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Relativistic calculation of the 2 'S, —1 'So magnetic dipole transition rate
and transition energy for heliumlike argon
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A calculation of the magnetic dipole transition 2'Sl -1 'So in heliumlike argon is presented. The
calculation is performed in a relativistic framework and includes the Coulomb interaction, in the
no-virtual-pair approximation, to all orders. Contributions from the exchange of virtual photons,
i.e., from the Breit interaction, are of the same formal order of magnitude as contributions from the
Coulomb interaction and are treated on the same footing. The combination of a relativistic treat-
ment and the inclusion of correlation in the calculation results in an improved accuracy compared
with previous calculations. The lifetime of the 2 Sl state is predicted to be 209.4+0.4 nsec, which
includes an estimate of neglected efFects, +0.2 nsec, and numerical errors, +0.2 nsec. This result

agrees with experiment, 202+12 nsec, within present error bars. A detailed breakdown of the con-
tributions to the transition energy is also presented. The contribution to the ground-state energy of
Ar' + from the mixture of the Breit and the Coulomb interaction is calculated to all orders. This
contribution is 9% smaller than the result in the Pauli approximation.

I. INTRODUCTION

The transition from the 1s2s S state to the ground
state of helium and heliumlike ions is dominated by the
magnetic dipole decay. This was demonstrated by
Griem' following the work by Gabriel and Jordan, who
observed the decay of the 1s2s S state in solar plasma
and it was in contradiction with the earlier suggestion by
Breit and Teller that the decay should be dominated by
multiphoton processes.

The first measurement of the decay of a 2 S state was
done on heliumlike argon by Marrus and co-workers
using beam-foil spectroscopy. The measured lifetime was
172+30 nsec while most theoretical predictions available
at the time 's or produced later ' range from 205 to
215 nsec. These theoretical predictions are, of course, of
varying accuracy as will be discussed below. In a later ex-
periment' efforts were made to avoid the spurious depen-
dence on the distance from the foil which had been seen
by Bednar et al. ' in experiments with chlorinelike and
sulfurlike helium. This second measurement gave a life-
time of 202+20 nsec for Ar' +. Lin and Armstrong'
have tried to explain the position-dependent results with
the presence of Li-like ions in the ion beam. Certain
configurations of the Li-like ions can undergo a M1 tran-
sition of a very similar transition energy as the heliumlike
ion. Since these configurations of the Li-like ion can de-
cay also by autoionization, the lifetime will be shorter
than for the heliumlike ion. A measurement which can-
not distinguish between the two ions will then measure a
too short lifetime for heliumlike argon.

Recently, Hubricht and Trabert' measured the life-
time of 2 S of heliumlike argon using slow recoil ions
produced by heavy-ion —atom collisions. The x-ray radia-
tion is measured in coincidence with the recoil ions.
Their result is 202+12 nsec and there is hope for new ex-
periments with an accuracy of 1 —2%%ui in the near fu-

ture. ' This makes new theoretical efforts interesting.
The aim of the present work is to obtain an accuracy well
below 1%.

The magnetic dipole transition from 2 S to 1 'S is a
purely relativistic effect and the leading contribution to
the transition matrix element is of order a Z a.u. Ear-
lier theoretical works have been either relativistic, but
then inside a one-particle description of the ion, ' "" or
made in the Pauli approximation using nonrelativistic but
correlated wave functions as in the work by Drake and
by Anderson and Weinhold. ' The most important of the
missing terms in Refs. 7 and 12, i.e., higher-order relativ-
istic terms which contribute in relative order a Z, has
been explicitly calculated by Lin. ' ' This correction can
be added to the very accurate nonrelativistic results '
and will then give a prediction of the lifetime with an ac-
curacy of approximately 1%, as will be discussed further
in Sec. VI. In recent years a development has taken place
which has made possible relativistic calculations of much
better accuracy. Relativistic correlation can now be
treated to all orders as demonstrated on neutral helium
by Blundell et al. and Salomonson and Oster and on
lithium and beryllium+ by Blundell et al. In the
present work, which uses the method developed by Salo-
monson and Oster, the magnetic dipole transition rate
from 2 S to 1 'S in heliumlike argon is calculated rela-
tivistically using completely correlated wave functions.
This applies to correlation due to the Coulomb as well as
to the Breit interaction. Due to the purely relativistic na-
ture of this transition the effect of the Breit interaction
enters in the same formal order as the Coulomb interac-
tion, i.e., it gives contributions of order a Z a.u. to the
magnetic dipole matrix element. This will be discussed in
Sec. IV. The mixture of the Breit interaction and other
perturbations is an interesting subject which has not been
studied in any detail in the literature. In a recent calcula-
tion Lindroth et al. studied the effect of the inclusion of
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II. MAGNETIC DIPOLE TRANSITION

Formulas for electric and magnetic multipole transi-
tions have been given in some detail by Akhiezer and
Berestetsky and by Grant and only a brief introduc-
tion will be given here. We consider an atom interacting
with the photon vector potential

H=gca; (p;+e A;)+Pm;c— + Q V.. . (2.1)
4me0 r,. &J

where the transverse vector potential A, when expressed
in plane waves, is given by

' I/2 —i(k r, —cot)
[Qk qeqeA(i) =g

2a)e0 V

i (k.r —cot)
+Ok qeqe ]

I /2

2coe0V
(2.2)

(Formulas and equations are given in SI units. Howev-

the Breit interaction in the orbitals on the same footing
as the Coulomb interaction when evaluating the enhance-
ment of a possible electric dipole moment of the electron.
The expectation value of various powers of r were also
studied. The enhancement factor prediction for thallium
decreased with 2% and the expectation value of, e.g., r
with as much as 5%%ug. Even in cases when the Breit in-
teraction enters in relative order a Ry it may thus have a
significant effect. For the transition rate 2 S& —1'S0 in
heliumlike argon the result, when hydrogenlike wave
functions are used to calculate the M1-matrix element, is
overestimated with slightly more than 15%. The effect
due to the Breit interaction is about a seventh this and
opposite in sign. A neglect of the Breit interaction would
then lead to an underestimate of the transition rate with
2%, i.e., an overestimate of the lifetime with the same
fraction.

