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Local-density approximation to the energy density functionals in a magnetic field
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For an electron gas in a uniform magnetic field, explicit expressions of the electron density,

current density, and the density matrix are derived as functions of the Fermi energy and the field

strength, using plane waves and the Landau energy levels. The local-density approximations for the

kinetic and the exchange energy functionals for an inhomogeneous many-electron system are there-

by suggested using the density quantities as basic variables. A practical scheme for the density-

functional calculation involving the magnetic field in the spirit of Thomas-Fermi-Dirac theory is

outlined.

I. INTRODUCTION

Density-functional theory' (DFT) is well established
as an important tool for the study of static as well as dy-
namic properties of many-electron systems. A density-
functional description in presence of a magnetic field has
however formally been developed for both static ' and
time-dependent situations only recently. This formu-
lation is strongly motivated by a desire to obtain density-
based approaches to several phenomena of current in-

terest, viz. , the quantum Hall effect, ' high-temperature
superconductivity, "etc.

The proof that the scalar and vector potentials charac-
terizing a many-electron system are uniquely determined
by the single-particle electron density and the current
density, has established that problems involving magnetic
fields are amenable to density based descriptions. The
crux of the problem now is to have explicit expressions
for the energy density functionals in terms of the electron
density and the current density.

While in the Kohn-Sham-like single-particle prescrip-
tion, only the exchange-correlation functional is un-

known, in a statistical model in the spirit of the Thomas-
Fermi-Dirac (TFD) theory, the additional unknown

quantity is the kinetic energy functional. The present
work aims at deriving expressions for the kinetic and the
exchange energy functionals for a many-electron system
in presence of electric and magnetic fields.

As has been proved elsewhere, these functionals are
universal and are expressible in terms of the density
quantities alone. In absence of this formal proof, in the
earlier works on the statistical theory in magnetic
fields, ' ' however, the external magnetic field strength
has appeared explicitly in the expressions and also only
the electron density has been employed' to define the
functionals. Some of the results are restricted to strong
magnetic field regime alone. In this work, we proceed to
derive explicit schemes for obtaining the energy function-
als (whose existence is already assured) from the single-
particle density quantities alone. We resort to a local

density approximation (LDA) in the spirit of fFD
theory. This amounts to using a locally homogeneous ap-
proximation where for systems involving scalar potential
alone, one derives the functional forms by using plane
waves, i.e., solutions for electrons moving in a constant
potential or zero electric field. In LDA, one evaluates the
energy quantities from this functional form using the
position-dependent density p(r). The LDA result for
magnetic field should follow analogously. The solutions
for a constant vector potential are again plane waves;
however, we assume the electrons to move in a very weak
uniform magnetic field and employ the corresponding en-

ergy levels for filling the electrons in the momentum
space up to the Fermi level. The zeroth-order wave func-
tion (i.e., plane waves) is still used to evaluate the density
matrix and the modified energy levels only incorporate
the correct symmetry properties in presence of magnetic
field.

In what follows, we derive expressions for the single-
particle density matrix in Sec. II and the corresponding
energy functionals in Sec. III. Discussion on the gauge
in variance and the density-functional formalisms is
presented in Sec. IV. Illustrative numerical results are
discussed in Sec. V and finally we offer a few concluding
remarks in Sec. VI.

II. DENSITY MATRIX OF A HOMOGENEOUS
ELECTRON GAS IN A UNIFORM MAGNETIC FIELD

Consider a system of X electrons subjected to a uni-
form magnetic field 8 ( = V X A) in the z direction, for
which the energy levels are given by

e„k =(n+ ,')Ace+(fi /2m)k, e~+sll —'

where co =
~
eB /me ~. The discrete quantum number n

(=0, 1,2, . . . ) quantizes the energy in the perpendicular
xy plane whereas k, characterizes the continuous energy
component from the motion in the z direction.

