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An implementation of the coupled-cluster single- and double-excitation (CCSD) method is
presented. The CCSD equations are expressed in form of a system of coupled one-particle and two-
particle equations. The complete expressions of these equations in terms of Goldstone diagrams are
given. Also presented is a simplified diagrammatic notation corresponding to an efficient evaluation
scheme. By using numerical discrete spectra to solve these equations, a high numerical accuracy,
better than 1 phartree, is obtained. The method is tested on Be and Li™ and is found to account for
99.3% and 99.4% of the correlation energy, respectively. The CCSD method is demonstrated to
give total energies depending very little on the potential used to define the perturbation expansion.

I. INTRODUCTION

In two recent papers a method to obtain finite discrete
spectra of the one-particle Schrodinger! and Dirac? equa-
tions has been presented. These spectra were tested to
calculate the total energy of the ground state of helium
and an accuracy of a few parts in 10® was achieved. In
this paper we present an implementation of the coupled-
cluster single- and double-excitation (CCSD) method us-
ing the discrete spectra to solve the system of coupled
equations obtained in this method. The CCSD method is
applied on Be and Li ™.

The coupled-cluster method was introduced into quan-
tum chemistry by Cizek.? Since then several approxima-
tion schemes have been developed to take into account
the most important clusters. The earlier approximations
neglected the single-excitation cluster and were therefore
restricted to use of Hartree-Fock orbitals to get reason-
able results. The first implementation of the CCSD
method, with complete inclusion of the singles and dou-
bles, was presented in 1982 by Purvis and Bartlett.* They
were later followed by others®’~’ and now also implemen-
tations including the triple-excitation cluster, the CCSDT
method, ®° exist. The implementations referenced above
are all mainly intended for molecular calculations and are
based on the use of analytical basis sets of Gaussian or
Slater-type orbitals. One problem with using such basis
sets is that often the error due to the incompleteness of
the basis set is hard to estimate and is sometimes larger
than neglected physical effects. The method used in the
present work does not suffer from such problems since
there is a systematic way to increase the numerical accu-
racy by simply increasing the number of radial lattice
points used. Also with analytical basis sets there are now
methods available to extend the basis set in a systematic
way. 1°

The first application in atomic physics of Goldstone’s
formulation of many-body perturbation theory was done
by Kelly!! on Be. The Be system has since then very
often been used to test new theoretical methods (e.g.,
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Refs. 12-16). The reason for this is that it is the simplest
nontrivial many-body system and that very good esti-
mates of the total energy exist. One problem with Be is
the well-known degeneracy of 2s? 'S and 2p? 'S leading to
a large mixing between these configurations (see, e.g.,
Ref. 12). The best estimate to date of the total energy of
Be was done by Bunge'? from a configuration-interaction
(CI) calculation with carefully made estimations of trun-
cation effects.

The CCSD method and its implementation are present-
ed in diagrammatic form in Sec. II. Nonrelativistic appli-
cations on Be and Li~ are extensively discussed in Sec.
III. The CCSD result should be rather insensitive to the
choice of potential used to define the one-particle spectra
since all effects of single excitations are included. The
difference in the result using different potentials occurs
mainly through the effect of the triple excitations which
depends slightly on the potential used. This is investigat-
ed in the case of Be comparing results using the ordinary
Hartree-Fock potential and a Hartree-Fock-Slater poten-
tial. A short summary and some conclusions are given in
Sec. IV.

II. THE COUPLED-CLUSTER METHOD

The present work is based on the coupled-cluster (CC)
method which naturally occurs from many-body pertur-
bation (MBPT) theory by working with the connected
parts of the wave-operator diagrams. The CC method
originates from nuclear physics (for a review see Ref. 17)
and was introduced into quantum chemistry by CiZek.>
For a detailed description valid for a general open-shell
system see the textbook by Lindgren and Morrison. '8
Here a brief description is given, needed to discuss how
the implementation of the method has been done. This
has been done for a general open-shell system although
the results given in Sec. III are for closed-shell systems.
For an open-shell application of the present implementa-
tion see the calculation of transition probabilities and
hyperfine structure of Li. !’
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A wave operator  can be defined that transforms
model states ¥§ from the model space to states W? that
are exact solutions to the Schrodinger equation

V=WV, HVY'=EY’ a=1,...,d. (1

The model space is defined by d eigenfunctions to some
approximate Hamiltonian H, usually chosen to be a
central-field Hamiltonian consisting of one-electron
operators. The model states are the projections of the ex-
act states onto the model space

Wi=pWye )

where P is the model space-projection operator. The cor-
responding projection operator for the remaining orthog-
onal space is denoted by Q and thus

P+Q=1. (3)

The exact energies and the corresponding model states
can be found from the wave operator by diagonalizing an
effective Hamiltonian H 4

H Vi=E*W8 @)
where, using intermediate normalization {W§|W?)
=(Wglwa) =1,

H=PHQP =PH,P+W, W=PVQP (5)

and using the model states so obtained the exact states
can be achieved from (2.

The difference V between the exact Hamiltonian and
H, is using MBPT treated as a perturbation and can be
separated into zero-, one-, and two- particle parts'®

V=V,+V,+V,, (6a)

vi=3 f{a/a;}(ilvlj) , (6b)
ij

Vo=1 3 {alajaa,)<ijlrptkl) . (6¢)
i, j k1

In Figs. 1(a) and 1(b) the graphical representations of V),
and V), are given.

