PVpj,

0' 'p =R Vn'"p —8 O'"Pvp.
J I J J J

[Q( ),H ]p, =QVQ' )p —Q"'PVQ("p Q( )P—Vp

(12a)
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(13a)
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(14a)

Q[3]p.=P.VQ' p. —P.Q PVQ p —P.Q' 'PVp

column of the effective Hamiltonian analogous to the
Hose and Kaldor treatment in MBPT and that of
Jeziorski and Monkhorst in the CC framework. '

Upon expansion we have

Inserting the above definitions into the Schrodinger
equation and projecting by P, we have

PH QqO=myO=ZqO . (5)

The effective Hamiltonian & will yield the exact energy E
when acting upon the model function g . Elements of the
effective Hamiltonian of any order can now be defined

a'"'= (y'la'"'ly'& = (y'IPHQ'" -"ly'& (6)

= &y', IPVQ(" "Ip, I-y,'&

where we have used H =H + V and adopt the following
Hamiltonian partitioning in the second-quantized formal-

(7)

ism:

H g fzzptp f~ h +g (ptllqt) h q+uz (8)
P t
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—guz ptq
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where the (I); are the set of orthonormal reference func-
tions, and the set of functions Ih) spans the orthogonal
complement. In intermediate normalization, we intro-
duce the wave operator Q, ' which takes a model func-
tion defined in terms of the model space [(I); I into the ex-
act wave function:

[Q(n) HO] gvn(n —1)p

(14b)

~, = Ih&RJ (hl RJ =(hlE,'—H'Ih) (16)

and rewrite the expressions for the elements of the
effective Hamiltonian & as

~(n) —(yOIPVQ(n
—

1)p IyO)
—(yOlpvgn(n —1)p Iy0)

n —1

y n' 'PVn'"- -"
p, , (isa)

m=1
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p (15b)

m =11=1

where R.=Q(E —H Q) ' is the resolvent operator'
associated with the jth reference configuration. These
equations can be evaluated diagrammatically, and have
been programmed and applied in some applications, '

however, the enormous number of diagrams even in
fourth order makes it difficult to evaluate high-order con-
tributions. We thus choose to evaluate these equations in
a configuration-based framework. "' '

We will use the inner-projected form of each resolvent
operator R~ corresponding to a reference j,

[Q,H ]P= VQP QPVQP—
or, by introducing the excitation operator y=Q —1,

(10)

[Q,H ]P=QVQP gPVQP . —

[when canonical self-consistent-field (SCF) orbitals are
used the Fock operator f simplifies to f~~

=e~ and

f~q =0]. Therefore, to obtain the elements of the effective
Hamiltonian & at any order (n), we need expressions for
0'" "p.. To obtain such expressions we use the Bloch
equation which can be derived from the Schrodinger
equation'

"pjlyj'&, g=lh&&hl,
~(n) —( yOI Vlh )~(n —1)

where

"ply &1 J J

For lower orders we will specifically have

a,("=(hln("p, Iy,'& = &hie, vp, ly,'),
~,("=R,(hl vip,'),

(17)

(18)

(20)

(21)
We use this equation to obtain expressions for Q'"'p .. WeJ
can accomplish this by right-multiplying the above equa-
tion by any p. and expanding order by order. This
scheme essentially defines a different reference for each (2) —

(gaol Vlh) ( (22)

where we used Eqs. (16) and (20) to obtain the last equa-
tion:
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Similarly for a( ' and &'; ' we have

d
a' '=RJ Va,' " . —g a'k"~'k", , V=(h~V~h}

k=1
(23)~(3)—( $0~ y ~h }~(2)

Following this scheme, a general expression for a'."' can
be derived:

n —1 d
(n) R V (n —1) ~ ~ (m)~(n —m)aj —

~
aj.

m =1k=1
(24)

(25)