The effect of Breit interaction on the M1-matrix ele-
ment was included by means of the Pauli approximation
in Refs. 7 and 12. In Ref. 13 the effect of the Breit in-
teraction in the wave functions was not considered.

In Sec. II a review of the basic theory is given. The
calculation method is discussed in Sec. III and finally the
results are given in Secs. IV and V.

(2.3)

where

E„—E„.

A plane-wave description of A, as in (2.2), is not suitable
for our present problem and an expansion into spherical
waves can be obtained by using the relation

e e '""=e g( —1)'(2l+1)j&(cur/c)PI(cosy),
1=0

(2.4)

which can be found, e.g., in Ref. 29. In expression (2.4}j&

are spherical Bessel functions and P1 Legendre polynomi-
als with y the angle between k and r. For convenience
we may consider the plane wave moving in the z direction
with polarization vectors e where q =+1 corresponds to
left and right circular polarization. Note that this z axis
is independent of the direction of quantization of the
atomic states. The relation (2.4) can then be written

eze '"'= g( —i)'(21+1)j&(cur/c)
1=0

1 /2
4m

(2l +1) ee Yio(~ q'} (2.5)

where 8 is the angle between r and the z axis. The matrix
element in (2.3) can now be written

er, in the subsequent sections numbers are usually given
in atomic units, a.u. , where e, ~, 4m.e0, and m, have the
value unity and the value of c, the speed of light, is
1/a=137.} The dimensionless vector Ak has been in-
troduced for later convenience. V,. is the two-particle
potential including the Coulomb and the Breit interaction
between the electrons. The choice of V;. as well as the re-
lated problem with projection operators will be discussed
in Sec. III.

The lifetime for a certain state is the inverse of the
transition rate summed over all possible final states. Ex-
pressions for transitions rates between states n and n

' for
a photon emitted into a solid angle element d Q can be
found, e.g., in Ref. 28,

3
2A~g=, n'I —a A~~In) df(,kq 3 4 1 a), ec

8~ 3& 4~e0 c3 N

n' —a A„n = n' x —
(
—(((2(+((j,(rai/c)a e co n),

ec , ec ~ 1

1=0

where the components of the C tensor is related to the spherical harmonics as
' 1/2

C1

(2.6)

The scalar product a.e gives the q component of a. We can express a C0 in terms of coupled operators of well-
defined rank as

a~Co =g [ac g( 1 qlO~Lq ) .
L
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This can be used to rewrite (2.6}as follows:

(
n' X Z—( —()(2(+()j&( n/nn))aG) ()q(0)/q) n) .

1=0 L
(2.7)

The study of the transition 2 S& —1 Sp requires an interaction which preserves parity and, in order to allow a transition
from J =1 to 0, is in the form of a tensor operator of rank one. Only the term with l =L =1 in the expansion (2.7), i.e.
the magnetic dipole term, has this property.

The aim is now to get an expression for the transition rate due to the magnetic dipole interaction. For this special
case, where the interaction is in the form of a tensor operator of rank one, we may proceed as follows. With L =I =1
the expression (2.3) can now be written

2 2

n' —j,(nn/n))nC')' nl nn dQ,
3 4 1 co, —i3 ec.

(2.8)8n. 3 4@co c3 2
n

4 1 co 1n' 2
3

A„— (M„~ ) (2.9)

where the magnetic dipole operator M' is given by

M'= j,(~r//c }(aG')' .
—i3ec .

2' (2.10)

The lifetime for a certain magnetic substate of 2 S, is ob-
tained as the inverse of the transition rate (2.9) averaged
over initial states and summed over final states, i.e., as the
inverse of

1 4 1 ~
~

~~'L'J'M'~2
nLJ 2J+1 3f 4 3 g ) nLJM I

~ (2.11)

It may be noted that the transition rate from a particular
state nLJM to all the magnetic substates M' of the state
n'L'J', without regard to the polarization of the emitted
radiation, is independent of M.

It is illustrating to examine the M1 operator in the
nonrelativistic limit as well as in the limit of small energy
transfer. For small values of cur/c a series expansion of
the Bessel function would be valid and in lowest order it
gives

—rer
& &

eM' = (aC' J
' =—a Xr,v'2 2

(2.12)

which is the result for homogeneous magnetic field over
the region of the atom. For the 2 S, —1 'S0 transition,

where e, with q =61, is either of the two circular polar-
ization vectors of the transverse vector field A. The q
component, corresponding to the photon coordinate sys-
tem, of the spherical vector ( n '~

t aC'J '~ „) is here writ-
ten as a scalar product of this vector and the photon po-
larization vector e~. The summation over the two polar-
izations e for each direction of k, and a following in-
tegration over the directions of k, can now be performed
noting that the integration is equivalent to an integration
over all angles between the two vectors in (2.8). This is
shown in detail in Ref. 28. The transition rate between n
and n' can now be written in the usual form given, e.g.,
by Bethe and Salpeter,

which lies in the x-ray region, such an approximation is
not valid and we will use the full expression (2.10}. In the
vicinity of the involved energies, around 3 keV, the Ml-
matrix element scale approximately linearly with the en-
ergy transfer and the use of (2.12) would lead to an
overestimate of the M1-matrix element with around
40%.