In the CC method the wave operator (} is written in
exponential form

®-1 -
(a) (b) (c) (d)

FIG. 1. Diagrammatic notation for the one-body V', (a) and
two-body V, (b) parts of the perturbation and one-body S, (c)
and two-body S, (d) parts of the cluster operator. The vertical
lines denote electron lines and the horizontal lines the interac-
tions. The circle with a cross denotes the direct and exchange
interaction- with the core electrons minus the interaction with
the one-particle potential defining the perturbation expansion.
The dashed line in (b) denotes the Coulomb interaction. The
horizontal double lines in (c) and (d) for the cluster operator in-
dicate that several perturbation interactions are included to give
the self-consistent solution of the cluster equation.
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Q={exp(S)}=P+S+L{S}+ --- )

where S is the cluster operator and the curly brackets
denote antisymmetrization. The cluster operator can be
shown to satisfy the following cluster equation:2°

[S,Hy1=Q(Va—aw), (8)

where the subscript ¢ denotes that only connected dia-
grams are retained. Also W, defined in Eq. (5), is con-
nected since all clusters describe excitations into the Q
space and thus has to be closed by V. As for the pertur-
bation V the cluster operator can be separated into n-
particle clusters

S=S8,+8,+S+ - , (9a)
S,=3 {a]a,})s] (9b)
a,r
—1 t ot rs
SZ_T 2 garasabaa}sab . (9¢c)
a,b,r,s

In this work only the one-particle (single excitations) and
the two-particle (double excitations) clusters have been
considered but all contributing powers of them are in-
cluded. This corresponds to the CCSD approximation.
The part of Q contributing to the cluster equation [Eq.
(8)] is then

1 1

Q=P+Sl+sz+§[s%}+{slszj+§{sﬂ
+1 521+ 82,1+ L sy (10)
211520 T g 1R g 1

The cluster operators S; and S, are represented graphi-
cally as in Figs. 1(c) and 1(d).
From Eq. (8) the cluster equation for S, is achieved:

[S,,Ho1=0 |V, + VS, + VSﬁ-%V{S%}

1
+V2{S1S2}+—3TV2{S%}—S1W1

lL,c

(11)

where the subscript 1 denotes that only single excitations
are retained. W, can be evaluated as the P projection of
the right-hand side (RHS) of Eq. (11) before it is project-
ed onto Q,

W,=P|V,+VS, + VSZ+EI'~V[S% J+V,{S,S,}

+—317V2[S%} (12)

1,¢

Only one-, two-, and three-body excitations in {) contrib-
ute to the S| equation, i.e., the last three terms in Eq. (10)
do not contribute.

All diagrams contributing to the RHS of Eq. (11) are
given in Fig. 2. No arrows have been drawn on the in-
coming and outgoing electron lines. Depending on what
kind of excitation the S, cluster describes, the incoming
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electron line can be either a valence line usually denoted
by a double arrow or a core line usually denoted by a sin-
gle arrow line directed downwards. Similarly the outgo-
ing line can represent either a virtual electron or, for core
excitations, a valence line. There are quite a number of
diagrams due to all the terms with different powers of S
in Eq. (11). Their evaluation, however, can be systemized
considerably by defining new incoming and outgoing or-
bitals with the S, excitations added and a new potential
interaction, as shown in Fig. 3. This leads to the
simplified diagrammatic S| equation given in Fig. 4. The
diagram in Fig. 4(a) accounts for 12 diagrams from Fig. 2
labeled (al)-(al2) and it takes about the same effort to
evaluate as the diagram in Fig. 2(al). The labels of the
diagrams in Figs. 2 and 4 give easily the correspondence
between the simplified and the full diagrammatic equa-
tions.

The practical procedure to evaluate the RHS of Eq.
(11) is to first evaluate the nonprojected RHS from the

>} L1l &
®__
e brello
v, (a2) (ad)

(a4) (a5)
V1S1 V251 )
@—a ®—F 7] Fj -
(b1) Vs, (c1) (d1) (e1)vzs(2f‘) (g1)
®__
W,
- 1
;—v1(s$) (a6) SW () 2
-
(a7) (a8) (a9) (a10)

1
Vo) )
(b2) (b3) (c2) (c3)

L (d2) (e2) (92) l

(2
VoSS

(a11) (a12) l
1
VoS

FIG. 2. All diagrams contributing to the right-hand side of
the S, cluster equation. No arrows have been added on the in-
coming and outgoing lines. The incoming lines can be either
core lines or valence lines. The diagrams are grouped according
to from which term in Eq. (11) they originate. All diagrams
building up a single diagram of Fig. 4, using the simplifying no-
tation of Fig. 3, are labeled with the same letter but with
different numbers.
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FIG. 3. Simplifying notation used in Figs. 4 and 6. Outgoing
double lines denote that the single-particle excitations from core
orbitals are added as shown in (a). Incoming double lines
denote that the single-particle excitation from the correspond-
ing orbital is added as shown in (b). The incoming lines can be
either core lines which should be directed downwards or
valence lines usually denoted with double arrows directed up-
wards but here both cases are indicated with single arrow lines
directed upwards. Finally in (c) a new potential interaction is
defined including also the linear part of the direct and exchange
interaction with the single excitations from below.

+=j//(a>
E

.___

old cluster operators with the definition of incoming or-
bital lines and potential interaction from Figs. 3(b) and
3(c). Then the overlaps of the RHS with the core orbitals
are calculated and these overlaps times the corresponding
S, excitations are subtracted, which takes the definition
of the outgoing lines in Fig. 3(a) into account. Finally the
overlaps towards valence orbitals of the RHS’s corre-
sponding to valence excitations are calculated, and these
overlaps times the corresponding S, valence excitations
are subtracted which takes the backward diagram in Fig.
4(h) into account.