MR-MBPT CONVERGENCE CONSIDERATIONS

Clearly, there is a certain neighborhood of convergence
associated with the series of wave operators in Eq. (15),
and this radius is critically associated with the choice of
H and E . If our zeroth-order approximations to the
energy and the wave function are outside this neighbor-
hood the series will diverge. Fortunately, in most cases
treated by SR-MBPT, the ground state is dominated by a
single configuration, i.e., the zeroth-order approximation
is adequate and one obtains reasonable results (the series,
however, is still likely to be only asymptotically conver-
gent). But when the ground state is populated by more
than a single configuration, then the above expansion can
diverge or converge only conditionally. Some of these
convergence problems can be overcome by using an unre-
stricted Hartree-Fock (UHF) reference especially for
molecules in their bond-breaking regions. However, in
such cases even high-order perturbed wave functions can
still be severely spin contaminated. ' ' What one intends
to do by using a MR approach is to construct a zeroth-
order approximation of the correct spin symmetry which
is within the neighborhood of convergence for its associ-
ated series. However, there are various difficulties in-
volved.

If we are to use finite-order MBPT (single or mul-
tireference) to construct PES's, then the rate of conver-
gence of the energy series should be comparable at all

geometries. Otherwise, for truncated series, different
fractions of the correlation energy will be recovered at
different geometries and, as a consequence, valid order-
by-order energy comparisons between points on the PES

In the expression for the a' s, the first term is what is
usually referred to as the principle part and the rest are
the renormalization parts. We can see from the above
equations that any a can be constructed from the previ-
ous ones in an iterative manner. "' When a'"' is con-
structed for all j=1,2, . . . , d, the effective Hamiltonian
of the next order can be evaluated and diagonalized to
obtain the contribution to the energy at that order.

The most time-consuming part of this algorithm is the
construction of Va in each iteration, which is basically a
matrix multiplication of the CI matrix times a vector. If
this multiplication can be carried out for a given exam-

ple, we can, in principle, construct the effective Hamil-
tonian up to any order.

cannot be made. (Infinite-order coupled-cluster methods
have less such difficulty. ) Therefore, since the SR-
MBPT series is generally either poorly convergent or
divergent outside the equilibrium region, its use for con-
structing meaningful PES's is quite limited.

One problem with developing a perturbation series
which is rapidly convergent everywhere on the PES is the
difficulty in selecting one zeroth-order model for use at
all geometries. While it is possible to pick a reference
space and orbitals which lead to a convergent series at
virtually every geometry, it is generally accepted that the
same reference space must be used for the entire PES to
yield consistent results (allowing the reference space to
vary as we move around the PES would lead to a bumpy
surface, and would hardly be acceptable for a rigorous
theory}. Unfortunately, adopting a fixed P and -Q-space
partitioning nearly always leads to the so-called intruder
state problem in at least some PES regions.

The intruder state problem arises whenever the eigen-
spectrum of the exact effective Hamiltonian % does not
pmoothly evolve from the zeroth-order eigenspectrum
%( ' as the perturbation A. is varied from 0~1 where
&=&' '+kP")+ 'A, &' '+ .— In such cases, Schu-

can and Weidenmiiller demonstrated that an order-by-
order expansion of the perturbation series will diverge
due to the overlap of the P and Q eigenspectrums. What
this implies for the construction of an everywhere conver-
gent MR-MBPT PES is that the eigenvalues of %( ' must
map into the lowest nz eigenvalues of H for every point
on the potential surface. In addition, if the perturbation
series is to be rapidly convergent over the entire PES then
the P and Q eigenspectrums should everywhere be well
separated. In practice, such a situation is very difficult to
achieve, because a particular reference that is important
at one geometry might not be very significant at another
and vice versa. Not surprisingly, this problem becomes
much worse as the size of the P space grows.

In addition to choosing the reference space, one also
has to select a set of orbitals, and as long as we insist
upon a diagonal resolvent operator, the choice of orbitals
is tied to the choice of H . If the matrix series for % is to
converge, then every matrix element in the series also has
to converge (since each element of the effective Hamil-
tonian is a function of all the elements of the lower-order
matrices [Eqs. (22) and (23)] divergence in one element
will eventually lead to divergence of the whole matrix}.
Consequently, every element of &(0) must be a good ap-
proxirnation to the corresponding element of %. In the
present framework, each column of gf' is constructed us-
ing a different reference function. Therefore, if we em-
ploy Hartree-Fock orbitals for a specific configuration,
these orbitals will typically form a good zeroth-order ap-
proximation for that configuration's column of &. How-
ever, the remaining columns will not necessarily be good
zeroth-order approximations and this may lead to series
divergence.