In the nonrelativistic limit, i.e., after a lowest-order
Foldy-%outhuysen transformation has been performed,
(2.12) reduces to

2mc
(l+2s ) = (l+2s) .

c))l
(2.13)

For the transition in question the operator (2.13) gives
zero. Since it has no radial dependence, it cannot com-
bine states with orthogonal radial function as the ls and
2s one-particle states. Even for the exact 1 So and 2 S&

1 3

states (2.13) will give zero due to the symmetric respec-
tive antisymmetric nature of the radial functions. Drake
has carried the Foldy-Wouthuysen transformation one
step further and obtained the first nonvanishing M1
operators to be used in the nonrelativistic limit. We will
instead employ the original operator (2.10). This opera-
tor is notationally of order a, but since the first nonrela-
tivistic limit does not contribute to the transition in ques-
tion, the size of the contributions from the operator will
instead be of order a Z a.u. The cancellation of the a
term has to be obtained by numerical means. Some care
must be taken to assure numerical stability. An advan-
tage of the method used by Drake is, of course, that this
cancellation then is taken care of explicitly. However, an
accuracy of more than 2% cannot be obtained in helium-
like argon without the inclusion of relativistic elects
beyond the lowest nonvanishing order. Since the M1
operator contributes in order a Z a.u. the leading con-
tribution to the transition rate (2.9}will be of order a9Z'0
a.u. and it is thus rapidly growing with Z as is well
known.

It may be noted, as clearly seen in (2.13), that the M 1
operator is defined in units of the magnetic dipole mo-
ment divided by C. This is a convenient definition which
gives the familiar form of the transition rate (2.9), i.e., the
same form of the transition rate as for an electric dipole
transition, albeit with the electric dipole operator re-
placed by M'.
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III. RELATIVISTIC PAIR FUNCl ION 'P =
t @ @b+P b(1 2) I (3.5)

~0

Recently, Salomonson and Oster have shown how rela-
tivistic all-order pair functions can be obtained by sum-
mation over a complete set of eigenvectors to a discre-
tized single yarticle Dirac Hamiltonian, e.g., the Hamil-
tonian for a hydrogenlike system,

where the curly brackets denote antisymmetrization and
4 is an eigensolution to the one-particle Hamiltonian h
If we choose to work with nonantisymmetrized pair func-
tions, as was done in Ref. 22, the pair function p can be
written

e eZ
b; =ca;.p;+Pm;c-

4n.eo r,
(3.1) Irs)(rsIA, +,

+
V,,A,+, +Iab+p„)

Pb= X
rsvp ah, ba

E'a 6'b E'r E's

The pair functions should describe the interactions
among the electrons. It is well known that the extension
of the Dirac equation to the many-electron atom requires
some special considerations. ' The direct addition of
the Coulomb

Ip,d ) ( cd
I A,J

+
v;~ A,~

+
I
ah +p, b )

cd =ah, ba a +E'b Cr 6s

(3.6)

'
& '47T&o rij

and/or the Breit interaction

(3.2)

2 4~eoi

a, a (a;r, }(a r,")
r.

LJ r;j
(3.3)

H =+ca, p, +Pm, c + gA" V.A++,
4 e r i (j

(3.4)

where V;, when working in the Coulomb gauge and
neglecting terms in the Hamiltonian which contributes
beyond order a Ry to the eigenvalue, is given by the sum
of (3.2) and (3.3) above. The projection operators A++
give unity when working on products of positive-energy
solutions to (3.1) and zero when working on products in-
volving at least one negative-energy solution.

The eigenstates to H for a heliumlike system can be
written as

(given above in the limit of small energy transfer between
the electrons) to the Dirac Hamiltonian is obviously
wrong since such a Hamiltonian would allow bound
states to autoionize, emitting one electron into the
positive-energy continuum and another electron into the
negative-energy continuum. In order to respect that the
negative-energy states are not available for the electrons,
unless a hole has been created by a proceeding produc-
tion of an electron-positron pair, the positive- and
negative-energy continua have to be treated differently.
Formally this is done by surrounding the two-particle
operators with projection operators. When working with
a discrete basis set, as in the present work, such projec-
tion operators are easily obtained as restrictions in the
summation over excited states. If the two-particle opera-
tors are surrounded by projection operators onto
positive-energy states, that implies a neglect of the effects
caused by creation and subsequently annihilation of vir-
tual electron-positron pairs. Such effects contribute
beyond a Ry to the energy. If this no-virtual-pair ap-
proximation is used, the Hamiltonian for a many-electron
system in the absence of the photon vector potential can
be written

A first approximation of p is obtained if the pair function
is neglected on the right-hand side of (3.6). An iterative
scheme can then be set up to obtain the full pair function
as described in Ref. 22.

