Eigenenergies and oscillator strengths for the Hulthén potential

Y. P. Varshni
Department of Physics, University of Ottawa, Ottawa, Canada K1N 6N5

(Received 4 December 1989)

Abstract

A detailed study of the bound-state properties of the Hulthén potential is presented. Accurate eigenenergies are obtained for the Hulthén potential by numerical integration of the Schrödinger equation. One-parameter variational calculations are carried out. The variational results are practically identical to the exact energies, except in the high-screening region. The critical screening parameter is calculated for various values of l for $n \leq 10$ by a numerical solution of the wave equation. The energy eigenvalues obtained by a variety of methods are compared and discussed. The variational wave functions are employed to calculate absorption oscillator strengths for $1 s \rightarrow 2 p, 1 s \rightarrow 3 p$, and $2 p \rightarrow 3 d$ transitions.

I. INTRODUCTION

The Hulthén potential ${ }^{1}$ is one of the important shortrange potentials in physics. The potential (in atomic units) is given by

$$
\begin{equation*}
\boldsymbol{V}(r)=-\boldsymbol{Z} \delta e^{-\delta r} /\left(1-e^{-\delta r}\right) \tag{1}
\end{equation*}
$$

where Z is a constant and δ is the screening parameter. If the potential is used for atoms, the Z is identified with the atomic number. This potential is a special case of the Eckart potential. ${ }^{2}$

The Hulthén potential has been used in nuclear and particle physics, ${ }^{3}$ atomic physics, ${ }^{4-6}$ solid-state physics, ${ }^{7,8}$ and chemical physics, ${ }^{9}$ and its bound-state and scattering properties have been investigated by a variety of techniques. ${ }^{10-31}$ Hulthén wave functions have been used in solid-state physics problems. ${ }^{7,32}$ Hulthén-like wave functions have found use in investigations on atomic problems. ${ }^{33,34}$ The Eckart potential has been investigated, ${ }^{35}$ and other extended versions of the Hulthén potential have also been proposed. ${ }^{36,37}$

A great advantage with the Hulthen potential is the fact that the Schrödinger equation for this potential can be solved in a closed form for s waves. ${ }^{1,5,14}$ For $l \neq 0$, a number of methods have been employed to evaluate bound-state energies. ${ }^{24-31}$ However, no "exact" values obtained from a numerical integration of the Schrödinger equation have been available to assess the accuracy of the various methods. We present such values in Sec. II of this paper and compare them with those obtained by several other methods. For a number of purposes it is convenient to have the wave function in an analytical form. Greene and Aldrich ${ }^{33}$ have given a method for generating pseudo-Hulthén wave functions for $l \neq 0$ states. In Sec. III we apply the variational method, using these wave functions to obtain energies for $l \neq 0$ states. Using only a single parameter in the wave functions, we are able to obtain energies that are almost equal to the exact energies, except in the high-screening region. We also suggest a modification for these wave functions and present the results for the $2 p$ level obtained from the
modified wave function. An important quantity of interest for the Hulthén potential (and for other similar screened potentials) is the critical screening parameter δ_{c}, which is that value of δ for which the binding energy of the level in question becomes zero. In Sec. IV we present values of δ_{c} for $n \leq 10$ obtained from a numerical solution of the Schrödinger equation. The eigenenergies obtained by various methods are compared in Sec. V. Using the analytical wave functions of Sec. II, we obtain expressions for the absorption oscillator strength for three transitions in Sec. VI and numerical results are presented for a few values of δ. Throughout this paper we shall take $Z=1$ and shall use atomic units in which $\hbar=m=e=1$.

II. NUMERICALLY DETERMINED EIGENENERGIES

Eigenenergies for the Hulthén potential were determined for certain values of δ for $n \leq 6$ and $l \neq 0$ by numerical integration of the Schrödinger equation using Numerov's method and a logarithmic mesh. The results are presented in column 3 of Table I, along with values obtained by several other methods.

The normalized probability density distribution [$r^{2} R^{2}(r)$] for the $3 p$ state for $\delta=0.025$ (low screening) and 0.15 (high screening) are shown in Fig. 1. It will be noticed that as δ increases, the density distribution tends to spread out to larger values of r, and the peak values are reduced. Analogous results were found for the static screened Coulomb potential by Rogers et al. ${ }^{38}$

It will be noticed from Table I that as δ increases the splitting between different l levels (for a given n) increases. For low values of the principal quantum number, the ordering of the levels is the same as in the case of the Coulomb potential, but as one goes to higher values of n, it is found that there is a considerable amount of level crossing in the vicinity of $E=0$. This effect is shown for $n=7$ and 8 levels in Fig. 2. At high values of n, the level ordering is quite complex. We shall return to this point when we consider δ_{c} in Sec. IV.