Electrons occupy the various energy states up to the
Fermi energy cF. The values of k, range from —k, to
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k, where k depends on the value of n and is given by

k, (n)= I(2m/fi )[sF (—n+ —,')Ace])' (2)

nF

N=2 g (L„L /2m )(me@/fi)(L, /2vr)2k, (n)
n=0

=2( V/4m )(mes/R)2(2m /fi )'

X g [eF (—n+ —,')%co]' (4)

If the electron is restricted to a parallelopiped of volume
V ( =L„L L, ), the degeneracy of the Landau levels is in-

dependent of n and is given by

n=0

The summation in Eq. (4) can be evaluated using the
Poisson summation formula' ' (Euler-McLaurin formu-
la) given by

g„=(L,L /2n)(mc. o/fi) . (3)
NF tlF 00 nFg f(n)= f f(x)dx+2 g f f(x)cos{2m.sx)dx,

n=0 s =1

If the electrons occupy the levels up to n =nF with the
corresponding k, levels filled, one has the result and the result leads to the expression for density

p=(N/V)=[(2msF) /(3n iri )][1+(3/8ir}2'i (fuu/e~) g [(—1)'+"/s ]cos[(2irseF!fico)+ir/4)] .
s=1

The same expression also follows through the diagonal
element of the first-order density matrix which we now
proceed to calculate using the plane waves. This is
justified since the field considered is small and we employ
the zeroth-order orbitals with correct energy levels for
occupation. The density matrix is then given by

p(r; r') =(2/ V) g exp[ik (r —r') ],

which simplifies to

p(r;r')=(2/V)(L, /2m. )g Jo(ki, IR —R'I)
kR

X 2 sin[k, (n) Iz —z'I ]/ z —z'I,

(9)

where the sum extends up to the Fermi level and the de-
generacy of the levels are taken into account.

Since the Landau levels of Eq. (1} indicate that the
momentum space would consist of coaxial cylinders
whose heights correspond to k, of Eq. (2) and the radii
correspond to the energy (n + —,')%co, it would be natural
to switch over to the cylindrical coordinates (R, qr, z).
Equation (7) can thus be written as

p(r;r') =(2/V) g g exp[ika. (R—R')] exp[ik, (z —z')],

(8)

after carrying out the integration over k, and cp, the angle
between k„and R—R'. Since k„ is defined by

(i' /2m)kii =(n+ —,
' )iris', (10)

characterizing the energy arising from the motion in the
xy plane, quantized by the quantum number n, the sum of
Eq. (9) can be replaced by summation over n with ap-
propriate degeneracy factor. Equation (9} can thus be
written as

llF

p(r;r')=(2/V)(L, /2n. )(L„L men/2M)2 g Jo(k„ IR —R'I) sin[k, (n)Iz —z'I]/Iz —z'I
n=0

ttF

=(mao/oft) g Jo(k.i, IR —R'I) sin(k, (n)Iz —z'I)/Iz —z'I,

where ki, and k, are functions of n given by Eqs. (10) and (2), respectively.
Applying the Poisson summation formula (5) to Eq. (11),one obtains the density matrix

p(r;r')=p (r;r')+bp(r;r') .

where
PlF

p (r;r')=(ma)/nA) f dn[si. n(k, Iz —z'I)/Iz —z'l]JO(kii IR—R'I)

(12a)

(12b)
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and

n

5p(r;r')=(m co/iraqi)2 g J dn cos(2irsn)[sin(k, ~z
—z'~)/~z —z'~]JO(kii ~R —R'~),

s=l
(12c)

with the n-dependent k, and kz given by Eqs. (2) and
(10), respectively. The integration in Eq. (12b) is straight-
forward and leads to the result

bp(r;r') =(1/m )(mco/fi) Jo(k~~R R—'! )

X g Ak(z —z') ",
k=0

(16)

po(r;r')=(1/ir )kF[(sinx —x cosx)/x ),
where

kF =[(2m /A )(nF+ —,
' )A'co]'~ =[(2m /fi )eF]'~

and

(14)

where

Ak = [I'(k +—', )/(2k + 1)!](—1)"(mco/iriri)"

X y [( 1)(s+ 1 /s k+3 2]
s=l

X cos[(2irseF /irico)+ (1—2k)ir/4] . (17)

(15)

Equation (12c) after some algebraic manipulations leads
to the result

The diagonal elements from Eqs. (13) and (16) clearly cor-
respond to the density given by Eq. (6).