In order to calculate the transition rate (2.11) it is
necessary both to know the transition energy to the
desired accuracy and to calculate the transition matrix
element. The contributions to the energy which are cal-
culated in this work are treated within the no-virtual-pair
approximation. This is discussed in Sec. IVB. For the
transition matrix element, however, a certain class of
virtual-pair contributions have been included. The M1
operator is a one-particle operator and it is thus possible
to include it in the single-particle Hamiltonian. This cor-
responds to a redefinition of the meaning of positive- and
negative-energy states. Positive-energy eigenstates to the
Hamiltonian

h, =h, +eca, A, (3.7)

include effects of the M1 operator, which corresponds to
the creation and annihilation of electron-positron pairs
when described from the point of view of Hamiltonian
(3.1). Since the M 1-matrix element is off-diagonal, i.e., it
mixes small and large components in the wave function,
these effects will contribute in order a Z, i.e., in leading
order in the fine-structure constant a. The calculation of
the transition matrix element is discussed in Sec. IV A.

IV. CALCULATION OF THE MAGNETIC DIPOLE
TRANSITION RATE

A. Magnetic dipole matrix element

The lowest-order contribution to the magnetic dipole
matrix element (2.10) is given in Fig. 1 and is of order
a Z a.u. as mentioned in Sec. I. In Table I the contri-
bution from this diagram is given using hydrogenlike
wave functions; the xesult is 2.296 198X 10 a.u.
Through the spherical Bessel function j&(d'or/c) in (2.10),
the matrix element depends on the energy for the transi-
tion in question. We have here used co= 114.072 as given
in Table III and discussed further in Sec. IV B. For com-
parison, the value obtained with hydrogenlike energies is
2. 160 926 X 10 a.u.

In Fig. 2 diagrams containing correlation in the initial,
(a) —(d), or final, (e)—(h), states are shown. The two-
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FIG. 1. Lowest-order contribution to the M1-matrix ele-
ment. There is also a corresponding diagram with the M1 in-
teraction in index 1, where particle one and two in the initial
state have been exchanged.

particle interaction can be either the Coulomb or the
Breit interaction. The diagrams in Fig. 2 that contain
positive-energy solutions to hD only contribute in order
a Z for the Coulomb interaction, (a) and (e) but for the

Breit interaction, (c) and (g), there will be an additional
factor of a Z since the Breit interaction mixes large and
small components of the wave function. For comparison,
these diagrams are anyway included in Table I. For the
diagrams in Fig. 2 which contain a sum over negative en-
ergy states, i.e., (b), (d), (f), and (h), in one index the situa-
tion is quite different. The M1 operator is approximately
proportional to the matrix element of axr, as can be seen
in (2.12). Since the Dirac operator a gives unity between
positive- and negative-energy states the matrix element
will be governed by the integral over r which is of the or-
der 1/Z. The Breit interaction gives a factor of aZ in
each index when evaluated between positive-energy
states, but is of the order unity when evaluated between
one positive- and one negative-energy state. The opposite
is true for the Coulomb interaction. In addition, the radi-
al integral over 1/r, z gives a factor of Z in either case.
Finally, the creation of a virtual electron-positron pair
gives an energy denominator of order 2mc . In both

TABLE I. Contributions to the M1-matrix element from Figs. 1, 2, 3, and 4.

M1-matrix element
(a.u. )

Transition rate
(sec ')

Hydrogenlike wave functions, '
energies from Table III

"Second order" (pure second order
is given in parentheses)'
Coulomb

Breit

Fig. 1

Fig. 2(a),
Fig. 2(e),
Fig. 2(b),
Fig. 2(f),
Fig. 2(c),
Fig. 2(c),
Fig. 2(g),
Fig. 2(d),
Fig. 2(d),
Fig. 2(h),

)i, )
fi )
fi

li+ ),

li+ )
/i

/i ),

1;=0
I;=2

1, =0
1, =2

+2.296 198X 10

—0.1213 ( —0. 1227) X 10-'
—0.0475 ( —0.0448) X10-'
—0.0112 ( —0.0118)X10-'
—0.0126 ( —0.0123)X 10-'
&1.10-"
&1.10 '
—0.0005 X 10-'
—0.0078 X 10-'
+0.0078 X 10-'
+0.0238 (+0.0238) X 10

5.587 888 X 10'

"Third order"
Coulomb

Breit

Normalization contribution
Sum (numerical error

is given in parentheses)
Neglected effects'

Fig. 3(a)
Fig. 3(b)
Fig. 3(c)
Fig. 4(b)
Fig. 4(fl

—0.0018X 10-'
& 1X10
+0.0007 X 10-'
+0.0004X10-'
—0.0012X10-'
—0.0025 X10-'

2.123{1)X10-' 4.775(5) X 10

(5)

'This value is calculated using analytical wave functions obtained in a point nucleus potential. The use of the potential from an ex-
tended nucleus would reduce the value with less than 0.001%.
The M 1-matrix element itself depends on the transfer energy and the use of hydrogenlike (Dirac) energies, co= 121.9845 a.u. , gives a

M1-matrix element of 2.160926X 10 a.u. and a transition rate of 6.051 890X 10 sec.
~i ) denotes the intermediate line in Fig. 2. In Fig. 2 lines going up represent positive-energy states ~i+ ) and lines going down

negative-energy states ~i ).
It is often convenient in perturbation theory to use intermediate normalization, i.e., the initial one-particle description of the two-

particle wave function is normalized, leaving the total wave function unnormalized. The total result has then to be divided with the
norm, in this case (4;„;„„~4;„;„„1)'~'(%„„„~%«„l)'~'.
'The most important of the neglected effects are probably due to retardation beyond the Breit interaction and to radiative effects as
discussed in Sec. IV A 1.
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ls ls ls ls IL"

(a) (b) (c)

ls ls ls ls ls ls ]s . ls

LI XZ. LI
ls 2s ls 2s

(e) (g)