Patil ${ }^{26}$ has analytically investigated the behavior of the energy levels for the Hulthen potential near the critical
screening parameter and found that for $l \geq 2$,

$$
\begin{equation*}
E=\mathrm{const} \times\left(1 / \delta-1 / \delta_{c}\right)+O\left[\left(1 / \delta-1 / \delta_{c}\right)\right]^{2} \tag{2}
\end{equation*}
$$

in the vicinity of δ_{c}. It was of interest to examine the range of δ in which the above relation is applicable. Equation (2) indicates that a plot of $E /\left(1 / \delta-1 / \delta_{c}\right)$ versus ($1 / \delta-1 / \delta_{c}$) should be linear over the range of applicability. We made such plots for $n=7$ and $l=2,3,4$, 5 , and 6 . It was found that the linearity holds only over a
very small interval of δ. We estimate that this range is from δ_{c} to approximately $0.99 \delta_{c}$.

For s states, from the solution of the Schrödinger equation one can obtain

$$
\begin{equation*}
\frac{E}{E_{0}}=\left(1-\frac{\delta}{\delta_{c}}\right)^{2} \tag{3}
\end{equation*}
$$

where E_{0} is the energy for $\delta=0$. Thus there is a univer-

TABLE I. Eigenenergies as obtained by various methods. A negative sign before the energy has been omitted everywhere.

State	δ	Numerical integration	Variational [Eq. (7)]	Variational [Eq. (9)]	$\begin{aligned} & \text { Lai and Lin } \\ & \text { (Ref. 24) } \end{aligned}$	$\begin{gathered} \text { Patil } \\ \text { (Ref. 26) } \end{gathered}$	Tang and Chan (Ref. 29)	Matthys and De Meyer (Ref. 31)
$2 p$	0.025	0.1127605	0.1127605	0.1127605		0.11276		0.1127604
	0.050	0.1010425	0.1010425	0.1010425	0.101043	0.10104	0.1010424	0.1010425
	0.075	0.0898478	0.0898478	0.0898478		0.08985		
	0.100	0.0791794	0.0791794	0.0791794	0.079179	0.07918	0.0791794	0.0791794
	0.150	0.0594415	0.0594415	0.0594415		0.059445		0.0594415
	0.200	0.0418860	0.0418860	0.0418859	0.041886	0.041895	0.0418857	0.0418860
	0.250	0.0266111	0.0266108	0.0266100				
	0.300	0.0137900	0.0137878	0.0137838	0.013790			0.0137900
	0.350	0.0037931	0.0037734	0.0037534	0.003779	0.038375		
$3 p$	0.025	0.0437069	0.0437069		0.043707	0.0437085		0.0437071
	0.050	0.0331645	0.0331645		0.033165	0.033185	0.03316518	0.0331650
	0.075	0.0239397	0.0239397			0.0240165		
	0.100	0.0160537	0.0160537		0.016054	0.01622	0.01606772	0.0160537
	0.150	0.0044663	0.0044660		0.004466	0.046995		0.0044664
$3 d$	0.025	0.0436030	0.0436030		0.043603	0.0436025		0.0436030
	0.050	0.0327532	0.0327532		0.032753	0.032745	0.0327532	0.0327532
	0.075	0.0230307	0.0230307			0.02299		
	0.100	0.0144842	0.0144842		0.014484	0.01439	0.0144842	0.0144842
	0.150	0.0013966	0.0013894		0.001391	0.0013755		0.0013965
$4 p$	0.025	0.0199489	0.0199489		0.019949	0.01995		0.0199490
	0.050	0.0110582	0.0110582		0.011058	0.011075	0.0110725	0.0110583
	0.075	0.0046219	0.0046219		0.004622	0.0046585		0.0046224
	0.100	0.0007550	0.0007532		0.000754	0.000752		
$4 d$	0.025	0.0198462	0.0198462		0.019846	0.019845		0.0198462
	0.050	0.0106674	0.0106674		0.010667	0.01068	0.0106690	0.0106674
	0.075	0.0038345	0.0038344		0.003834	0.003875		0.0038346
$4 f$	0.025	0.0196911	0.0196911		0.019691	0.01969		0.0196911
	0.050	0.0100620	0.0100620		0.010062	0.010045	0.0100620	0.0100619
	0.075	0.0025563	0.0025557		0.002556	0.002557		0.0025563
$5 p$	0.025	0.0094036					0.0094087	
	0.050	0.0026490						
5d	0.025	0.0093037					0.0093050	
	0.050	0.0023131						
$5 f$	0.025	0.0091521					0.0091523	
	0.050	0.0017835						
$5 g$	0.025	0.0089465					0.0089465	
	0.050	0.0010159						
$6 p$	0.025	0.0041548						
$6 d$	0.025	0.0040606						
$6 f$	0.025	0.0039168						
6 g	0.025	0.0037201						

FIG. 1. $r^{2} R^{2}(r)$ vs r for the $3 p$ state for two values of the screening parameter. The solid-line curve is for $\delta=0.025$ (low screening) and the dashed-line curve is for $\delta=0.15$ (high screening).
sal relation between the reduced energy and the reduced screening parameter for s states. It was of interest to examine whether such a relationship is also valid for $l \neq 0$ states. In Fig. 3 we show E / E_{0} versus δ / δ_{c} for p states for $n=2$ to 8 , except $n=6$. It will be noted that while there is no universal curve for all n, the results for higher values of n rapidly approach an asymptotic curve.