The cluster equation for S, is in the CCSD approxima-

tion
% ol
(a) (b) (c)

(d) I | (e) (t (@)

(h)

FIG. 4. Simplified diagrammatic form of the S, cluster equa-
tion using the notation of Fig. 3. All diagrams of Fig. 2 corre-
sponding to a diagram in this figure are labeled with the same
letter. No arrows have been added on the incoming and outgo-
ing lines. The incoming lines can be either core lines or valence
lines. The simplified diagrammatic notation of the cluster equa-
tion corresponds to similar simplifications in the evaluation of
the diagrams.
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FIG. 5. All diagrams contributing to the right-hand side of
the S, cluster equation. The diagrams are grouped according to
from which term in Eq. (13) they originate. All diagrams build-
ing up a single diagram of Fig. 6 using the simplifying notation
of Fig. 3 are labeled with the same letter but with different num-
bers.
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1

[S2.Hol=Q |V + VS, + VS, + - Vo (ST +V(S)5,)

1 1 1
S ACHEE A ALH RS AN

3l
1
A Va(St =S, W, =5, W,
—SZWZ—EI'—{S%}WZ (13)
: 2,c

where the subscript 2 denotes that only double excita-
tions are kept. All diagrams contributing to the RHS of
Eq. (13) are given in Fig. 5. W, can, as mentioned, easily
be evaluated as the P projection of the RHS of the S,
equation. Also W, is easily achieved as the P projection
of the RHS of the cluster equation for S, above

W,=P V2+V2S1-+-V52+ VZ[S }+V{S,S,]
V S3 +—1—V S? +—1—V Sis
3' 2{ ] 2| 2{ 2} 2' 2{ 1 2}
+L atst | (14)

With the definitions of Fig. 3 the simplified S, equation
of Fig. 6 is achieved with a large reduction of the number

FIG. 6. Simplified diagrammatic form of the S, cluster equa-
tion using the notation of Fig. 3. All diagrams of Fig. 5 corre-
sponding to a diagram in this figure are labeled with the same
letter. No arrows have been added on the incoming and outgo-
ing lines. The incoming lines can be either core lines or valence
lines. The boxes denoted by I, and I, can be evaluated as over-
laps of the S| and S, right-hand sides towards core orbitals.
The simplified diagrammatic notation of the cluster equation
corresponds to similar simplifications in the evaluation of the
diagrams.
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FIG. 7. Diagrams contributing to the total energy of a
closed-shell system involving the S, and S, cluster operators.
Using HF orbitals the first diagram, (a), does not contribute.
Using HF orbitals the S, cluster occurs for the first time in

second order of the perturbation expansion and thus the dia-
grams (d) and (e) occur for the first time in fifth order.

of diagrams to be considered. The labeling of the dia-
grams in Figs. 5 and 6 shows which diagrams from Fig. 5
are accounted for by the different diagrams in Fig. 6.
The boxes in Fig. 6 denoted by I, and I, are easily evalu-
ated as overlaps towards core orbitals of the RHS’s of the
S, and S, cluster equations, respectively.

Solving the coupled-cluster Egs. (11) and (13) without
any further approximations corresponds to the CCSD
method. Earlier implementations of the CC method also
neglected the effect of the S, cluster referred to as the
CCD method. This corresponds to solving the S, cluster
equation, Eq. (13), but only keeping the first term on the
RHS’s in the definitions of Fig. 3. The I, and W, boxes
are still included though. The most complicated dia-
grams to evaluate originate from the ¥,{S?%} term in the
RHS of S, equation giving rise to the diagrams (j3),(i5),
(i6), and (h1)—(h8) shown in Fig. 5. The first tree, the fac-
torizable ones, are easily included in the boxes I, and I,
of Fig. 6 by evaluating overlaps towards core orbitals as
described above. The remaining eight nonfactorizable
ones, (h1)-(h8), are much more complicated to evaluate,
however, and are often left out. This corresponds to the
factorizable methods FCCSD including single excitations
and FCCD if single excitations are left out. All four
methods are explored in this work yielding the size of the
effect of the single excitations and the nonfactorizable
coupled-cluster diagrams.

The CCSD method has as mentioned been implement-
ed for a general open-shell system as described above.
The systems calculated in Sec. III are, however, closed-
shell systems. For these systems the diagrams involving
W, and W, are absent. For closed-shell systems the part
of the total energy beyond PHP, i.e., PVQQP, corre-
sponds to the zero-body part of W and is evaluated from
the diagrams given in Fig. 7.

III. NUMERICAL RESULTS

In this section numerical results are presented for Be
and Li~, solving the coupled-cluster equations presented
in Sec. II.

The single- and double-excitation clusters are in this
work represented by single-particle and pair functions,
respectively. To each occupied orbital being excited cor-
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responds one single-particle function, having the same
spin and angular symmetry. Each single-particle func-
tion is represented numerically by a radial function
defined on a logarithmic radial lattice. The lattice is
defined by r =exp(x)/Z with equidistantly distributed
points in x between chosen minimum and maximum
values x_;, and x.,, and Z is the nuclear charge. To
represent a pair function, a partial-wave expansion is
used. Each pair function, describing excitations from a
specific pair of electrons, can then be represented by a
series of radial pair functions, one for each angular sym-
metry. These radial pair functions are represented nu-
merically on a two-dimensional radial lattice, using the
same distribution of points in each radial coordinate as
for the single-particle functions. Substituting the expan-
sion of the pair functions into the coupled-cluster equa-
tions leads to a coupled system of equations for the radial
single-particle and radial pair functions which in this
work is solved by iterations to self-consistency.

