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Eigenenergies and oscillator strengths for the Hnlthen potential
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A detailed study of the bound-state properties of the Hulthen potential is presented. Accurate
eigenenergies are obtained for the Hulthen potential by numerical integration of the Schrodinger
equation. One-parameter variational calculations are carried out. The variational results are prac-
tically identical to the exact energies, except in the high-screening region. The critical screening pa-
rameter is calculated for various values of I for n 10 by a numerical solution of the wave equation.
The energy eigenvalues obtained by a variety of methods are compared and discussed. The varia-
tional wave functions are employed to calculate absorption oscillator strengths for 1s~2p, ls ~3p,
and 2p ~3d transitions.

I. INTRODUCTION

The Hulthen potential' is one of the important short-
range potentials in physics. The potential (in atomic
units) is given by

V(r) = —Z5e "/(1 —e ") .

where Z is a constant and 5 is the screening parameter.
If the potential is used for atoms, the Z is identified with
the atomic number. This potential is a special case of the
Eckart potential.

The Hulthen potential has been used in nuclear and
particle physics, atomic physics, solid-state phys-
ics, ' and chemical physics, and its bound-state and
scattering properties have been investigated by a variety
of techniques. ' ' Hulthen wave functions have been
used in solid-state physics problems. ' Hulthen-like
wave functions have found use in investigations on atom-
ic problems. ' The Eckart potential has been investi-
gated, and other extended versions of the Hulthen po-
tential have also been proposed.

A great advantage with the Hulthen potential is the
fact that the Schrodinger equation for this potential can
be solved in a closed form for s waves. ' ' For 1%0, a
number of methods have been employed to evaluate
bound-state energies. ' However, no "exact" values
obtained from a numerical integration of the Schrodinger
equation have been available to assess the accuracy of the
various methods. We present such values in Sec. II of
this paper and compare them with those obtained by
several other methods. For a number of purposes it is
convenient to have the wave function in an analytical
form. Greene and Aldrich have given a method for
generating pseudo-Hulthen wave functions for 1%0
states. In Sec. III we apply the variational method, using
these wave functions to obtain energies for l&0 states.
Using only a single parameter in the wave functions, we
are able to obtain energies that are almost equal to the ex-
act energies, except in the high-screening region. We also
suggest a modification for these wave functions and
present the results for the 2p level obtained from the

modified wave function. An important quantity of in-
terest for the Hulthen potential (and for other similar
screened potentials) is the critical screening parameter 5„
which is that value of 5 for which the binding energy of
the level in question becomes zero. In Sec. IV we present
values of 5, for n ~ 10 obtained from a numerical solu-
tion of the Schrodinger equation. The eigenenergies ob-
tained by various methods are compared in Sec. V. Using
the analytical wave functions of Sec. II, we obtain expres-
sions for the absorption oscillator strength for three tran-
sitions in Sec. VI and numerical results are presented for
a few values of 5. Throughout this paper we shall take
Z =1 and shall use atomic units in which 8=m =e = 1.

II. NUMERICALLY DETERMINED
EIGENENERGIES

Eigenenergies for the Hulthen potential were deter-
mined for certain values of 5 for n 6 and lWO by nu-
merical integration of the Schrodinger equation using
Numerov's method and a logarithmic mesh. The results
are presented in column 3 of Table I, along with values
obtained by several other methods.

The normalized probability density distribution
[r R (r)] for the 3p state for 5=0.025 (low screening)
and 0.15 (high screening) are shown in Fig. 1. It will be
noticed that as 5 increases, the density distribution tends
to spread out to larger values of r, and the peak values
are reduced. Analogous results were found for the static
screened Coulomb potential by Rogers et al.

It will be noticed from Table I that as 6 increases the
splitting between different 1 levels (for a given n) in-
creases. For low values of the principal quantum num-
ber, the ordering of the levels is the same as in the case of
the Coulomb potential, but as one goes to higher values
of n, it is found that there is a considerable amount of
level crossing in the vicinity of E =0. This effect is
shown for n =7 and 8 levels in Fig. 2. At high values of
n, the level ordering is quite complex. We shall return to
this point when we consider 6, in Sec. IV.