FIG. 2. The energy eigenvalue as a function of δ for various values of l for $n=7$ (solid line curves) and $n=8$ (dashed-line curves) in the vicinity of $E=0$.

FIG. 3. The ratio E / E_{0} as a function of δ / δ_{c} for $2 p, 3 p, 4 p$, $5 p, 7 p$, and $8 p$ states. To avoid overlapping, $6 p$ state has not been shown and $7 p$ has been shown by a dashed-line curve.

III. VARIATIONAL CALCULATION

For $l \neq 0$ states, Greene and Aldrich ${ }^{33}$ have developed a method to generate pseudo-Hulthén wave functions. They replace

$$
\begin{equation*}
V_{H}(r)=-\frac{\delta e^{-\delta r}}{1-e^{-\delta r}}+\frac{l(l+1)}{2 r^{2}} \tag{4}
\end{equation*}
$$

by an effective potential
$V_{H}^{\mathrm{eff}}(r)=-\frac{\delta e^{-\delta r}}{1-e^{-\delta r}}+\frac{l(l+1)}{2}\left(\frac{\delta}{1-e^{-\delta r}}\right)^{2} e^{-\delta r}$.
For small δr, Eq. (5) is a good approximation to Eq. (4), and it has the advantage that the Schrödinger equation for this potential is solvable analytically. The resulting wave functions can be written in the form

$$
\begin{equation*}
\chi(r)=e^{-a \delta r} \sum_{i=0}^{\infty} C_{i}\left(1-e^{-\delta r}\right)^{i+l+1} \tag{6}
\end{equation*}
$$

where a and the C_{i} 's depend on the state. If δ is replaced by a variational parameter μ, wave functions of the form (6) can be expected to be a reasonable approximation for $l \neq 0$ states for the Hulthén potential. Greene and Aldrich ${ }^{33}$ used such wave functions for $l \neq 0$ states of the static screened Coulomb potential. Here we shall employ them for the Hulthén potential itself.

The unnormalized wave functions for the various states considered here are as follows:

$$
\begin{aligned}
& \chi_{2 p}(r)=e^{-a_{2} \mu r} S^{2}, \\
& \chi_{3 p}(r)=e^{-a_{3} \mu r}\left[S^{2}-\left(\frac{1}{2}+\frac{1}{6 \mu}\right) S^{3}\right], \\
& \chi_{3 d}(r)=e^{-a_{3} \mu r} S^{3}, \\
& \chi_{4 p}(r)=e^{-a_{4} \mu r}\left[S^{2}-\left(1+\frac{1}{4 \mu}\right) S^{3},\right. \\
& \left.+\left(\frac{3}{10}+\frac{1}{20 \mu}\right)\left[1+\frac{1}{4 \mu}\right] S^{4}\right], \\
& \chi_{4 d}(r)=e^{-a_{4} \mu r}\left[S^{3}-\left(\frac{1}{2}+\frac{1}{12 \mu}\right) S^{4}\right], \\
& \chi_{4 f}(r)=e^{-a_{4} \mu r} S^{4} .
\end{aligned}
$$

Here

$$
\begin{aligned}
& S=\left(1-e^{-\mu r}\right) \\
& a_{2}=\frac{1}{2 \mu}-1 \\
& a_{3}=\frac{1}{3 \mu}-\frac{3}{2}
\end{aligned}
$$

and

$$
a_{4}=\frac{1}{4 \mu}-2
$$

The variational energy is given by
$E=\frac{\int_{0}^{\infty} \chi\left[-\frac{1}{2} \frac{d^{2}}{d r^{2}}-\frac{\delta e^{-\delta r}}{1-e^{-\delta r}}+\frac{l(l+1)}{2 r^{2}}\right) \chi d r}{\int_{0}^{\infty} \chi^{2} d r}$
The integration of the second term in the numerator of (8) is, however, analytically not tractable. Hence the second derivative was obtained analytically and the integration was carried out numerically. The energies thus obtained are shown in column 4 of Table I and the best values of μ in Table II. The wave functions for the $3 p$ and $4 p$ states with the given values of μ are not exactly orthogonal to the wave function of the corresponding lower states, but the deviation is quite small except when δ is close to δ_{c}.

The difficulty concerning the analytic integration of the second term in the numerator of Eq. (8) can be avoided if we slightly modify the assumed wave function. This is

TABLE II. Best values of the parameters μ and β.