FIG. 2. These contributions to the M1-matrix element enter
in second and higher orders. A line with a dot represents the
Breit interaction. The double lines indicate that the Coulomb
interaction has been iterated to all orders. The Breit interaction
has been kept to lowest order, but it has been allowed to mix
with the Coulomb interaction to all orders. It is, however, only
when the Breit interaction is evaluated between one negative-
and one positive-energy state that it is contributing in leading
order as discussed in Sec. IVA. Lines going down represent
negative-energy states. The addition of exchange diagrams as
well as diagrams with the M1 interaction in index 2 is assumed.

cases we thus get a contribution a Z a.u. In Table I it
can be seen that these entries (e.g. , the third, fourth, and
tenth lines) are indeed of the same order of magnitude
and, in addition, there is a detailed cancellation between
these terms. The contribution for the Breit interaction
including positive-energy intermediate states only (e.g. ,

the fifth, sixth, and seventh lines) is one order of a Z
smaller. The largest contributions from Fig. 2 comes nat-
urally from the Coulomb interaction including positive-
energy solutions (a) and (e), since these diagrams account
for the screening of the nuclear charge by each electron
as seen by the other.

One may question the use of the frequency independent
form of the Breit interaction (3.3) between positive- and
negative-energy solutions to hD (3.1), as in Figs. 2(d) and

2(h), since the approximation (3.3) is valid only in the lim-
it of small energy transfer between the electronic states.
However, the intermediate states in Figs. 2(d) and 2(h),
although negative-energy solutions to the Hamiltonian
hD, are actually part of a positive-energy solution to
Hamiltonian (3.7).

The double lines in Fig. 2 indicate that the Coulomb
interaction has been iterated to all orders where the con-
tributions in each iteration decrease as 1/Z. The Breit
interaction has been kept to lowest order, but it has been
allowed to mix with the Coulomb interaction to all or-

Table I includes all contributions to the M1-matrix ele-

ment of order o, a.u. The combination of radiative
effects and the M1 interaction will give contributions of
order a (ina)Z a.u. , but all such terms can be shown

ls ls ls ls ls ls

]4LI
1 s 2s

(a) (b) (c)

FIG. 3. Contributions to the M1-matrix element which enter
in third and higher orders. Lines going down represent
negative-energy states. The addition of exchange diagrams as
we11 as diagrams with the M1 interaction in index 2 is assumed.

ders. In Table I the results from Fig. 2 are shown. The
contributions obtained in pure second order, i.e., with the
two-particle interaction in Fig. 2 representing one in-
teraction only, has been separated out for comparison.
For the Coulomb interaction only intermediate s states
contribute in pure second order. For the Breit interac-
tion, however, even d3/2 states will contribute to the
correlation in the 2 S, state. However, to order a Z a.u.
the Breit contribution in the 2 S& state vanishes. This is
expected since for S states in the nonrelativistic limit the
Breit interaction is proportional to a 5 function 5(r, 2)

when evaluating between product functions. The triplet
state has no charge density at r, =r2 and a matrix ele-
ment of 5(r, z) will then vanish.

The diagrams in Figs. 3 and 4 contribute in third and
higher orders. The diagram 3(a), which includes
positive-energy states only, contributes in order u a.u.
for the Coulomb interaction. The corresponding dia-
grams for the Breit interaction 4(a) and 4(d) is one factor
of a Z smaller and has not been considered here. Even
the diagrams which include one negative-energy state,
3(b) and 3(c), contribute in order a a.u. for the Coulomb
interaction. The corresponding Breit interaction dia-
grams contribute also in order a a.u. when the Breit in-
teraction is evaluated between one positive- and one
negative-energy state, as in diagrams 4(b) and 4(f). This
can be understood in the same way as for the correspond-
ing diagrams in Fig. 2. Diagrams 4(c) and 4(e) are a fac-
tor of a Z smaller and are thus neglected.

The result for the lowest-order diagram, Fig. 1, is ob-
tained with analytical wave functions. The contributions
from Figs. 2, 3, and 4 are obtained with pair functions in
two grid sizes, 91 and 121 points in each direction. The
results have then been extrapolated. The partial wave ex-
pansions includes up to d excitations. As a test a calcula-
tion including up to h excitations has also been per-
formed for the smaller number of grid points. The
difference cannot be seen in the number of figures quoted
here.

Neglected sects
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)y' Qls

]4
]4

P'L" 1s 1s

LI
ls 2s

1s ~~ 1s

1s 2s

1s WW 1s

1s 2s

{a) (b)

1s

)4
]4

(d)

1s 1s

1s 2s

{e)

1s 1s

LI
1s 2s

FIG. 5. Examples of contributions to the M1-matrix element
which are not included in the calculation. (a) illustrates the
contributions from the self-energy; (b) shows a contribution
from retardation beyond what is concluded in the Breit interac-
tion. As in Figs. 2-4 there are also corresponding diagrams
with intermediate lines going down, representing negative-

energy states.

FIG. 4. Contributions to the M1-matrix element, involving
the Breit interaction, which enter in third and higher orders.
The Breit interaction is represented by the line with the dot.
Lines going down represent negative-energy states. The addi-
tion of exchange diagrams as well as diagrams with the M1 in-

teraction in index 2 is assumed.

to cancel. ' Radiative effects also give rise to contribu-
tions of order a Z a.u. as do contributions from retarda-
tion effects beyond what is included in the Breit interac-
tion, such terms are illustrated in Fig. 5(a) and 5(b), re-
spectively. As reviewed by Sucher, ' even all terms of
this order cancel. Remaining neglected terms, which
arise from radiative effects and from virtual-pair correc-
tions to the electron-electron interaction, are of order
a Z a.u. Since this is a/Z relative to the leading contri-
butions, we estimate the neglected contributions to the
M1-matrix element to 0.001 X 10 a.u.