Patil has analytically investigated the behavior of the
energy levels for the Hulthen potential near the critical
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screening parameter and found that for I ~ 2,

E =const X (1/5 —1/5, )+O[(1/5 —1/5, ) j (2)

in the vicinity of 6, . It was of interest to examine the
range of 6 in which the above relation is applicable.
Equation (2) indicates that a plot of E/(1/5 —1/5, )

versus (1/5 —1/5, ) should be linear over the range of ap-
plicability. We made such plots for n =7 and I =2, 3, 4,
5, and 6. It was found that the linearity holds only over a

very small interval of 5. We estimate that this range is
from 5, to approximately 0.995, .

For s states, from the solution of the Schrodinger equa-
tion one can obtain

E
Eo

where Eo is the energy for 5=0. Thus there is a univer-

TABLE I. Eigenenergies as obtained by various methods. A negative sign before the energy has been omitted everywhere.

State

2p

3p

3d

4p

4d

4f

5p

Sd

5f

Sg

6p
6d
6f
6g

0.025
0.050
0.075
0.100
0.150
0.200
0.250
0.300
0.350

0,025
0.050
0.075
0.100
0.150

0.025
0.050
0.075
0.100
0.150

0.025
0.050
0.075
0.100

0.025
0.050
0.075

0.025
0.050
0.075

0.025
0.050

0.025
0.050

0.025
0.050

0.025
0.050

0.025
0.025
0.025
0.025

Numerical
integration

0.112760 5
0.101042 5

0.089 847 8
0.079 1794
0.059 441 5
0.041 886 0
0.026 611 1

0.013 7900
0.003 793 1

0.043 706 9
0.033 164 5
0.023 939 7
0.016053 7
0.004 466 3

0.043 603 0
0.032 753 2
0.023 030 7
0.014484 2
0.001 396 6

0.019948 9
0.011058 2
0.004 621 9
0.000 755 0

0.019 846 2
0.010667 4
0.003 834 5

0.019691 1

0.0100620
0.002 556 3

0.009 403 6
0.002 649 0

0.009 303 7
0.002 313 1

0.009 152 1

0.001 783 5

0.008 946 5
0.001 015 9

0.004 154 8
0.004 060 6
0.003 9168
0.003 720 1

Variational
[Eq. (7)]

0.112760 5
0.101042 5

0.089 847 8

0.079 1794
0.059 441 5
0,041 8860
0.026 610 8

0.013 787 8
0.003 773 4

0.043 706 9
0.033 164 5
0.023 939 7
0.016053 7
0.004 466 0

0.043 603 0
0.032 7S3 2
0.023 030 7
0.014484 2
0.001 3894

0.019948 9
0.011058 2
0.004 621 9
0.000 753 2

0.019 846 2
0.010667 4
0.003 834 4

0.019691 1

0.0100620
0.002 555 7

Variational

[Eq (»]

0.112760 5
0.101042 5
0.089 847 8
0.079 1794
0.059 441 5
0.041 885 9
0.026 6100
0.013 783 8
0.003 753 4

Lai and Lin
(Ref. 24)

0.101 043

0.079 179

0.041 886

0.013790
0.003 779

0.043 707
0.033 165

0.016054
0.004466

0.043 603
0.032 753

0.014484
0.001 391

0.019949
0.011058
0.004622
0.000 754

0.019846
0.010667
0.003 834

0.019691
0.010062
0.002 556

Patil
(Ref. 26)

0.11276
0.10104
0.089 85
0.079 18
0.059 445
0.041 895

0.038 375

0.043 708 5
0.033 185
0.024 016 5
0.01622
0.046 995

0.043 602 5
0.0327 4S
0.022 99
0.014 39
0.001 375 5

0.01995
0.011075
0.004 658 5
0.000752

0.019845
0.01068
0.003 875

0.01969
0.010045
0.002 557

Tang and Chan
(Ref. 29)