A better choice would be some sort of average orbitals
simultaneously optimized for all P-space configurations.
As we will demonstrate in the next section, orbitals ob-
tained from ionized SCF calculations where all active
electrons are removed appear to often be a more reason-
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able choice since a larger orbital energy gap is typically
found between the occupied and virtual orbitals leading
to a better separation of the P an-d Q-space eigenspec-
trums. Other promising orbital choices might be single-
state or state-averaged multiconfiguration self-
consistent-field (MCSCF) orbitals. The use of MCSCF
orbitals in a MR-MBPT framework necessitates the use
of a nondiagonal resolvent which typically requires sepa-
ration into a diagonal and off-diagonal part and is fol-
lowed by some infinite summation of the nondiagonal
terms. Such summations are routinely made in single
reference CC theory when non-Hartree-Fock reference
functions are chosen, e.g. Others use similar tech-
niques.

RESULTS AND DISCUSSION

a
CO

CLS
Le
4J
C

C4

-15.40

-15.42—

-15.44—

-15.46—

-15.48—

-15.50—

-15.52-

-15.54—

-15.56—

-15.58—

-15.60
2.4 2.5 2.6 2.7 2.8

State 2

2.9 3.0 3.1

As our first numerical test of MR-MBPT convergence
we investigate the C2„ insertion pathway of Be into H2.
This system has been previously studied using SR-
MBPT, ' low-order MR-MBPT, "CC methods with both
SR (Ref. 12) and MR variants, ' ' and full CI. ' Be has a
quasidegeneracy between its 2s and 2p orbitals. This, to-
gether with the near degeneracy of the 1o and lcm'„

configurations of H2 in its bond-breaking region, makes
this an interesting example. A 3s, 1p basis set on Be and
2s on H is used. ' The calculations are performed at the
three geometries previously considered

Geometry r (Be-Hz) r (H-H)

B
C

2.50
2.75
3.00

2.78
2.55
2.32

The lowest-energy state in all three geometries is the
82 state with electron configuration (lai, 2ai, 3a„lb2).

The next two lowest states are the 'AI configurations
(lai, 2ai, 3ai ) and (la i, 2ai, lb2) which we refer to as
states I and II, respectively. The SCF energy curves for
these two states cross near geometry 8 (Fig. 1).

The two 'A] configurations are chosen as reference
functions and three sets of MR-MBPT calculations are
performed employing SCF orbitals from the B2 and two
' A I states, respectively. Of the six ' A

&
MR-MBPT cal-

culations (three geometries, two orbital choices), only one
is found to be convergent (state I at geometry A). The
82 orbital choice and associated H =g; e;~i )(i

~
for

{i], the occupied restricted open-shell Hartree-Fock
(ROHF) 82 orbitals, and {s; },the associated orbital en-
ergies, which was previously used, ' leads to a convergent
series at all three geometries. This is consistent with our
argument for employing an unbiased orbital set (with
respect to any of the reference functions) presented in the
preceding section. However, at the separated limit
(Be+H2), this two reference P space will lead to diver-
gence, regardless of the orbital choice. This is because at
the separated limit, the exact eigenvalue corresponding to
the P-space configuration (lai, 2a, , lb2) lies in the Q-
space eigenspectrum. This illustrates our contention,
that, in general, no fixed P and Q-space partition-ing will

R(Be-H,) (a.u.)

FIG. 1. SCF energies for the lowest ' A I states of BeH2.

lead to a PES which is everywhere convergent. This is an
inherent problem with using MR MBPT built upon
effective Hamiltonians. A single but multiconfigurational
reference method, one form of which has been considered
in an approximate CC method, ' ' does not have this

problem since there can be no intruder states. MR-CI
methods also use a single but rnulticonfigurational refer-
ence, so convergence is generally not hurt by enlarging
the reference space.