The angular momentum algebra is performed using
graphical techniques described in detail in the mono-
graph by Lindgren and Morrison.'® The resulting radial
equations are solved by using finite discrete spectra as de-
scribed in detail by Salomonson and Oster. !

All energies are in this work given in Hartree (hartree)
atomic units where 1 hartree=2 Ry~27.211396 eV.

A. Results for Be

In Table I second-order, third-order, and CCSD all-
order results for the correlation energy of Be are present-
ed. The second-order result represents 81.5% and the
second- and third-order result 91.0% of the CCSD all-
order result, showing the rather slow convergence using
orbitals generated by the Hartree-Fock (HF) V¥ poten-
tial.

Results are given explicitly for a number of partial-
wave limits. From the higher calculated partial-wave
limits the tail contribution from the remaining partial
waves can be extrapolated. An asymptotic expression of
the same form as in the helium case' is assumed for the
partial-wave contributions

AE,=E,—E,_,=C,(I+ ) *+Cs(1+1H)7°+0U7°).
(15)

This form is theoretically well established for helium.?!
The beryllium wave function fulfills the same cusp condi-
tion for antiparallel spin as the helium wave function and
there is no reason to assume any differences in the asymp-
totic expression except for the size of the contributions.
The tail contribution is quite large for both the
second-order and third-order correlation energies. The
magnitude of the contribution from /=11 to « is in both
cases about 100 phartree but with opposite sign. This
gives rise to a peculiar behavior of the sum of the second-
and third-order correlation energies having a maximum
at /=9. The tail contribution for the CCSD correlation
energy is 37 phartree or 0.04% of the correlation energy,
considerably smaller than in second order. The error in
the tail contribution is believed to be less than 1 phartree.
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TABLE 1. Second-order, third-order, and CCSD correlation energies for Be in different partial-wave
! limits using HF orbitals. Correlation energies are given relative to Eyg = — 14.573 023 hartree. Ener-

gies given in phartree.

/ Second order Third order Second plus Third order CCSD

0 —15930.9 —2175.4 —18106.3 —18759.7
1 —64349.6 —142554 —78605.0 —87991.5
2 —72139.0 —11749.8 —83888.8 —91911.5
3 —74430.9 —10435.9 — 84 866.8 —92916.9
4 —75328.2 —9788.2 —85116.4 —93281.2
5 —75746.8 —9446.1 —85192.9 —93443.4
6 —75966.9 —9251.9 —85218.8 —93526.1
7 —76093.2 —9134.7 —85227.9 —93572.6
8 —76170.7 —9060.1 —85230.8 —93600.7
9 —76220.8 —9010.6 —85231.4 —93618.6
10 —76254.5 —8976.6 —85231.1 —93630.6
11 —76278.1 —8952.5 —85230.6
12 —76295.1 —8934.8 —85229.9

© —76358 — 8867 — 85225 —93 667

In the helium case where the exact result is known, an er-
ror less than a few parts in 10® was achieved.! The nu-
merical results were achieved using three different radial
lattices with 81, 91, and 101 points, respectively, in the
range X ;.= —7.6 and x,, =4.4. Using a single lattice
with say 101 points the numerical error is about 2 phar-
tree for the /=10 limit. To improve the numerical accu-
racy, lattice extrapolations can be performed using the
formula'

E(h)=E(0)+ah*+bh>+0(h®), (16)
where & is the lattice spacing. This is demonstrated in
Table II. Using two lattices the numerical error is re-
duced to less than 0.1 phartree. As a consistency check
also lattice extrapolation results using three lattices are
shown in Table II.

The contributions to the second-order and CCSD
correlation energy from the different pair excitations and,
for the CCSD case, the S% excitations are presented in
Tables III and IV. The contributions from the 1s? and
1s2s pairs are changed very little going from second or-
der to CCSD. The 2s? pair contribution, on the contrary
increases by 50% and the ! > 10 tail contribution for this

pair reduces drastically in magnitude from —58 to —4
phartree.

The CCSD correlation energy also includes contribu-
tions from S? [see Figs. 7(d) and 7(e)] which are quite
small. These represent, however, only a minor part of the
effect of including the S; cluster and occur for the first
time in fifth order of the perturbation expansion when
HF orbitals are used. The main effect of the S| cluster
comes from their modification of the S, cluster. For Be
this effect is about 15 times larger than the direct contri-
bution from the S? term and occurs for the first time in
fourth order of the perturbation expansion.

To see explicitly the effect of the nonfactorizable S3
diagrams and the effect of the S, cluster, results for the
correlation energy in the different approximations dis-
cussed in Sec. II are presented in Table V. The effect of
the nonfactorizable S3 diagrams is very small and is eval-
uated in two ways as given in Table V. The result 28
phartree is consistent with the result 3 X 107> hartree by
Jeziorski et al.?

The effect of including S; has also been evaluated in
two ways with the result —706 phartree or 0.75% of the

TABLEII. Lattice extrapolation for the CCSD correlation energy in Be using HF orbitals. Energies given in phartree.