0.101042 4

0.079 1794

0.041 885 7

0.033 165 18

0.016067 72

0.032 753 2

0.014484 2

0.011072 5

0.010669 0

0.010062 0

0.009 408 7

0.009 305 0

0.009 152 3

0.008 946 5

Matthys and
De Meyer
(Ref. 31)

0.112760 4
0.101042 5

0.079 1794
0.059 441 5
0.041 886 0

0.0137900

0.043 707 1

0.033 165 0

0.016053 7
0.004 466 4

0.043 603 0
0.032 753 2

0.014484 2
0.001 396 5

0.019949 0
0.011058 3
0.004 622 4

0.019 846 2
0.010667 4
0.003 834 6

0.019691 1

0.010061 9
0.002 556 3
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yz (r)=e ' S
State

TABLE II. Best values of the parameters p and P.

y3 (r)=e ' S — —+ S-a3pr
2 6p

y3d(r) =e ' S

(r) =e S — 1+ S

3 1

10 20p
1+ S

4p

(7)

2p 0.025
0.050
0.075
0.10
0.15
0.20
0.25
0.30
0.35

0.025 004
0.050040
0.075 140
0.100 337
0.151 192
0.203 037
0.256 595
0.313364
0.377 907

0.024 979
0.050001
0.075 028
0.100092
0.150468
0.201 518
0.253 946
0.309 228
0.371 766

(r)=e ' S — —+
—a4pr 3

4" 2 12@

y~f(r)=e ' S

S4
3p 0.025

0.050
0.075
0.100
0.150

0.025 011
0.050094
0.075 333
0.100 851
0.153 820

1 d
2 dr

5e " 1(1+1)
e

—5r 2p2
X

"y'dr

Here

S =(1—e ""},
1a2= —1,

2p
1 3

Q3=
3p 2

and
1a4= —2 .4

4p

The variational energy is given by

3d

4p

4d

0.025
0.050
0.075
0.100
0.150

0.025
0.050
0.075
0.100

0.025
0.050
0.075

0.025
0.050
0.075

0.025 030
0.050 251
0.075 901
0.102 364
0.162 638

0.025 021
0.050 180
0.075 726
0.102 906

0.025 057
0.050438
0.077 150

0.025 109
0.050 924
0.079 170

The integration of the second term in the numerator of
(8) is, however, analytically not tractable. Hence the
second derivative was obtained analytically and the in-
tegration was carried out numerically. The energies thus
obtained are shown in column 4 of Table I and the best
values of p in Table II. The wave functions for the 3p
and 4p states with the given values of p are not exactly
orthogonal to the wave function of the corresponding
lower states, but the deviation is quite small except when
5 is close to 5, .

The difficulty concerning the analytic integration of the
second term in the numerator of Eq. (8) can be avoided if
we slightly modify the assumed wave function. This is

I

y(r)=e ' (1—e ~")(I—e "), (9)

where P is a variational parameter, similar to p. The cor-
responding expression for the energy can be evaluated to
be

achieved by multiplying the wave functions given in (7)
by the factor ( 1 —e ")/( 1 —e ""). This factor is almost
equal to 1 and has only a small effect on the shape of the
wave function. To examine whether the modified wave
function gives satisfactory results, calculations were car-
ried out on the 2p state. Thus the unnormalized modified

g 1s

E= [(1—2P)(1 —2P+5)(1—2P+25)(1 —P)(1—P+5)(1—P+25)(1+5)(1+25)]

X [45 P [45 +( —18P+18)5 +( —66P+28P +33)5 +(—72P+66P +24—18P )5

+33P —18P +6 24P+4P']I ' —(
—
—,')5~P~[ —45 +(20P—20)5 +(22P—20P +3)5

+(24+8P +4P 36P)5+23P 28P—6P + 10]— —

X [(1—P)(1—2P+ 5)( 1 —
P+ 5)(1—P+ 25)(1+5)( 1 —2P+ 25)(1+25) ]