State	δ	μ	β
$2 p$	0.025	0.025004	0.024979
	0.050	0.050040	0.050001
	0.075	0.075140	0.075028
	0.10	0.100337	0.100092
	0.15	0.151192	0.150468
	0.20	0.203037	0.201518
	0.25	0.256595	0.253946
	0.30	0.313364	0.309228
	0.35	0.377907	0.371766
$3 p$	0.025	0.025011	
	0.050	0.050094	
	0.075	0.075333	
	0.100	0.100851	
	0.150	0.153820	
$3 d$	0.025	0.025030	
	0.050	0.050251	
	0.075	0.075901	
	0.100	0.102364	
	0.150	0.162638	
$4 p$	0.025	0.025021	
	0.050	0.050180	
	0.075	0.075726	
	0.100	0.102906	
$4 d$	0.025	0.025057	
	0.050	0.050438	
	0.075	0.077150	
$4 f$	0.025	0.025109	
	0.050	0.050924	
	0.075	0.079170	

achieved by multiplying the wave functions given in (7) by the factor $\left(1-e^{-\delta r}\right) /\left(1-e^{-\mu r}\right)$. This factor is almost equal to 1 and has only a small effect on the shape of the wave function. To examine whether the modified wave function gives satisfactory results, calculations were carried out on the $2 p$ state. Thus the unnormalized modified χ is

$$
\begin{equation*}
\chi(r)=e^{-a_{2} \beta r}\left(1-e^{-\beta r}\right)\left(1-e^{-\delta r}\right), \tag{9}
\end{equation*}
$$

where β is a variational parameter, similar to μ. The corresponding expression for the energy can be evaluated to be

$$
\begin{align*}
E= & {[(1-2 \beta)(1-2 \beta+\delta)(1-2 \beta+2 \delta)(1-\beta)(1-\beta+\delta)(1-\beta+2 \delta)(1+\delta)(1+2 \delta)] } \\
& \times\left\{4 \delta ^ { 2 } \beta ^ { 2 } \left[4 \delta^{4}+(-18 \beta+18) \delta^{3}+\left(-66 \beta+28 \beta^{2}+33\right) \delta^{2}+\left(-72 \beta+66 \beta^{2}+24-18 \beta^{3}\right) \delta\right.\right. \\
& \left.\left.+33 \beta^{3}-18 \beta^{3}+6-24 \beta+4 \beta^{4}\right]\right\}^{-1}-\left(\frac{1}{2}\right) \delta^{2} \beta^{2}\left[-4 \delta^{4}+(20 \beta-20) \delta^{3}+\left(22 \beta-20 \beta^{2}+3\right) \delta^{2}\right. \\
& \left.+\left(24+8 \beta^{2}+4 \beta^{3}-36 \beta\right) \delta+23 \beta^{2}-28 \beta-6 \beta^{3}+10\right] \\
& \times[(1-\beta)(1-2 \beta+\delta)(1-\beta+\delta)(1-\beta+2 \delta)(1+\delta)(1-2 \beta+2 \delta)(1+2 \delta)]^{-1} \\
& +(4 \beta-2 \delta-2) \ln (1-2 \beta+\delta)+(2 \beta-4 \delta-2) \ln (1-\beta+2 \delta)-(2 \delta+2) \ln (1+\delta) \\
& +(4 \delta-4 \beta+4) \ln (1-\beta+\delta)+(2 \delta-2 \beta+1) \ln (1-2 \beta+2 \delta)+(2 \delta+1) \ln (1+2 \delta) \\
& +(1-2 \beta) \ln (1-2 \beta)+(2 \beta-2) \ln (1-\beta) . \tag{10}
\end{align*}
$$

The energies obtained by minimizing this expression with respect to β are shown in the fifth column of Table I, and the corresponding values of β in Table II.

TABLE III. Critical screening parameter for various states of the Hulthén potential.

n	l	δ_{c} (Numerical)	δ_{c} [Patil, Eq. (12)]
1	0	2.000000	2.000000
2	0	0.500000	0.500000
2	1	0.376936	0.377367
3	0	0.222222	0.222222
3	1	0.186486	0.186017
3	2	0.157662	0.157990
4	0	0.125000	0.125000
4	1	0.110491	0.109826
4	2	0.097564	0.097256
4	3	0.086405	0.086727
5	0	0.080000	0.080000
5	1	0.072863	0.072275
5	2	0.066108	0.065616
5	3	0.059973	0.059838
5	4	0.054505	0.054790
6	0	0.055556	0.055556
6	1	0.051579	0.051105
6	2	0.047661	0.047169
6	3	0.043975	0.043670
6	4	0.040585	0.040547
6	5	0.037504	0.037747
7	0	0.040816	0.040816
7	1	0.038398	0.038024
7	2	0.035948	0.035508
7	3	0.033581	0.033234
7	4	0.031353	0.031172
7	5	0.029284	0.029296
7	6	0.027379	0.027584
8	0	0.031250	0.031250
8	1	0.029681	0.029385
8	2	0.028058	0.027681
8	3	0.026459	0.026122
8	4	0.024926	0.024691
8	5	0.023478	0.023374
8	6	0.022124	0.022160
8	7	0.020864	0.021038
9	0	0.024691	0.024691
9	1	0.023621	0.023384
9	2	0.022497	0.022179
9	3	0.021372	0.021064
9	4	0.020278	0.020031
9	5	0.019230	0.019072
9	6	0.018237	0.018180
9	7	0.017303	0.017350
9	8	0.016427	0.016575
10	0	0.020000	0.020000
10	1	0.019240	0.019049
10	2	0.018433	0.018165
10	3	0.017615	0.017340
10	4	0.016810	0.016571
10	5	0.016030	0.015851
10	6	0.015283	0.015178
10	7	0.014573	0.014546
10	8	0.013902	0.013953
10	9	0.013268	0.013396