/ 81 91 101 81/91 91/101 81/91/101
0 —18759.2 —18759.4 —18759.5 —18759.8 —18759.8 —18759.7
1 —87990.8 —87991.1 —87991.3 —87991.7 —87991.6 —87991.5
2 —91910.3 —91910.8 —91911.1 —91911.7 —91911.6 —91911.5
3 —92915.0 —92915.8 —92916.2 —92917.1 —92917.0 —92916.9
4 —93278.8 —93279.8 —93280.3 —93281.4 —93281.3 —93281.2
5 —93440.3 —93441.6 —93442.2 —93443.6 —93443.5 —93443.4
6 —93522.5 —93523.9 —93524.7 —93526.3 —93526.2 —93526.1
7 —93568.4 —93570.0 —93570.9 —93572.7 —93572.6 —93572.6
8 —93596.0 —93597.7 —93598.8 —93600.7 —93600.7 —93600.7
9 —93613.5 —93615.4 —93616.5 —93618.5 —93618.6 —93618.6
10 —93625.0 —93627.1 —93628.3 —93630.5 —93630.5 —93630.6
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TABLE III. Contributions from the different pair excitations
to the second-order correlation energy in Be using HF orbitals.
Energies given are in mhartree.

1 1s? 1s2s 2s?
0 — 12489 —1077 —2366
1 — 34968 —4889 —24492
2 — 38521 —5305 —28313
3 —39529 —5404 —29498
4 —39915 —5438 —29976
5 —40092 —5453 —30203
6 —40184 — 5460 —30323
7 —40236 — 5464 —30393
8 —40268 — 5467 —30436
9 —40289 — 5468 —30464
10 —40303 — 5469 —30483
o —40 345 —5472 —30541

correlation energy. A decomposition into the different
excitations of the effect of the nonfactorizable S3 dia-
grams and the effect of the S, cluster is presented in
Table VI. As expected the effect on excitations involving
at least one 2s electron dominates heavily. For Be the
contribution from S? is small compared to the total effect
of single excitations as discussed above.

In Table VII a comparison with some other accurate
calculations is presented. The numerical method used in
the calculation of Lindgren and Salomonson'* was based
on direct numerical solution of partial differential equa-
tions.?® This method is less accurate than the one used in
this work.! The agreement with the present work in the
CCD approximation is, however, very good. The
second-order result, on the other hand, is off by 0.07
mhartree. An explanation of this might be the larger
contributions from lattice and [-tail extrapolation in
second order compared to all order, combined with the
less accurate numerical method used in Ref. 14. Jan-
kowski, Rutkowska, and Rutkowski?* used for each par-

TABLE 1IV. Contributions from the different excitations to
the CCSD correlation energy in different / limits for Be using
HF orbitals. Energies given in phartree.

S, S?

1 1s? 1s2s 2s?

0 —13936 —1243 —3582 0.69
1 —38134 —5189 — 44709 41.1
2 —41191 —5591 —45172 42.7
3 —41988 —5675 —45296 43.1
4 —42280 —5702 —45342 433
5 —42411 —5714 —45362 43.4
6 —42478 —5719 —45372 43.4
7 —42516 —5722 —45378 43.4
8 —42539 —5724 —45381

9 —42554 —5725 —45384

10 —42563 —5726 —45385

© —42593 —5728 —45389 43.5
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tial wave a compact Slater-type orbitals (STO) basis set.
As can be seen from a comparison between their results
and our accurate ones their basis set error is about 0.08
mhartree and cancels to a large extent between the
second- and third-order results. Jeziorski et al.?? were
using explicitly correlated Gaussian geminals to represent
the pair functions. Their second- and third-order correla-
tion energies are in excellent agreement with our results.
Their CCD all-order correlation energy is, however, 0.10
mhartree above our result which is strange considering
the agreement in second and third order. Alexander,
Monkhorst, and Szalewicz'® were also using correlated
Gaussian-type geminals but with random tempering for
optimization of their parameters. Their FCCD correla-
tion energy is only 0.006 mhartree above our result which
is an excellent agreement.

Our full CCSD result is also included in Table VII to-
gether with a recent Monte Carlo calculation of Umrigar,
Wilson, and Wilkins!> and the classical extensive CI cal-
culation of Bunge.!> Our CCSD result is comparable
with the Monte Carlo calculation although the numerical
uncertainty is larger in the Monte Carlo calculation.

In his original work,'? Bunge reported a very good
agreement between experiment and his theoretical result
obtained by adding mass polarization effects, relativistic
effects, and Lamb shift corrections to his nonrelativistic
result for the total energy. In an erratum'® Bunge later
pointed out that the mass polarization energy had been
added with the wrong sign. Correcting for this mistake
gives a 60-puhartree difference between experiment and
theory. A new revised comparison between theoretical
and experimental results for Be is given by Martensson-
Pendrill et al.?® This investigation and results by
Sundholm and Olsen?® indicate that a large part of the
60-uhartree discrepancy is due to an underestimate by
Bunge of the contribution from higher partial waves
beyond the g limit.

The main part of the omitted effects in our calculation
comes from the S; cluster. As is well known the ground
state of Be has, in the multiconfiguration Hartree-Fock
picture, a strong admixture of the nearly degenerate
1s22p? configuration which corresponds to a pair excita-
tion in our language. The 1s2p correlation is thus an im-
portant S; effect. This effect has been calculated by
Froese Fisher and Saxena!’ to —0.416 mhartree and
should account for a large part of our omitted S correla-
tion. This is also the case as seen by comparing with the
difference —0.638(25) mhartree between our CCSD result
and the extensive CI result of Bunge. Our CCSD result,
—93.667 mhartree, accounts for 99.3% of the total corre-
lation energy,—94.305(25) mhartree, deduced from
Bunge.