+ (4P—25 —2)ln( 1 —
2P+ 5)+ (2P—45 —2)ln( 1 —P+ 25) —(25+2)ln( 1+5)

+(45—
4P+ 4)ln(1 —P+ 5)+(25—2P+ 1 )ln( 1 —2P+ 25)+(25+ 1)ln( 1+25)

+ (1—2P)ln(1 —2P)+ (2P—2)ln(1 —P) . (10}
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The energies obtained by minimizing this expression with

respect to P are shown in the fifth column of Table I, and
the corresponding values of P in Table II.

TABLE III. Critical screening parameter for various states
of the Hulthen potential.

IV. CRITICAL SCREENING PARAMETER

For the s states, 5, is readily obtained from the expres-
sion for the energy to be

5, =2/n

1

2
2
3
3
3

4
4
4
5
5

5
5

5
6
6
6
6
6
6
7
7
7
7
7
7
7
8

8
8
8
8
8
8
8
9
9
9
9
9
9
9
9
9

10
10
10
10
10
10
10
10
10
10

(Numerical)

2.000000
0.500000
0.376 936
0.222 222
0.186486
0.157 662
0.125 000
0.110491
0.097 564
0.086405
0.080000
0.072 863
0.066 108
0.059 973
0.054 505
0.055 556
0.051 579
0.047 661
0.043 975
0.040 585
0.037 504
0.040 816
0.038 398
0.035 948
0.033 581
0.031 353
0.029 284
0.027 379
0.031 250
0.029 681
0.028 058
0.026459
0.024 926
0.023 478
0.022 124
0.020 864
0.024 691
0.023 621
0.022 497
0.021 372
0.020 278
0.019230
0.018 237
0.017 303
0.016427
0.020000
0.019240
0.018433
0.017 615
0.016 810
0.016030
0.015 283
0.014 573
0.013902
0.013268

5, [Patil, Eq. (12)j

2.000000
0.500000
0.377 367
0.222 222
0.186017
0.157 990
0.125 000
0.109 826
0.097 256
0.086 727
0.080000
0.072 275
0.065 616
0.059 838
0.054 790
0.055 556
0.051 105
0.047 169
0.043 670
0.040 547
0.037 747
0.040 816
0.038 024
0.035 508
0.033 234
0.031 172
0.029 296
0.027 584
0.031 250
0.029 385
0.027 681
0.026 122
0.024 691
0.023 374
0.022 160
0.021 038
0.024 691
0.023 384
0.022 179
0.021 064
0.020031
0.019072
0.018 180
0.017 350
0.016 575
0.020000
0.019049
0.018 165
0.017 340
0.016 571
0.015 851
0.015 178
0.014 546
0.013953
0.013 396

For 1%0 states, 5, was calculated by numerical solution
of the Schrodinger equation and the results for n ~ 10 are
shown in Table III. For the sake of completeness, the re-
sults for I =0 are also shown, obtained from Eq. (11). Pa-
til has obtained an approximate expression for the criti-
cal strength Z, . In terms of 5„his equation can be writ-
ten as

5, =1/(n/2+0. 16451+0 0983. 1/n) (12)

Values of 5, obtained from this expression are also shown
in Table III. It will be noticed that the results obtained
from Patil's equation are in good agreement with the ex-
act values —which is rather remarkable for such a simple
equation.

The only other calculation of 6, for the Hulthen poten-
tial is that of Popov and Weinberg, who have calculated
n 5, for a few states which have I =n —1 by perturba-
tion series summation. Their values are in good agree-
ment with the exact ones calculated here.