The convergence behavior of the B2 orbital calcula-
tions is detailed in Tables I-III where the order-by-order
MR perturbation energies and their corresponding "stair-
case" Pade approximants are listed for states I and II at
geometries A, B, and C, respectively. All three calcula-
tions converge at comparable rates. The resurnmed series
constructed from Fade approximants to each eigenvalue
series do not converge appreciably faster except for state
II at geometry A. Though a reasonable MR-MBPT PES
cannot be constructed using this zeroth-order model
these BeH2 calculations demonstrate that within a local
region MR-MBPT can be used to compute ground- and
excited-state energies which are not amenable to SR
treatments.

Next we consider double g plus polarization (DZP)
BH at several different geometries (R =2.329 a.u. , 1.5R,
2.0R, and 5.0R). Although a number of different orbital
choices and configuration-space partitionings were tried,
we were unable to find a unique reference space and or-
bital choice (i.e., the same zeroth-order model) which
leads to a convergent MR-MBPT series at all four
geometries. We were able, however, to find a different
zeroth-order model at each geometry for which the per-
turbation series would converge.

To illustrate the importance of choosing the proper or-
bitals, we report MR-MBPT calculations on BH at its
equilibrium geometry (1.0R) using two different sets of
orbitals: ground-state SCF orbitals for neutral BH and
for BH + where all active orbitals are unoccupied. The
reference space consists of the three configurations
I[a, , a, ,a, ], II[a „a,,b, ], and III[a, ,a, ,bz] (note that
C2„symmetry group is used) with the highest weight in
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TABLE I. MR-MBPT results for states I and II of BeH& at geometry A.

State I State II
Order

1

2
3

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

En EFull CI

0.127 375'
0.026022
0.021 263
0.009 112
0.003 619
0.003 685
0.001 951
0.001 097
0.000695
0.000096
0.000 132
0.000204
0.000029

—0.000062
—0.000082
—0.000041

0.000025
0.000009

—0.000037
—0.000038

EPade(n) EFull CI

[1,0]=0.025 350
[1,1]=0.021 028
[2,1]=0.027 470
[2,2]= —0.004 680
[3,2]=0.005 547
[3,3]=0.001 739
[4,3]=0.000 818
[4,4]= —0.001 200
[5,4]= —0.003 552

[5,5]= —0.001 391
[6,5]= —0.000025
[6,6]= —0.000048
[7,6]=—0.000 122

[7,7]=0.000 110
[8,7]= —0.000 135

[8,8]= —0.000063
[9,8]= —0.000053
[9,9]=0.000 016
[10,9]= —0.000 011

En EFull CI

0.102 692
0.019761
0.000 863

—0.000 660
0.000989
0.001 043

—0.000097
—0.000 561
—0.000 131

0.000 307
0.000250

—0.000084
—0.000227
—0.000066

0.000 116
0.000 101

—0.000031
—0.000091
—0.000028

0.000052

EPade(n) EFull CI

[1,0]=0.019316
[1,1]= —0.004 714
[2,1]=—0.000 805
[2,2]=0.003 714
[3,2]=0.000 910
[3,3]= —0.000 177
[4,3]=0.000 046
[4,4]=0.000008
[5,4]=0.000025
[5,5]=0.000062
[6,5]=0.000031
[6,6]=0.000022
[7,6]=0.000 228
[7,7]= —0.000 002
[8,7]= —0.000 004
[8,8]= —0.000009
[9,8]=—0.000005
[9,9]= —0.000004
[10,9]=0.000000

'All energy differences in a.u.
Order-by-order energies used in the Fade approximant calculations were assumed to be accurate to eight decimal places. However,

energy variances by up to 1X10 ' led to Fade approximant standard deviations greater than 1X10 for two values and both varied
in the sixth decimal place.

TABLE II. MR-MBPT results for states I and II of BeH2 at geometry B.