B. Transition energy 1 'So-2 S1

The result for the transition energy is summarized in
Tables II and III. The one-particle energies, which are
given in Table II, are described by the Dirac energy, the
reduced mass correction, and the Lamb shift as given by
Johnson and Soff. In Table III the two-particle contri-
butions to the energy in heliumlike argon are added. The
correlated Coulomb and Breit interactions are obtained
by using pair functions to all orders as discussed in Sec.

III. The Breit interaction itself is treated in lowest order,
but it is permitted to mix in all possible ways with the
Coulomb interaction, Fig. 6. The Breit interaction is
very small in the 2 S1 state. This is since the nonrela-
tivistic limit of the Breit interaction vanishes for a triplet
S state when it is described by product functions as dis-
cussed in Sec. IV A. Both the Coulomb and the Breit in-
teractions are treated in the no-virtual-pair approxima-
tion. Contributions that include one or several virtual
electron-positron pairs will enter in order a Z Ry.
Compared with the corresponding no-virtual-pair contri-
butions, given in Table III on the fourth and fifth lines,
this is in relative order a Z Ry for the Coulomb and aZ
Ry for the Breit interaction. Higher-order retardation is
also contributing in order a Z Ry. The errors given in
Table III for the higher-order two-particle contributions
are mainly due to these two sources. The main total er-
ror in Table III comes, however, from the neglect of the
screening of the self-energy. This effect was considered
by Indelicato, Gorceix, and Desclaux in a calculation of
the transfer energy of several of the allo~ed transitions
among the n =1 and 2 shells in heliumlike systems. They
included the screening of the self-energy with an approxi-
mate method and a comparison with their results indi-
cates that 10% of the one-particle self-energy is a likely
contribution for heliumlike argon.

The transition rate (2.11) depends on the cube of the
transition energy. In order to assure accuracy of 0.1%,

TABLE II. Energies for the 1s and 2s states of hydrogenlike argon (Z =18) given in atomic units.
The error in the last digit is given in parentheses.

2$

Dirac energy
Reduced mass correction
Lamb shift'

—162.7049
0.0022
0.0419(0.2)

—40.7204
0.0006
0.0057(0.03 )

121.9845

Sum —162.6607(0.2) —40.7142(0.03 ) 121.9465(0.2)

'Johnson and Soff (Ref. 36) include self-energy (0.0447 a.u. for the 1s state and 0.0060 a.u. for the 2s
state) and other e8'ects such as vacuum polarization, field shift, etc.
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TABLE III. 1 Sp and 2 Si energies of heliumlike argon, given in atomic units. The error in the last digit is given in parentheses.

One-particle energies
(See Table II)

First-order Coulomb interaction
First-order Breit interaction
Higher-order Coulomb interaction'
Higher-order Breit interaction
Screening of the self-energy'
Mass polarization

1 'So

—325.3214(0.4)
11.3223
0.0780

—0.1584(3)
—0.0085( 10)

(40)
(2)

2 Si

—203.3749(0.2)
3.4068

(1X10 '
—0.0484(1)
(1X10

(5)
(1)

121.9465(0.2)
—7.9155
—0.0780

0.1100(4)
0.0085( 10)

(45)
(1)

Sum' —314.0880(60) —200.0165(7) 114.072(7)

'The errors given are mainly due to the neglected effects of virtual electron-positron pairs. Such effects enters in relative order a'Z'
Ry. The numerical errors are estimated to one unit in the last digit for 1 'SD and less than that for 2 'Si. These errors may also easily

be reduced by a more detailed study of the effect of the numerical grid size as was done in Ref. 22.
The calculation giving higher-order Breit interaction, i.e., the mixture of one order of the Breit interaction itself and all orders in the

Coulomb interaction has been performed inside the no-virtual-pair approximation and the error given is a rough estimate of the pos-
sible contributions from one or several intermediate virtual pairs. The numerical accuracy for the no-virtua1-pair calculation is dis-

cussed in Sec. V.
The main error given in the final numbers are due to the screening of the self-energy which is supposed to contribute with approxi-

mately 10% of the one-particle self-energy (Ref. 37).
For s states the mass polarization does not contribute in lowest order. Therefore it is rather small and contributes approximately

with 10% of the reduced mass contribution (see Table II).

1s 1s 1s lg is

FIG. 6. Contributions to the energy of the ground state of
helium-like systems caused by the Breit interaction in the no-
virtual-pair approximation. The double line indicates that the
Coulomb interaction has been iterated to a11 others.

the transition energy has then to be known within three
units of the fifth figure. The results in Table III are well
below that.

The mixture of the Breit and Coulomb interactions has
been treated to lowest order in helium and lithium by
Johnson and co-workers. ' The magnetic part of the
Breit interaction was calculated for a few heliumlike sys-
tems to that order also in Ref. 21. In that work s excita-
tions were also treated to all orders. Gorceix, Indelicato,
and Desclaux, have performed a rnulticonfigurational
Dirac-Fock (MCDF) calculation, including some effects
beyond lowest order, for the mixture of the magnetic and
the electrostatic correlation. However, no complete rela-
tivistic all-order calculation has been presented in the
literature for the Breit interaction. Since the Breit in-
teraction is interesting in itself, we present in Sec. V a
somewhat more detailed calculation of this interaction in
the ground state than what is actually needed to predict
the transition energy for the magnetic dipole transition.