B. Comparison between HF and OHFS results for Be

When orbitals generated with a Hartree-Fock potential
are used in the calculation of the correlation energy the
effect of the single-excitation cluster S, appearing first in
fourth order of the perturbation expansion, is small.
Therefore the CCD approximation is rather good using
such a potential. Using other potentials the effect of S,
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TABLE V. All-order correlation energies in various approximations for Be using HF orbitals. The effects of the nonfactorizable
S2 diagrams, and the single-excitation cluster S;, are also given explicitly. Correlation energies are given relative to
g g 1 g P y g g

Eyp=—14.573023 hartree. Energies given in phartree.

FCCD?* CcCD® FCCSD¢ CcsD! Nonfactorizable S3 Singles
1 A B C D B—4 D—-C D—-B C—4
0 —18713.7 —18703.1 —18770.6 —18759.7 10.57 10.85 —56.6 —56.9
1 —87355.3 —86325.3 —88022.2 —87991.5 29.95 30.77 —666.1 —667.0
2 —91246.6 —91218.3 —91940.5 —91911.5 28.29 29.04 —693.1 —693.9
3 —92244.5 —92216.5 —92945.5 —92916.9 27.95 28.68 —700.3 —701.1
4 —92606.1 —92578.3 —93309.8 —93281.2 27.83 28.56 —702.9 —703.7
5 —92767.1 —92739.3 —93471.9 —93443.4 27.79 28.52 —704.1 —704.8
6 —92849.2 —92821.4 —93554.6 —93526.1 27.76 28.49 —704.7 —705.4
7 —92895.3 —92867.6 —93601.1 —93572.6 27.75 28.48 —705.0 —705.8
8 —92923.2 —92895.4 —93629.2 —93600.7 —705.2 —706.0
9 —92941.0 —92913.3 —93647.1 —93618.6 —705.4 —706.1
10 —92952.9 —92925.2 —93659.1 —93630.6 —705.4 —706.2
o —92989 —92961 —93695 —93667 27.7 28.5 —705.6 —706.4

*Factorizable coupled-cluster doubles (see Sec. II).
®Coupled-cluster doubles (see Sec. II).

“Factorizable coupled-cluster singles and doubles (see Sec. II).
dCoupled-cluster singles and doubles (see Sec. II).

TABLE VI. Change in the contributions to the correlation energy from different excitations due to
the nonfactorizable S% diagrams (D-C from Tables V, IX) and due to the single excitations (C-4 from

Tables V,IX). Energies given in phartrees.

Be Li~
Nonfactorizable S3 Singles Nonfactorizable S3 Singles
N 2s-2s +2s-1s —0.063 43.6 0.38 183.9
1s-2s +1s-1s 0.0001 —0.10 0.0003 —0.024
s, 152 0.96 44.8 118 473
1s2s —6.70 —151.2 —3.03 —178.8
2s? 343 —643.5 254 —925.5
Total 28.5 —1706.4 23.9 —873.1

TABLE VII. Comparison with other calculations of the correlation energy for Be. Correlation ener-

gies are given relative to Eyr = — 14.573 023 hartree. Energies given in mhartree.
This work LS(80)* JRR(82)° JMSZ(84)° AMS(88)¢
Second order —76.358 —76.28 —76.28 —76.35
Third order —8.867 —8.96 —8.86
FCCD —92.989 —93.00° —92.89 —92.983
CCD —92.961 —92.96° —92.86
FCCSD —93.695
CCSD —93.667
Monte Carlo —93.403)f
Full Cl —94.305(25)8

2Lindgren and Salomonson (Ref. 14).

bJankowski, Rutkowska, and Rutkowskii (Ref.24).
“Jeziorski et al. (Ref. 22).

dAlexander, Monkhorst, and Szalewicz (Ref. 16).

°In Ref. 14 the nonfactorizable S2 diagrams were only calculated to lowest order giving the contribu-

tion +0.04 mhartree.
fFrom Umrigar, Wilson, and Wilkins (Ref. 15).

gFrom Bunge (Ref. 13). The final result was obtained by adding the estimated STO basis function error
—0.407(23) mhartree and the full Cl truncation error —0.019(2) mhartree to the full Cl correlation en-

ergy of 93.879 mhartree.
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TABLE VIII. Comparison between using orbitals generated
with a HF or an OHFS potential when calculating the total en-
ergy for Be in the CCSD approximation. The contributions
from different excitations are given explicitly. Energies given in
mhartree.

HF OHFS
EHF/EOHFS _1457302 _14 54471
S s 0 —1.49
2s 0 —23.15
S3? 0.04 0.86
S, 152 —42.59 —42.04
1s2s —573 —-7.13
252 —45.39 —48.94
Total — 14 666.69 — 14 666.60

on the correlation energy occurs already in second order.
This makes it essential to use the CCSD method using
such potentials. To demonstrate this we have made a cal-
culation with an ‘“optimized” Hartree-Fock-Slater
(OHFS) potential?”?® of the 1522s Be™ configuration. In
this potential a local approximation of the exchange in-
teraction is made:

1/3
_Z(r) 3C | 3r(r)
Vours(r)=""—== —;52— 17

where we have chosen C=0.8 and n=1.15 and p(r) is the
radial electron charge density and Z(r)/r accounts for
the direct interaction.