State I State II
Order

1

2
3

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

En EFull CI

0.114223'
0.028 961
0.016 192
0.007 971
0.004 673
0.002 340
0.001 079
0.000 526
0.000253
0.000 120
0.000026

—0.000022
—0.000033
—0.000029
—0.000022
—0.000017
—0.000013
—0.000009
—0.000005
—0.000002

EPade(n) EFull CI

[1,0]=0.028 487
[1,1]=+0.013944
[2,1]= —0.007 877
[2,2] =0.002071
[3,2]=0.000 264
[3,3]= —0.000 888
[4,3]= —0.000 319
[4,4]= —0.000 077
[5,4]= +0.000010
[5,5]= —0.000 045
[6,5]= —0.000 065
[6,6]= —0.000 058
[7,6]= —0.000 148 "'

[7,7]=0.000330 ' '

[8,7]= —0.000064 "'
[8,8]=0.000011
[9,8]=+0.000 005
[9,9]=0.000056 ' '

[10,9]= —0.000004

En EFull CI

0.119489
0.025 225
0.004219

—0.000060
0.000 808
0.000716
0.000 180

—0.000086
—0.000028

0.000076
0.000043

—0.000032
—0.000052
—0.000023

0.000004
0.000005

—0.000004
—0.000007
—0.000002

0.000002

EFade(n) EFull CI

[1,0]=0.024 647
[1,1]= —0.001 804
[2,1]= —0.001 155
[2,2]= —0.002 004
[3,2]=0.000718
[3,3]=0.000 373
[4,3]= —0.000 257
[4,4]=0.000049
[5,4]=0.000062
[5,5]=0.000 051
[6,5]= +0.000000
[6,6]= —0.000 052
[7,6]= —0.000 025
[7,7]=—0.000 005
[8,7]=—0.000008
[8,8]= —0.000 006
[9,8]= +0.000 000
[9,9]= +0.000000

[10,9]= —0.000002+ '

'All energy differences in a.u.
Order-by-order energies used in the Pade approximant calculations were assumed to be accurate to eight decimal places. However,

energy variances by up to 1X 10 led to Fade approximant standard deviations greater than 1X 10 for five values: those labeled
(1), (2), and (3) varied in the sixth, fifth, and fourth decimal places, respectively.
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TABLE III. MR-MBPT results for states I and II of BeH2 at geometry C.

State I State II
Order

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

En EFull CI

0.122 419'
0.034 680
0.013626
0.004 238
0.002 377
0.000 605
0.000 358

—0.000028
0.000027

—0.000023
—0.000011
—0.000032
—0.000023
—0.000015
—0.000007
—0.000005
—0.000004
—0.000002

0.000000
0.000000

EPade( n j EFull CI

[1,0]=0.034 181
[1,1]=0.006978
[2,1]= —0.003 388
[2,2] =0.001047
[3,2]=0.000 375
[3,3]= —0.000 399
[4,3]= —0.000 159
[4,4] =0.000 132
[5,4] =0.000008
[5,5]= —0.000331 "'
[6,5]= —0.000 031
[6,6]= —0.000 026
[7,6]= —0.000 040
[7,7]=0.000028
[8,7]=0.000012
[8,8]=—0.000018 "'
[9,8]=—0.000004 "'
[9 9]=Q 000009 ' '

[10,9]= —0.000 001

En EFull CI

0.104 101
0.021 167
0.006 136
0.004 208
0.003 458
0.001 731
0.000492
0.000 140
0.000 155
0.000 133
0.000024

—0.000032
—0.000028
—0.000005
—0.000003
—0.000008
—0.000009
—0.000004

0.000000
0.000000

Epade(n) EFull CI

[1,0]=0.020719
[1,1]=0.002 809
[2,1]=0.003 922
[2,2]=0.003 509
[3,2] =0.004225
[3,3]=0.002 316
[4,3]= —0.000 011
[4,4]=0.000 078
[5,4]=0.000032
[5,5]=0.013883 ' '

[6,5]= —0.000 010
[6,6]= —0.000 039
[7,6]= —0.000 029
[7,7]= —0.000010
[8,7]= —0.000 008
[8,8]= —0.000 013
[9,8]=0.000 010
[9,9]= +0.000002

[10,9]= +0.000 001

'All energy differences in a.u.
Order-by-order energies used in the Pade approximant calculations were assumed to be accurate to eight decimal places. However,

energy variances by up to 1X10 led to Pade approximant standard deviations greater than 1X10 for five values: those labeled

(1), (2), and (3) varied in the sixth, third, and fifth decimal places, respectively.