V. BREIT INTERACTION

The effect of the exchange of one transverse virtual
photon between the electrons can, when treated in
Coulomb gauge and in the limit of small energy transfer,
be shown to lead to the Breit interaction as given in (3.3).
A convenient formula for evaluating (3.3) has been given,
e.g., by Grant and Pyper. When hydrogenlike wave
functions are used, the expectation value of this operator
gives a contribution of order a Z Ry. In second and
higher order (3.3) can mix with the Coulomb interaction
and, provided it is evaluated between positive states only,
it then gives correctly all contributions to order a Ry. If
effects beyond that, as effects corresponding to creation
and annihilation of virtual electron-positron pairs, are to
be considered, it is no longer suScient to treat the ex-
change of virtual photons in the limit of small energy
transfer. The interaction to use in that case has been
given by Brown ' and Mittlernann.

An alternative form of the Breit interaction is obtained
if Feynman gauge is used. The two alternative forms can
be shown to give identical results when the expectation
value is evaluated between single-particle states obtained
in a local potential. However, when treated together
with the Coulomb interaction, the agreement between the
two forms is not as easily obtained. ' As shown by Ref.
45, crossed photons have to be considered in Feynman
gauge in order to take all effects of order a Ry into ac-
count. In Table IV the contributions to the Breit interac-
tion in the ground state of heliumlike argon, when treat-
ed in Coulomb gauge and in the no-virtual-pair approxi-
mation, are given. The final result includes all effects to
order a Ry. In addition, many effects of order a Z and
higher are included. The result then show a deviation
from the value by Pekeris, which includes a effects
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TABLE IV. All-order Breit interaction obtained in the no-

virtual-pair approximation (Fig. 6) for the ground state of heli-

umlike argon given in a.u. Errors are given in parentheses.

1s

$2

d2
2

g'

l2

J
k
I'
m

Breit interaction
(a.u. )

—0.005 076
—0.002 415
—0.000498
—0.000 202
—0.000 104
—0.000060
—0.000037
—0.000026
—0.000018
—0.000013
—0.000010

Sum'
Extrapolated
Nonrelativistic limit

—0.008 46(2)
—0.008 51(3)
—0.009 33

'The errors given are numerical and from the extrapolation of
the partial wave expansion.
Pekeris (Ref. 46) has calculated the Breit interaction in the

Pauli approximation for Z =1-10. These results can be fitted
to a Z expansion formula from which the nonrelativistic result
can be obtained for any Z. The difference between the relativis-
tic and nonrelativistic results are of relative order aZ Ry as ex-
pected.

their accurate study of the ground state of helium Salo-
monson and Oster found that the relativistic shifts in
the Coulomb interaction converged as (l,„+0.5)
This is considerably slower than the nonrelativistic con-
vergence (1,„+0.5) . The relativistic convergence
rate has also been considered by Kutzelnigg. However,
the pure (I,„+0.5) behavior is only obtained in the
nonrelativistic limit. Already for rather modest nuclear
charges, as Z= 18 as in this work, the convergence rate is
significantly faster. This is true both for the Coulomb
and the Breit interactions. The tail of the partial-wave
expansion is, however, much more affected by relativistic
efFects than the total energy. This seems to be true not
only for the relativistic shift in the nonrelativistic limit,
as seen by the much slower convergence for the relativis-
tic than the nonrelativistic contributions, but for higher
relativistic corrections as well. The origin of this behav-
ior is likely to be the singular behavior of the relativistic
contributions, which is seen as a 5 function, 5(r,2), in the
nonrelativistic limit.

The numbers in Table IV are obtained in one single
grid size and the numerical errors given are estimated
effects of a grid extrapolation. Complete calculations in a
few grid sizes and a following grid extrapolation would
reduce the errors significantly, see Ref. 22. The uncer-
tainty in the extrapolation in the partial-wave expansion
is harder to overcome before a more complete under-
standing of the convergence pattern is obtained.

only. (Recently, even more accurate results have been
published by Drake; however, the Breit interaction
alone is not deducible from the values given. )

In Table IV the contributions to the Breit interaction
for each term in the partial-wave expansion is shown. In

VI. CONCLUSIONS AND COMPARISON
WITH OTHER CALCULATIONS

The M1 transition 2 S& —1 So in heliumlike argon has
been calculated with an estimated accuracy better than
1%. The 2 S state can also decay by two-photon emis-

TABLE V. Comparison of different theoretical estimates of the lifetime of the 2 S& state of heliumlike argon.

Reference

Drake (Ref. 7)'
Drake with corrections
from Lin (Refs. 18 and 19)
Beigman and Safronova (Ref. 8)'
Johnson and co-workers
(Refs. 10 and 11)
Anderson and Weinhold (Ref. 12)'
Krause (Ref. 13)'
This work

Lifetime
(nsec)

212.4

207.5
209

208
212.4
209.3
209.4

Numerical error
(if given)

+0.2

Estimation of
neglected effects

+0.2

Transition energy
(a.u. )

(if given)

113.7422

114.223
114.3

114.072(7)

Obtained in the nonrelativistic limit, the nonrelativistic transition energy is used.
The most important terms which are missing in Ref. 7 are higher-order relativistic effects of relative order a'Z'. These terms have

been calculated explicitly by Lin (Refs. 18 and 19) and are found to be 1.07 a Z relative to the hydrogenlike result. Of this correc-
tion 0.69 a Z is due to the leading relativistic corrections, i.e,'2'8 a Z a.u. , to the hydrogenlike transition energy. The transition
energy given in the last column is obtained by adding this correction to the nonrelativistic transition energy given by Drake (Ref. 7).
Obtained in the nonrelativistic limit, albeit with a transition energy of 114.3 a.u. This transition energy is not explicitly given in Ref.