A comparison between the HF and OHFS calculations
is given in Table VIII where the contributions to the total
energy from the different excitations are presented. On
the first line the expectation value of the total Hamiltoni-
an using ¥, is given showing quite a large difference be-
tween the two calculations to be recovered by the CCSD
expansion. As seen in the table the main part of the

difference comes from the S, excitation [Fig. 7(a)] involv-
ing the 2s electron giving —23.15 mhartree. All the S|,
S %, and S, excitations are, however, important to resolve
the difference in the expectation value of ¥, leaving a
difference of only 0.09 mhartree or 0.1% of the correla-
tion energy. This remaining difference is of course main-
ly due to the difference in the contribution from the S,
cluster.

C. Results for Li~

The negative lithium ion has the same configuration as
beryllium but the 2s electrons are much more loosely
bound and the size of Li~ is therefore much larger. A
preliminary comparison between the two systems con-
cerning total energies, detachment energies, and geome-
trical properties has recently been made®® showing large
similarities between the two systems despite their
different sizes. To cover the range of the Li~ system,
larger lattices than for Be were used with x;, =—7.6
and x_,, =5.4. As for Be three different lattices with 81,
91, and 101 points were used in this range for lattice ex-
trapolation and consistency check of this extrapolation.
The direct iteration of the coupled-cluster equations, in-
cluding singles and doubles, was found to diverge. To
achieve convergence it was necessary to apply a damping
factor between the iterations.

The correlation energies in the different approxima-
tions discussed in Sec. II are for Li~ presented in Table
IX. The effect of the nonfactorizable coupled-cluster dia-
grams and the effect of single excitations are also extract-
ed in this table and are found to have the same size as for
Be. The more detailed decomposition of these effects
presented in Table VI reveals, however, that the effect of
S, is much more important for Li~ than for Be. The
contribution from S$% is more than four times larger for
Li~ but is compensated by an even larger change of the
S, contribution due to inclusion of the S, cluster. A
peculiarity of Li~ is that the s-limit results are very sensi-
tive to the inclusion of singles as seen in Table IX.

The contributions to the correlation energy from the

TABLE IX. All-order correlation energies in various approximations for Li~ using HF orbitals. The effects of the nonfactorizable
S% diagrams, and the single-excitation cluster S,, are also given explicitly. Correlation energies are given relative to

Eyr= —7.428 232 hartree. Energies given in phartree.

FCCD CCD FCCSD CCSD Nonfactorizable S? Singles

l A B C D B—4 D—-C D—-B C—4

0 —22747.6 —22700.9 —24010.5 —23941.0 46.74 69.48 —1240.1 —1262.9
1 —66972.2 —66944.6 —67798.7 —67774.0 27.63 24.74 —829.4 —826.5
2 —69964.7 —69937.6 —70823.9 —70799.8 27.14 24.13 —862.2 —859.2
3 —70727.0 —70700.0 —7159%4.4 —71570.5 27.03 23.99 —870.5 —867.4
4 —71002.5 —70975.5 —71872.8 —71848.8 27.00 23.95 —873.4 —870.3
5 —71124.9 —71097.9 —71996.4 —71972.5 26.97 23.93 —874.6 —871.6
6 —71187.2 —71160.3 —72059.4 —72035.5 26.96 23.92 —875.2 —872.2
7 —71222.3 —71195.3 —72094.8 —72070.9 —875.6 —872.5
8 —71243.5 —71216.5 —72116.2 —72092.3 —875.8 —872.7
9 —71257.0 —71230.0 —72129.8 —72105.9 —875.9 —872.9
o —71293 — 71266 — 72166 —72142 26.9 23.9 —876.2 —873.1
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TABLE X. Contributions from the different excitations to
the CCSD correlation energy in different / limits for Li~ using
HF orbitals. Energies given in ghartree.

S, s?

! 1s? 1s2s 2s?

0 — 15430 —494 —8180 163.0
1 — 38769 —2305 —26873 173.4
2 —41 548 —2463 —26970 181.0
3 —42259 —2494 —27000 182.9
4 —42517 —2504 —27012 183.6
5 —42632 —2508 —27017 183.9
6 —42691 —2510 —27019 184.0
7 —42724 —2511 —27020 184.1
8 —42744 —2511 —27021 184.1
9 —42756 —2512 —27022 184.2
© —42790 —2513 —27023 184.3

different excitations are given in Table X. These can be
compared with the corresponding ones for Be in Table
IV. The 1s? correlation energy is almost identical for Be
and Li~. The 1s2s and 2s? correlation energies on the
other hand, are much smaller for Li~ than for Be. The
conclusion that the 2s? correlation is less important in
Li~ is not correct, however. Comparing with the F 0(2s52)
integral having the value 162.8 mhartree for Li~ and
343.2 mhartree for Be one can see that the relative impor-
tance of correlation in the 2s shell is larger for Li~ than
for Be.

In Table XI an attempt to estimate the total “‘experi-

TABLE XI. Estimation of the total nonrelativistic energy of
Li~ using the experimental ionization potential E;p and the
electron affinity Eg, of Li. Energies given in mhartree.

E(Li*)®? —7279.913
—Ep=[EL)—ELi")] —198.157
Mass polarization® —0.001
Relativistic effects? +0.016
—Eg,=[ELi")—ELD] —22.71(2)
Relativistic effects? —0.001
ELi™)f —7500.78(3)

*The nonrelativistic energy of Li* 1s? calculated by Pekeris
(Ref. 30).

®Experimental ionization potential 198.142 mhartree of Li from
Moore’s Tables (Ref. 31) corrected for the normal mass shift of
Li.