IV. CRITICAL SCREENING PARAMETER

For the s states, δ_{c} is readily obtained from the expression for the energy to be

$$
\begin{equation*}
\delta_{c}=2 / n^{2} \tag{11}
\end{equation*}
$$

For $l \neq 0$ states, δ_{c} was calculated by numerical solution of the Schrödinger equation and the results for $n \leq 10$ are shown in Table III. For the sake of completeness, the results for $l=0$ are also shown, obtained from Eq. (11). Patil^{26} has obtained an approximate expression for the critical strength Z_{c}. In terms of δ_{c}, his equation can be written as

$$
\begin{equation*}
\delta_{c}=1 /(n \sqrt{2}+0.1645 l+0.0983 l / n)^{2} \tag{12}
\end{equation*}
$$

Values of δ_{c} obtained from this expression are also shown in Table III. It will be noticed that the results obtained from Patil's equation are in good agreement with the exact values - which is rather remarkable for such a simple equation.
The only other calculation of δ_{c} for the Hulthén potential is that of Popov and Weinberg, ${ }^{27}$ who have calculated $n^{2} \delta_{c}$ for a few states which have $l=n-1$ by perturbation series summation. Their values are in good agreement with the exact ones calculated here.

For s states, as Eq. (11) shows, $n^{2} \delta_{c}=2$. For $l \neq 0$ states, we show the product $n^{2} \delta_{c}$ as a function of n in Fig. 4. Points for the same l have been joined by lines. It

FIG. 4. $n^{2} \delta_{c}$ as a function of n. Points for the same l have been joined by lines. Tbe numbers on the right of the curves represent l values.

FIG. 5. Number of bound states n^{*} as a function of $1 / \delta_{c}$. The straight line represents a least-squares fit, Eq. (13).
will be noticed that in each case $n^{2} \delta_{c}$ increases with n and appears to approach an asymptotic value close to 2 .

In the order of decreasing δ_{c} values, the level order is as follows: $1 s, 2 s, 2 p, 3 s, 3 p, 3 d, 4 s, 4 p, 4 d, 4 f, 5 s, 5 p, 5 d, 5 f$, $6 s, 5 g, 6 p, 6 d, 6 f, 7 s, 6 g, 7 p, 6 h, 7 d, 7 f, 7 g, 8 s, 8 p, 7 h, 8 d, 7 i, 8 f$, $8 g, 9 s, 9 p, 8 h, 8 i, 9 f, 8 k, 9 g, 10 s, 10 p, 9 h, 10 d, 9 i, 10 f, \ldots$ It will be noticed that as one goes to higher levels there is an increasing departure from the ordering of levels in a Coulomb potential. This is a consequence of an increasing degree of crossover of levels, which was discussed in Sec. II.

The total number of states n^{*} which have negative energy at a given δ has been studied for the static screened Coulomb potential by Rogers et al. ${ }^{38}$ In Fig. 5 we show n^{*} as a function of $1 / \delta_{c}$ for the Hulthén potential. The distribution of points indicates a linear relationship and a least-squares treatment yields the following relation:

$$
\begin{equation*}
n^{*}=0.8029 / \delta_{c}+0.9018 \tag{13}
\end{equation*}
$$

Equation (13) can be used to calculate the number of states which are bound at a given δ, or one can calculate δ_{c} for a given n^{*}.

V. COMPARISON OF EIGENENERGIES

In this section we compare the results obtained by the various methods for the eigenenergies of $l \neq 0$ levels. Besides the results obtained in this paper, we shall consider the results obtained by four other methods. We briefly describe these four other calculations.

Lai and Lin^{24} expanded the Hulthén potential in a series in the form

$$
\begin{equation*}
V(r)=-(Z / r) \sum_{k=0}^{\infty} V_{k}(\delta r)^{k} \tag{14}
\end{equation*}
$$

By employing the Hellmann-Feynman theorem and the hypervirial theorems they were able to express the bound-state energies in a power series of the screening parameter δ. To improve the accuracy of the results, especially when δ is close to the critical screening parameter δ_{c}, they formed Padé approximants to the energy series. The results of Lai and Lin are shown in column 6 of Table I .

Patil's ${ }^{26}$ treatment is based on the fact that the Hulthén potential allows a strong-coupling expansion. He uses an interpolation for the bound-state energies which incorporates the required behavior near the critical strength Z_{c} and also has a strong-coupling expansion in conformity with the first few known terms of the strong-coupling expansion. Patil's values are given in column 7 of Table I.

Roy and Roychoudhury ${ }^{28}$ and Tang and Chan ${ }^{29}$ have applied the shifted $1 / N$ method of Sukhatme and collaborators ${ }^{39}$ to calculate energies of $l \neq 0$ states of the Hulthén potential. Roy and Roychoudhury ${ }^{28}$ have used two terms in their calculations, while Tang and Chan ${ }^{29}$ have used three terms. The results of the latter authors are shown in column 8 of Table I.