8, but can be deduced from given results. Note, however, that the screening corrections to the transition matrix element are added
with the wrong sign in Ref. 8, which has been corrected here. Screening is included to lowest order only.
Includes screening but not correlation.
Includes screening but not correlation. The effect of the Breit interaction on the M1-matrix element is not considered.
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M1~~ Z 1+(y Z + +—+a Z+1

Z

1 a+ + + ~ ~ ~ + + ~ ~ ~

Z2 Z Z
(6.1)

The first groups of terms give the contributions from
Figs. 1 and 2, and 3 and 4, respectively. The first term in
every group is the leading contribution from each dia-
gram as discussed in Sec. IV A. With the method used by
Drake and by Anderson and Weinhold' only this first
term in the three first groups of terms is included. The
following terms are higher-order relativistic corrections
from the same diagrams, which are all included in this
calculation due to the use of relativistic wave functions.
The second term in the first group of terms has been cal-
culated explicitly by Lin' ' and can be added to the re-
sults in the nonrelativistic limit ' as is shown in Table
V. In the works by Johnson and co-workers' "correla-
tion is omitted. Thus many contributions from the
second and third groups are missing. Some terms of this
size are, however, included by means of screening. The
same applies to the work by Krause. ' In Ref. 13 all
terms which arise from the Breit interaction are missing.
Such terms would enter in group two and onwards. The
term on the fourth line indicates the order of magnitude
of the neglected contributions from Fig. 5 as discussed in
Sec. IVA1. Such contributions are neglected in a11 the
calculations presented in Table V.

It may be noted that formula (6.1) applies strictly only
if the nonrelativistic hydrogenlike transition energy is
used to evaluate the Bessel function in the M1 operator
(2.10). When the screened energy is used additional fac-
tors of decreasing powers of Z will be introduced.

The lifetime 209.4 nsec obtained in the present work is
1.4% shorter than the result 212.4 nsec given by Drake
and by Anderson and Weinhold. ' The main difference is
that the calculations in Refs. 7 and 12 are obtained in the
nonrelativistic limit. Approximately half of the
difference can be attributed to the transition energy.
Drake used nonrelativistic energies while the present cal-

sion. The transition rate for that process has been stud-

ied by Drake, Victor, and Dalgarno and it is expected
to be three to four orders of magnitude less important
than the M1 transition. Therefore the inverse of the
M1-transition rate should give the lifetime of the 2 S
state, i.e., 209.4+0.4 nsec. Half of the error is due to
effects which have been neglected in the calculation as
discussed in Sec. IVA1. It may be noted that these
effects have not been considered in other works ' either
and when comparing the present result with previous cal-
culations, Table V, the numerical error (0.2) should be
considered.

When comparing different theoretica1 results it is con-
venient to consider the following summary of the sizes of
different contributions to the M1-matrix element dis-
cussed in Sec. IV:

culation is made with the transition energy including all

relativistic effects to order a Ry and the dominating
effects of order a Ry. The remaining difference is prob-
ably due to relativistic contributions beyond lowest order
which are included when relativistic wave functions are
used to evaluate the matrix element, see (6.1). When
Drake's results are corrected with the term given by
Lin, ' ' i.e., 1.07 a Z relative to the hydrogenlike result
in the nonrelativistic limit, the result 207.S nsec is ob-
tained. This result is nearly 1% shorter than the present
prediction. Half of this difference may again be directly
attributed to the energy. The addition of the contribu-
tions of relative order a Z to the transition energy gives
a result 114.223 a.u. , which is slightly larger than the
present value 114.072(7) a.u. The difference, which is

mainly due to the inclusion of the Breit interaction and
the Lamb shift in the present work, will give rise to an in-
crease in the lifetime of around 0.5%. It is not unlikely
that the differences in the transition matrix element is of
the same size. That the present calculation really agrees
with the calculation of Lin concerning the terms of rela-
tive order a Z can be seen by comparing the relativistic
hydrogenlike result for the transition matrix element,
2.1609X10 a.u. given in Table I, with the result in the
nonrelativistic limit which can be deduced from Drake,
Eq. (14) in Ref. 7, 2.1538X10 a.u. This gives a relative
correction to the transition rate, see Eq. (2.11), of 0.38
a Z, which then should be added to the correction of
the same relative order arising from the transition energy
0.69 a Z; see also Table V. The total correction of this
order obtained here is then 1.07 a Z, i.e., in excellent
agreement with Lin. The difference compared to the
work by Johnson et al. ,

' '" 208 nsec, is less than 1%.
Correlation is neglected in Refs. 10 and 11,but it is hard-
er to compare these studies with this work since only the
final results are given in Refs. 10 and 11. The close agree-
ment between the work by Krause, ' 209.3, and this work
is probably a coincidence since the calculation' neglects
the effect on the M1-matrix element of the Breit interac-
tion which, as seen in Table I, change the result with 2%.
Correlation is also neglected in Ref. 13. The calculation
by Biegman and Safronova is performed in the nonrela-
tivistic limit. The transition energy includes, however,
some relativistic corrections. This, and the fact that the
screening is included to 1owest order only in Ref. 8, ex-
plains the deviation from the results by Drake. Note
that the result quoted in Ref. 8 is obtained when the
screening corrections to the transition matrix element is
added with the wrong sign. This has been corrected in
Table V.
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