For s states, as Eq. (11) shows, n25, =2. For lAO
states, we show the product n 5, as a function of n in

Fig. 4. Points for the same l have been joined by lines. It

1.8-

1.4—

1.2

2 3 5 6 7 8 9 10 11

FIG. 4. n'5, as a function of n. Points for the same I have
been joined by 1ines. Tbe numbers on the right of the curves
represent I values.
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Lai and Lin expanded the Hulthen potential in a
series in the form

40—

V(r)= (—Z/r) g Vk(5r)" .
k=Q

(14)

M

30—
lh

0

20—
0

10—

30

1/
WO 50 60

FIG. 5. Number of bound states n* as a function of 1/5, .

The straight line represents a least-squares fit, Eq. (13).

n *=0.8029/6, +0.9018 . (13)

Equation (13) can be used to calculate the number of
states which are bound at a given 5, or one can ca1cu1ate

5, for a given n*.

V. COMPARISON OF EIGENENERGIES

In this section we compare the results obtained by the
various methods for the eigenenergies of 1&0 levels. Be-
sides the results obtained in this paper, we shall consider
the results obtained by four other methods. %'e briefly
describe these four other calculations.

will be noticed that in each case n 5, increases with n

and appears to approach an asymptotic value close to 2.
In the order of decreasing 5, values, the level order is

as follows: ls, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, 4f, 5s, 5p, 5d, 5f,
6s, 5g, 6p, 6d, 6f, 7s, 6g, 7p, 6h, 7d, 7f, 7g, gs, gp, 7h, 8d, 7i, 8f,
8g, 9s, 9p, 8h, gi, 9f, 8k, 9g, 10s, 10p, 9h, 10d, 9i, 10f, . . . . It
will be noticed that as one goes to higher levels there is
an increasing departure from the ordering of levels in a
Coulomb potential. This is a consequence of an increas-
ing degree of crossover of levels, which was discussed in
Sec. II.

The total number of states n* which have negative en-

ergy at a given 5 has been studied for the static screened
Coulomb potential by Rogers et al. In Fig. 5 we show
n* as a function of 1/5, for the Hulthen potential. The
distribution of points indicates a linear relationship and a
least-squares treatment yields the following relation:

By employing the Hellmann-Feynman theorem and the
hyper virial theorems they were able to express the
bound-state energies in a power series of the screening
parameter 5. To improve the accuracy of the results,
especially when 5 is close to the critical screening param-
eter 5„ they formed Pade approximants to the energy
series. The results of Lai and Lin are shown in column 6
of Table I.

Patil's treatment is based on the fact that the Hulthen
potential allows a strong-coupling expansion. He uses an
interpolation for the bound-state energies which incorpo-
rates the required behavior near the critical strength Z,
and also has a strong-coupling expansion in conformity
with the first few known terms of the strong-coupling ex-
pansion. Patil's values are given in column 7 of Table I.

Roy and Roychoudhury and Tang and Chan have

applied the shifted 1/N method of Sukhatme and colla-
borators' to calculate energies of /%0 states of the
Hulthen potential. Roy and Roychoudhury have used
two terms in their calculations, while Tang and Chan
have used three terms. The results of the latter authors
are shown in column 8 of Table I.

Matthys and De Meyer ' have studied the 1%0 states
in the context of algebraic perturbation theory using an
approach which is based on the Lie algebra of the group
SO(2, 1). They introduce a so-called tilting transforma-
tion that relates between physical states and the group
states which constitute a basis of the relevant unitary ir-
reducible representations of SO(2, 1). It is shown that all
the matrix elements of the energy functional can be ex-
pressed in closed form. Then the energy matrix, in which
the unknown bound-state energies occur on diagonal as
well as on off-diagonal positions, is numerically diagonal-
ized by means of a Gauss-Seidel iteration scheme. The
tilting parameter is adjusted in order to accelerate the
convergence of the perturbation expansions. Column 9
of Table I shows the eigenenergies obtained by Matthys
and De Meyer 3