TABLE IV. Cumulative order-by-order MBPT results for the lowest three eigenvalues of BH.

Order

1 reference
Root 1

BH orbitals
Root 1

BH orbitals BH + orbitals

3 references
Root 2

BH orbitals BH + orbitals
Root 3

BH orbitals BH'+ orbitals

1

2
3
4
5

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

—25.125 260'
—25.198 988
—25.216 566
—25.222 567
—25.225 101
—25.226 322
—25.226 952
—25.227 284
—25.227 459
—25.227 549
—25.227 593
—25.227 615
—25.227 624
—25.227 627
—25.227 628
—25.227 628
—25.227 628
—25.227 628
—25.227 627
—25.227 627

—25.132441
—25.238 917
—25.211 613
—25.216 543
—25.223 101b

—25.053 718
—25.226 773
—25.227 123
—25.224 705
—25.227 382
—25.227 651
—25.227 407
—25.227 784
—25.227 760
—25.227 466
—25.227 505
—25.227 706
—25.227 712
—25.227 597
—25.227 568
—25.227 629
—25.227 664
—25.227 638
—25.227 606
—25.227 613

—24.839 052
—25.021 810
—25.016295
—24.987 981
—25.001 902b

—24.823 503
—24.994 624
—25.009 917
—25.002 883
—25.001 289
—25.004 032
—25.005 525
—25.004 990
—25.004 333
—25.004 433
—25.004 763
—25.004 815
—25.004 685
—25.004 635
—25.004 687
—25.004 726
—25.004 712
—25.004 689
—25.004 691
—25.004 703

—24.799 838
—25.138 268
—2.532 309

—24.755 780
—24.951 013
—24.973 125
—24.962 035
—24.956 349
—24.960 322
—24.964 326
—24.963 825
—24.961 863
—24.961 636
—24.962 680
—24.963 172
—24.962 760
—24.962 352
—24.962 470
—24.962 761
—24.962 787
—24.962 614
—24.962 540
—24.962 625

Full CI —25.227 627 —25.227 627 —25.227 627 —25.004 700 —25.004 700 —24.962 641 —24.962 641

'All energies in a.u.
Energies beyond fifth order {third order for root 3) are divergent and are not reported.
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FIG. 2. (a) SR- and MR-MBPT convergence behavior for the lowest eigenvalue of the effective Hamiltonian for BH. SCF orbital
results are not plotted beyond fifth order due to series divergence. (b) Comparison of MR-MBPT and Pade resummed MR-MPBT
convergence behavior for the lowest eigenvalue of the em'ective Hamiltonian for BH using ionized SCF orbitals.
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FIG. 3. (a) MR-MBPT convergence behavior for the second eigenvalue of the effective Hamiltonian for BH. SCF orbital results

are not plotted beyond fifth order due to series divergence. (b) Comparison of MR-MBPT and Fade resummed MR-MBPT conver-

gence behavior for the second lowest eigenvalue of the effective Hamiltonian for BH using ionized SCF orbitals.
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the ground-state full CI wave function. Configurations II
and III are degenerate in energy.

Effective Hamiltonian matrices up to the 20th order
were computed in both calculations. The corresponding
eigenvalues are listed in Table IV together with ground-
state SCF SR-MBPT energies. The MR-MBPT calcula-
tions using regular SCF orbitals were divergent beyond
fifth order for all three eigenvalues. However, when trun-
cated at low order, the &'"' eigenvalues for the lowest-
energy state were sufficiently close to the full CI results to
be misleading. The calculation using ionized SCF orbit-
als was convergent for all roots. It should be noted that
there is some potential ambiguity in assigning eigenvalues
to states in MR-MBPT since the energy ordering of such
states can interchange in different perturbation-theory or-
ders. To avoid a detailed consideration of the wave func-
tion in this initial study, the eigenvalue ordering was not
changed from that produced by the matrix diagonaliza-
tion routines.