Matthys and De Meyer ${ }^{31}$ have studied the $l \neq 0$ states in the context of algebraic perturbation theory using an approach which is based on the Lie algebra of the group $\mathbf{S O}(2,1)$. They introduce a so-called tilting transformation that relates between physical states and the group states which constitute a basis of the relevant unitary irreducible representations of $\mathrm{SO}(2,1)$. It is shown that all the matrix elements of the energy functional can be expressed in closed form. Then the energy matrix, in which the unknown bound-state energies occur on diagonal as well as on off-diagonal positions, is numerically diagonalized by means of a Gauss-Seidel iteration scheme. The tilting parameter is adjusted in order to accelerate the convergence of the perturbation expansions. Column 9 of Table I shows the eigenenergies obtained by Matthys and De Meyer. ${ }^{31}$

Next we compare the various sets of results. A comparison of the eigenenergies obtained from the wave functions of Eq. (7) with the "exact" values shows that the two are almost the same except in the high-screening region. For the $2 p$ state the values obtained by the modified wave function, Eq. (9), are the same as those obtained from the unmodified one at low screening, but slightly inferior in the high-screening region. Amongst the four sets (columns 6-9 of Table I) of other workers, the results of Matthys and De Meyer ${ }^{31}$ are practically identical to the "exact" results. The next best results are those of Lai and Lin, ${ }^{24}$ which agree with the exact results to the number of significant figures quoted by these authors, except in 3 cases in the high-screening region. Next in accuracy in the low- and medium-screening regions are the shifted $1 / N$ expansion results of Tang and Chan, ${ }^{29}$ but no conclusion is possible for the highscreening region as Tang and Chan have not given any
results for such values δ. It has been found ${ }^{40}$ that the shifted $1 / N$ expansion gives poor results for the static screened Coulomb potential in the high-screening region and it is entirely possible that a similar situation may hold for the Hulthén potential.

VI. OSCILLATOR STRENGTHS

There has been no previous calculation of the oscillator strengths for the Hulthén potential. In this section we obtain results for the absorption oscillator strength for $1 s \rightarrow 2 p, 1 s \rightarrow 3 p$, and $2 p \rightarrow 3 d$ transitions by using the analytical wave functions of Sec. III. The absorption oscillator strength for the $n l \rightarrow n^{\prime} l^{\prime}$ transition is given by ${ }^{41}$
$f=\frac{2}{3} \frac{\max \left(l, l^{\prime}\right)}{(2 l+1)}\left(E_{n^{\prime} l^{\prime}}-E_{n l}\right)\left|\int_{0}^{\infty} \chi_{n l} r \chi_{n^{\prime} l^{\prime}} d r\right|^{2}$.
The normalization constants for the four required wave functions are as follows:

$$
\begin{align*}
& N_{1 s}=\left(4 / \delta^{2}-1\right)^{1 / 2} \tag{16a}\\
& N_{2 p}=\left[\frac{\left(1-\mu^{2}\right)\left(1-4 \mu^{2}\right)}{24 \mu^{4}}\right)^{1 / 2} \tag{16b}\\
& N_{3 p}=\left[\frac{2\left(4-9 \mu^{2}\right)\left(4-81 \mu^{2}\right)}{2187 \mu^{4}}\right]^{1 / 2} \tag{16c}\\
& N_{3 d}=\left[\frac{\left(1-9 \mu_{2}^{2}\right)\left(4-9 \mu_{2}^{2}\right)\left(4-81 \mu_{2}^{2}\right)}{196830 \mu_{2}^{6}}\right]^{1 / 2} \tag{16d}
\end{align*}
$$

In Eq. (16d), μ_{2} has been used for μ to distinguish it from the μ for the $2 p$ state in the expression for f for the $2 p \rightarrow 3 d$ transition. Following Shore and Menzel ${ }^{42}$ we

TABLE IV. Absorption oscillator strengths in atomic units for the Hulthén potential.

Transition	δ	f
$1 s-2 p$	0.025	0.4155
	0.050	0.4134
	0.075	0.4098
	0.10	0.4047
	0.15	0.3897
	0.20	0.3671
	0.25	0.3348
	0.30	0.2886
	0.35	0.2169
$1 s-3 p$	0.025	0.07834
	0.050	0.07600
	0.075	0.07196
	0.10	0.06600
	0.15	0.04633
$2 p-3 d$	0.025	0.6916
	0.050	0.6785
	0.075	0.6547
	0.10	0.6161
	0.15	0.4400

represent the transition integral by $I\left(n l, n^{\prime} l^{\prime}\right)$,

$$
\begin{equation*}
I\left(n l, n^{\prime} l^{\prime}\right)=\int_{0}^{\infty} \chi_{n l} r \chi_{n^{\prime} l^{\prime}} d r \tag{17}
\end{equation*}
$$