Next we compare the various sets of results. A com-
parison of the eigenenergies obtained from the wave func-
tions of Eq. (7) with the "exact" values shows that the
two are almost the same except in the high-screening re-
gion. For the 2p state the values obtained by the
modified wave function, Eq. (9), are the same as those ob-
tained from the unmodified one at low screening, but
slightly inferior in the high-screening region. Amongst
the four sets (columns 6—9 of Table I) of other workers,
the results of Matthys and De Meyer ' are practically
identical to the "exact" results. The next best results are
those of Lai and Lin, which agree with the exact results
to the number of significant figures quoted by these au-
thors, except in 3 cases in the high-screening region.
Next in accuracy in the low- and medium-screening re-
gions are the shifted 1/N expansion results of Tang and
Chan, but no conclusion is possible for the high-
screening region as Tang and Chan have not given any
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results for such values 5. It has been found that the
shifted 1/N expansion gives poor results for the static
screened Coulomb potential in the high-screening region
and it is entirely possible that a similar situation may
hold for the Hulthen potential.

2 max(l, 1') QOf =
3 &+', (E. i Eni—) Xnt"X. i«

0
(15)

The normalization constants for the four required wave
functions are as follows:

(16a)

Nq =

N3 =

N3d =

(1—p )(1—4p )

24p4
1/2

2(4—9p )(4—81p, )

2187p

(1—9p2)(4 —9p2)(4 —81p2)

196 830p&

(16b)

(16c)

(16d)

In Eq. (16d), p2 has been used for p, to distinguish it from
the p for the 2p state in the expression for f for the
2p~3d transition. Following Shore and Menzel 2 we

I

VI. OSCILLATOR STRENGTHS

There has been no previous calculation of the oscillator
strengths for the Hulthen potential. In this section we
obtain results for the absorption oscillator strength for
ls —+2p, is~3p, and 2p —+3d transitions by using the
analytical wave functions of Sec. III. The absorption os-
cillator strength for the nl ~n'I' transition is given by '

1s-2p

1s-3p

2p-3d

0.025
0.050
0.075
0.10
0.15
0.20
0.25
0.30
0.35

0.025
0.050
0.075
0.10
0.15

0.025
0.050
0.075
0.10
0.15

0.4155
0.4134
0.4098
0.4047
0.3897
0.3671
0.3348
0.2886
0.2169

0.078 34
0.076 00
0.071 96
0.06600
0.046 33

0.6916
0.6785
0.6547
0.6161
0.4400

represent the transition integral by I (nl, n 'I'),

I(nl, n'I')= f y„&ry„&dr .
0

(17)

Using wave functions for the 2p, 3p, and 3d states from
Eq. (7) and the exact wave function for the Is state, the
transition integrals were evaluated and the results are as
follows:

TABLE IV. Absorption oscillator strengths in atomic units
for the Hulthen potential.

Transition

I(ls, 2p)=768N&, N2 p, 5

X( —2435 —1458p —275 +2187+35 +32p, 5 —32p —185 p +288p,"+36p 5 )

X [(9—5') [(3—5) —4p ]'[(3+5) —4p'] ]

p~+9pz/4+p p~+p, /4+p q +9p /4+q q +p /4+qI Is, 3p =N„N3~P(p29p2/4)2(p2p2/4)2(q29p2 /4)2(q2p2/4)
where

p = —~4+5/2, q = ——', —5/2,

and

6 6 10 10

P(p29p2/4)2(p2p2/4)2(259p2 /4)2(25p2/4)2

6q p2. 6qp2
2+

(q2 9p2/4)2 (q2 p2/4)2

(18)

(19)

(20)

where p = ——', +p and q = ——', —p. In Eq. (20), p refers to the 2p wave function and p2 to the 3d function.
The calculated oscillator strengths are shown in Table IV. It will be noticed that for each of the transitions, as 6 in-

creases, at 6rst there is a slow decrease, but near 5, there is a rapid drop in the value of the oscillator strength.
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