In Fig. 2(a) the convergence behavior of the lowest-
energy eigenvalue of both the neutral and ionized SCF
orbital MR-MBPT calculations is displayed along with
the ground-state SR-MBPT energies [the neutral SCF or-
bital MR-MBPT series are truncated at fifth order in
Figs. 2(a) and 3(a) due to series divergence]. It is interest-
ing to note that while the SR series converges rapidly and
its MR counterpart diverges, the MR energies are better

through second order. The MR perturbation series using
ionized orbitals, in contrast, converges more rapidly than
the neutral orbital SR series albeit in a more erratic
fashion. Resumming the ionized orbital MR perturba-
tion series using [N, N] Pade approximants causes the
series to converge more slowly in low orders, but much
more rapidly beyond ninth order [Fig. 2(b)]. Figures 3
and 4 show the analogous MR results for the second and
third lowest-energy eigenvalues. Both ionized orbital
MR perturbation series show oscillatory convergence and
the convergence rate of both series is generally improved
via Pade resummation. These results and our previous
high-order MR-MBPT study on Be excited states' sug-
gest that MR-MBPT using an appropriate zeroth-order
model can be used to calculate excited-state energies for
isolated single points on PES's.

We also investigated the convergence of MR MBPT
along the symmetric 0—H bond-stretching pathway of
DZ water. As for BH, we attempted to find a zeroth-
order model which would be convergent everywhere
along the entire bond-breaking path, but were unable to
find one. In fact, we were only able to converge the MR-
MBPT series at one point (located in the equilibrium re-
gion) and for one zeroth-order model [four-electron com-
plete active space (CAS) reference space among the four
orbjtals required for bond breaking using quadruply ion-
ized SCF orbitals computed with the CAS space empty].
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FIG. 4. Comparison of MR-MBPT and Pade resummed MR-MBPT convergence behavior for the third lowest eigenvalue of the
effective Hamiltonian for BH using ionized SCF orbitals.



4720 S. ZARRABIAN, W. D. LAIDIG, AND RODNEY J. BARTLEl I 41

Though we feel it is likely that with more effort conver-
gent MR perturbation series can be constructed for other
points on the PES, we believe that it is extremely difficult
to define a zeroth-order model which would result in a
MR-MBPT PES which is everywhere convergent.

What can be done to improve the convergence proper-
ties of MR MBPT to allow construction of meaningful
PES's? One possible remedy is the resummation of the
perturbation series to improve its convergence. In this
study, we have already tried with mixed results one vari-
ant of this technique (using (N, N —1] and [N, N] Pade
approximants to resum the individual eigenvalue series).
We also tried two similar MR-MBPT convergence-
acceleration techniques: using Pade approximants to
resum each element of the matrix series separately before
diagonalization and using matrix Pade approximants to
directly resum the matrix series. Both techniques were
found to be less effective than applying Fade approxi-
mants directly to the eigenvalue series, (though the
difficulties involved in assigning the order-by-order eigen-
values to specific series are absent from these two tech-
niques). One potentially better way to overcome these
convergence difficulties is to add a constant to shift the
zeroth-order energy of one or all references. Such shifts
define an unperturbed Hamiltonian that is still diagonal
but that gives rise to a series expansion about a different

point within the series neighborhood of convergence. In
an upcoming paper ' the nature of such shifts and their
effect on series convergence will be presented. Similar
shifts to force degeneracy in the zeroth-order P space
have been used by Freed and co-workers in their low-
order MR-MBPT approach with good success. ~e will
report similar high-order results in a forthcoming paper
which does improve convergence.

Although some progress can doubtless be made using
categories of infinite summation to improve convergence,
for PES the fundamental problem with MR-MBPT or
MR-CC methods, ' ' ' ' for that matter, is the use of
an effective Hamiltonian. If even one state suffers from
an intruder, then other eigenvalues cannot necessarily be
obtained. For an individual state theory, single but
multiconfigurational approaches, by virtue of leading to a
single element for the energy, would be preferred, but no
rigorous size-extensive theory of this type is yet available.
Other approaches to the intruder state problem are also
worthy of attention.
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