Using wave functions for the $2 p, 3 p$, and $3 d$ states from Eq. (7) and the exact wave function for the $1 s$ state, the transition integrals were evaluated and the results are as follows:

$$
\begin{align*}
I(1 s, 2 p)= & 768 N_{1 s} N_{2 p} \mu^{2} \delta \\
& \times\left(-243 \delta^{2}-1458 \mu^{2}-27 \delta^{4}+2187+3 \delta^{6}+32 \mu^{4} \delta^{2}-32 \mu^{6}-18 \delta^{4} \mu^{2}+288 \mu^{4}+36 \mu^{2} \delta^{2}\right) \\
& \times\left\{\left(9-\delta^{2}\right)^{2}\left[(3-\delta)^{2}-4 \mu^{2}\right]^{2}\left[(3+\delta)^{2}-4 \mu^{2}\right]^{2}\right\}^{-1} \tag{18}\\
I(1 s, 3 p)= & N_{1 s} N_{3 p}\left[\frac{p^{2}+9 \mu^{2} / 4+p}{\left(p^{2}-9 \mu^{2} / 4\right)^{2}}-\frac{p^{2}+\mu^{2} / 4+p}{\left(p^{2}-\mu^{2} / 4\right)^{2}}-\frac{q^{2}+9 \mu^{2} / 4+q}{\left(q^{2}-9 \mu^{2} / 4\right)^{2}}+\frac{q^{2}+\mu^{2} / 4+q}{\left(q^{2}-\mu^{2} / 4\right)^{2}}\right) \tag{19}
\end{align*}
$$

where

$$
p=-\frac{4}{3}+\delta / 2, \quad q=-\frac{4}{3}-\delta / 2
$$

and

$$
\begin{align*}
I(2 p, 3 d)=N_{2 p} N_{3 d}[& -\frac{6 p \mu_{2}}{\left(p^{2}-9 \mu_{2}^{2} / 4\right)^{2}}+\frac{6 p \mu_{2}}{\left(p^{2}-\mu_{2}^{2} / 4\right)^{2}}-\frac{10 \mu_{2}}{\left(\frac{25}{36}-9 \mu_{2}^{2} / 4\right)^{2}}+\frac{10 \mu_{2}}{\left(\frac{25}{36}-\mu_{2}^{2} / 4\right)^{2}} \\
& \left.-\frac{6 q \mu_{2}}{\left(q^{2}-9 \mu_{2}^{2} / 4\right)^{2}}+\frac{6 q \mu_{2}}{\left(q^{2}-\mu_{2}^{2} / 4\right)^{2}}\right] \tag{20}
\end{align*}
$$