‘Experimental mass polarization from Lorenzen and Niemax
(Ref. 34).

dRelativistic corrections evaluated as the difference between
Dirac-Fock and Hartree-Fock calculations.

‘Experimental electron affinity recommended by Hotop and
Lineberger (Ref. 33) mainly based on the experiment by Feld-
mann (Ref. 32).

Total estimated nonrelativistic energy of Li~. The uncertainty
includes a rough estimate of the error in the relativistic effects
between Li~ and Li* due to the neglect of the Breit interaction,
relativistic correlation, and Lamb shift (see text).
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mental” nonrelativistic energy of Li~ is made. This esti-
mate is based on the accurate nonrelativistic calculation
for Li* by Pekeris’® and the experimental values of the
ionization potential®! (IP) and electron affinity’>* (EA)
of Li corrected for mass polarization and relativistic
effects. The mass polarization effect in the IP was taken
from the measurement by Lorenzen and Niemax>* while
the corresponding effect in the EA was assumed to be
negligible compared to the accuracy achieved. Relativis-
tic effects were estimated from Hartree-Fock and Dirac-
Fock calculations. An error of 50% of the relativistic
effects was assigned to account for the neglected effects of
the Breit interaction, relativistic correlation, and Lamb
shift. This size of the error is based on calculations on Be
showing a reduction of the relativistic corrections by
about 40% including these effects.?> The final result for
the total energy of Li~, —7500.78(3) mhartree, is some-
what larger in magnitude than the value —7500.40(20)
estimated from CI calculations by Sims et al.*

A comparison with other accurate calculations and
with ours, from experimental results, estimated nonrela-
tivistic energy is made in Table XII. Our CCSD calcula-
tion accounts for 99.4(1)% of the nonrelativistic correla-
tion energy, a result strikingly similar to the Be result
giving 99.3% of the correlation energy. Comparing with
the CCSD calculation of Canuto et al.>® using a
Gaussian-type basis set one clearly sees a basis set error
of about 6 mhartree in their calculation. A large part of
this error, however, is probably due to a poor description
of the 1s? shell and does not influence the 2s2 shell so
much. Canuto et al. have also calculated the effect of
the S cluster in an approximate way giving —0.2 mhar-
tree, but the numerical error in this value might be large
since the 1s core is not so well described. This value can
be compared with the difference —0.4 mhartree between
the estimated nonrelativistic energy and our CCSD calcu-
lation. Comparing with the combined CI-Hylleraas cal-
culation of Sims et al.3’ and the Monte Carlo calculation
of Umrigar et al.’” our CCSD calculation account for a
slightly larger part of the correlation energy.

The experimental electron affinity of Li is 22.7 mhar-
tree while the correlation energy of Li~ is a factor of 3

TABLE XII. Comparison with other calculations of the total
nonrelativistic energy for Li~. Correlation energies are given

relative to Eyp= —7.428232 hartree. Energies given in mhar-
tree.
Correlation Total energy
This work CCSD? —72.142 —7500.374
CCSD® —65.9 —7494.1
CI-Hylleraas® —71.96 —7500.19
Monte Carlo? —71.6(1) —7499.8(1)
Expt.© —72.55(3) —7500.78(3)

*Using numerical finite discrete spectra.

®Using a Gaussian-type basis set (Ref. 36).

‘Combined CI-Hylleraas calculations from Sims et al. (Ref. 35).
4From Umrigar, Wilson, and Wilkins (Ref. 37).

“Estimated nonrelativistic energy deduced in Table XI.
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larger. Since the total energy of Li is calculated with
high accuracy, 38,39 the main error in an evaluation of the
electron affinity would come from the omitted effects of
the S; cluster on the correlation energy for Li~. As
shown above these effects amount to about 0.6% of the
Li~ correlation energy and thus to about 1.8% for the Li
electron affinity. The CCSD method thus accounts for
98.2% of the electron affinity of Li.

IV. SUMMARY AND CONCLUSION

In this work we have presented an implementation of
the coupled-cluster single- and double-excitation method.
The presentation is based on a diagrammatic notation.
Redefinition of incoming and outgoing electron lines and
of the effective potential interaction leads to a great
simplification of the diagrammatic expression of the clus-
ter equations for single and double excitations and also to
a more efficient evaluation scheme.

We have in this work solved the coupled-cluster equa-
tions in the CCSD approximation by using numerical
discrete spectra.! Our results show that a truncation er-
ror less than 1 phartree is easily obtained using this
method. We here emphasize the importance of using
computational methods giving truncation errors smaller
than the omitted physical effects.

Calculations have been performed for the total energy
of Be and Li~. The CCSD method was found to account
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for 99.3% and 99.4% of the correlation energy for these
systems, respectively. The main part of the omitted
effects comes from the triple-excitation cluster. Also per-
formed is a comparison between calculations using
Hartree-Fock spectra and Hartree-Fock-Slater spectra.
This comparison shows that the total energy depends
very little on the potential used in defining the perturba-
tion expansion when the CCSD method is used. The
reason for this is the inclusion of all powers of the S,
cluster accounting for single excitations. This is advanta-
geous since using other potentials than the HF potential
might be more physical and might improve convergence
properties. So far we have presented calculations on heli-
umlike' and berylliumlike systems. However, our inten-
tion is to use the CCSD method for heavier atoms where
relativistic effects are important. We have therefore also
developed a relativistic CCSD program? and calculations
on heavier atoms are planned to be presented in forth-
coming papers.
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