where $p=-\frac{5}{6}+\mu$ and $q=-\frac{5}{6}-\mu$. In Eq. (20), μ refers to the $2 p$ wave function and μ_{2} to the $3 d$ function.
The calculated oscillator strengths are shown in Table IV. It will be noticed that for each of the transitions, as δ increases, at first there is a slow decrease, but near δ_{c} there is a rapid drop in the value of the oscillator strength.
${ }^{1}$ L. Hulthén, Ark. Mat. Astron. Fys. 28A, (5) (1942); 29B, (1) (1942).
${ }^{2}$ C. Eckart, Phys. Rev. 35, 1303 (1930).
${ }^{3}$ L. Hulthén and M. Sugawara, in Handbuch der Physik, edited by S. Flugge (Springer, Berlin, 1957), Vol. 39; K. Bhadra, H. Roy Choudhury, and V. P. Gautam, Ind. J. Phys. 48, 161 (1974); B. Durand and L. Durand, Phys. Rev. D 23, 1092 (1981); M. Mishra, S. N. Jena, and T. N. Tiwari, Pranama 32, 1 (1989); W. van Dijk, Phys. Rev. C 40, 1437 (1989).
${ }^{4}$ T. Tietz, J. Chem. Phys. 35, 1917 (1961); L. Durand III, Phys. Rev. 135, B310 (1964).
${ }^{5}$ C. S. Lam and Y. P. Varshni, Phys. Rev A 4, 1875 (1971).
${ }^{6}$ J. Lindhard and A. Winter, Nucl. Phys. A 166, 413 (1971); W. Buhring, ibid. 430, 1 (1984); R. Dutt, K. Chowdhury, and Y. P. Varshni, J. Phys. A 18, 379 (1985); C. S. Lai, Phys. Lett. A 112, 211 (1985); J. Lindhard and P. G. Hansen, Phys. Rev. Lett. 57, 965 (1986); B. C. Martin and R. J. Glauber, Phys. Rev. 109, 1307 (1958).
${ }^{7}$ C. S. Lam and Y. P. Varshni, Phys. Rev. A 6, 1391 (1972).
${ }^{8}$ A. A. Berezin, Phys. Status Solidi (b) 50, 71 (1972); J. D. Dow, Phys. Rev. Lett. 30, 903 (1973); C. S. Lam and Y. P. Varshni, Phys. Status Solidi (b) 89, 103 (1978).
${ }^{9}$ P. Pyykko and J. Jokisaari, Chem. Phys. 10, 293 (1975); J. A. Olson and D. A. Micha, J. Chem. Phys. 68, 4352 (1978).
${ }^{10}$ R. G. Newton, Scattering Theory of Waves and Particles (McGraw-Hill, New York, 1966), p. 421; A. G. Sitenko, Lectures in Scattering Theory (Plenum, New York, 1971).
${ }^{11}$ O. P. Bahethi and M. G. Fuda, J. Math. Phys. 12, 2076 (1971).
${ }^{12}$ B. I. Dunlap and L. Armstrong, Phys. Rev. A 6, 1370 (1972).
${ }^{13}$ G. Calucci and G. C. Ghirardi, Nuovo Cimento 10A, 121 (1972).
${ }^{14}$ S. Flügge, Practical Quantum Mechanics (Springer, Berlin, 1974).
${ }^{15}$ S. N. Banerjee, Nuovo Cimento 25A, 199 (1974).
${ }^{16}$ B. Talukdar, M. N. Sinha Roy, and D. Chattarji, Nucl. Phys. A239, 89 (1975).
${ }^{17}$ H. van Haeringen, Phys. Rev. A 18, 56 (1978).
${ }^{18}$ R. Dutt and Y. P. Varshni, J. Math. Phys. 24, 2770 (1983).
${ }^{19}$ W. Buhring, Z. Phys, A 310, 255 (1983); 312, 11 (1983).
${ }^{20}$ M. Jameel, J. Phys. A 19, 1967 (1986).
${ }^{21}$ J. M. Cai, P. Y. Cai, and A. Inomata, Phys. Rev. A 34, 4621 (1986).
${ }^{22}$ U. Laha, C. Bhattacharyya, K. Roy, and B. Talukdar, Phys. Rev. C 38, 558 (1988).
${ }^{23}$ F. Dominguez-Adame, Phys. Lett. A 136, 175 (1989).
${ }^{24}$ C. S. Lai and W. C. Lin, Phys. Lett. A 78, 335 (1980).
${ }^{25}$ R. Dutt and U. Mukherji, Phys. Lett. A 90, 395 (1982).
${ }^{26}$ S. H. Patil, J. Phys. A 17, 575 (1984).
${ }^{27}$ V. S. Popov and V. M. Weinberg, Phys. Lett. A 107, 371 (1985).
${ }^{28}$ B. Roy and R. Roychoudhury, J. Phys. A 20, 3051 (1987).
${ }^{29}$ A. Z. Tang and F. T. Chan, Phys. Rev. A 35, 911 (1987).
${ }^{30}$ C. H. Lai, J. Math. Phys. 28, 1801 (1987).
${ }^{31}$ P. Matthys and H. De Meyer, Phys. Rev. A 38, 1168 (1988).
${ }^{32}$ R. L. Greene, C. Aldrich, and K. K. Bajaj, Phys. Rev. B 15, 2217 (1977); C. Aldrich ibid. 16, 2723 (1977); G. B. Norris and K. K. Bajaj, ibid. 26, 6706 (1982); A. Neethiulagarajan and S. Balasubramanian ibid. 23, 6787 (1981); 28, 3601 (1983).
${ }^{33}$ R. L. Greene and C. Aldrich, Phys. Rev. A 14, 2363 (1976).
${ }^{34}$ J. T. Zung and R. G. Parr, J. Chem. Phys. 41, 2888 (1964); R. G. Parr and J. H. Weare, Prog. Theor. Phys. 36, 854 (1966); Int. J. Quantum Chem. 1S, 163 (1967); P. D. Robinson, J. Chem. Phys. 45, 1858 (1966); R. E. Roberts, ibid. 47, 1873 (1967); G. S. Chandler, Chem. Phys. Lett. 3, 311 (1969); J. H. Weare, T. A. Weber, and R. G. Parr, J. Chem. Phys. 50, 4393 (1969); C. P. Yue, ibid. 53, 1470 (1970); T. A. Weber, J. H. Weare, and R. G. Parr, ibid. 54, 1865 (1971); J. Gruninger, ibid. 55, 3561 (1971); K. Szalcwicz and H. J. Mokhorst, ibid. 75, 5785 (1981); G. Malli, Chem. Phys. Lett. 78, 578 (1981).
${ }^{35}$ U. Myhrman, J. Math. Phys. 21, 1732 (1980); J. Phys. A 16, 263 (1983).
${ }^{36}$ M. Znojil, J. Phys. A 14, 383 (1981).
${ }^{37}$ A. Bechler and W. Buhring, J. Phys. B 21, 817 (1988).
${ }^{38}$ F. J. Rogers, H. C. Graboske, Jr., ad D. J. Harwood, Phys. Rev. A 1, 1577 (1970).
${ }^{39}$ U. Sukhatme and T. Imbo, Phys. Rev. D 28, 418 (1983); T. Imbo, A. Pagnamenta, and U. Sukhatme, ibid. 29, 1669 (1984).
${ }^{40}$ Y. P. Varshni, Phys. Rev. A 40, 2180 (1989).
${ }^{41}$ A. Lindgard and S. E. Nielsen, At. Data Nucl. Data Tables 19, 533 (1977).
${ }^{42}$ B. W. Shore and D. H. Menzel, Principles of Atomic Spectra (Wiley, New York, 1968), p. 466.