Making use of the asymptotic (large-eF) expansion of
the Bessel functions, and after some algebra, Eq. (16) can
be further simplified to obtain the closed form:

bp(r;r')=(2ir ) '(mco/iri) Jo[(2mez/i!i )' ~R—R'~] g [(—1)'+"/s ][1+mco (z —z') /(4ir s sF)]
s=l

Xcost s/4+(2ir. ssF /irico)[1+m co (z —z') /(4ir s eF )]'~
I .

(18)

Equations (12a), (13), and (18) together define the single-particle reduced density matrix in terms of the Fermi energy sF
and the cyclotron frequency co, while the corresponding expression for density is given by Eq. (6) and can easily be
recovered by substituting ~R —R'~ =0 and ~z

—z'~ =0 in these equations.

III. KINETIC AND EXCHANGE ENERGY DENSITIES IN PRESENCE OF MAGNETIC FIEI.D

We define the kinetic energy density as

e„;„=—(iri /2m )7 p(r;r')~„ (19a)

which can easily be calculated from the density matrix. After some algebra, the final expression for the kinetic energy is
given by

ek;„=(i' /m)(1/10ir )kF

+(i' /2m)(mco/R) ~ (1/2ir )(kF g [(—1)'+"ls ~ ]cos[(2irse~/iiico)+m. /4]
s=l

+ (1/2ir)(m co/A') g [(—1)'/s ]cos[(2irseF /Aco) n/4] J—.
s=l

=(fi /m )(1/10ir )kF I 1+(5/2ir)(2EF/fico) ~ g [(—1)'+"/s ]cos[(2irseF/%co)+ir/4]
s=l

+(5/4ir )(2s~/irico) g [(—1)'ls i ]cos[(2irsez/%co) m. /4] I . —
s=l

(19b)

The other energy density functional of interest is the ex-
change energy which can now be evaluated from the
definition

and the density inatrix of Eqs. (12), (13), and (18). The
exchange energy density can be written as

= —(e /4) f dr'~p(r;r')~ /~r —r'~, (20) ~ =: +.~1]+.[2]
x x x x 7 (21a)
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where

(21d}

"„=—("/4) f«'I p'(r;r') I'/I r r'—I,
s„'"=—(e /2) f dr'p (r;r')bp(r;r')/Ir —r'I, (21c)

E„' '= —(e /4) f dr'Ibpr;r')I /Ir —r'I .

Using Eq. (14) for p (r;r'), one obtains s„as the conven-
tional Dirac exchange expression

(22)

The evaluation of c.'" is also straightforward. Using the
expression for bp(r;r') given by Eq. (16), one obtains
after performing the angular integration the result

s„"=—(e )n. (men/i') kF g [I (k+ —', )I (k+ —,')/1 (2k+2)]( —1)"(mcoliriii)"(2"/kF")
k=0

X g [(—1)' "/s"+ ]cos[(2rtseF/fico)+m /4 k—irl2]
s=1

X dX & Jk+1/2 + J3/2 X
0

From the properties of I functions and Bessel functions, one can obtain a result

(23)

g [Pk +3/2)f'(@ +1/2)/I (2k +2)](—1)"y"Jt, +&&2(x)
k=0

=(m'~ /2) f dt t '~ exp( —t)J&&2[x(1+yt/2x)'~ ]l(1+yt/2x)'
0

Using Eq. (24) and Eq. (23) and carrying out the integration over x, one obtains

(24)

e„"'=E„(4/3ir)(2EF/fico) 'g [( —1)'/s] f dt t '~ (1+t) 'sin[(2irssF/iit'co)(1 —t)]zF&(l, —,'; —', ;1/(1+t)), (25)
s=l 0

where the hypergeometric series zF, (1,—,'; —', ;1/(1+ t) ) can

be evaluated using the expression

2F, (1,—,'; —', ;z)=3 g (2n+1) '(3n+1) 'z"
n=0

(26}

with 2F&(1,—,'; —,';1)=—,'. The expression of s„' ' given by

Eq. (2ld) can also be simplified, but since co considered
here is small, we retain terms up to first order and neglect
c„' ' for obtaining c„.

IV. ENERGY DENSITY FUNCTIONALS
AND THE GAUGE TRANSFORMATIONS

While Eq. (6) expresses the electron density as a func-
tion of c.F and co, another quantity of importance in sys-
tems involving magnetic field is the current density j
defined as

j=j +jd (27a)

where the paramagnetic current j~ and the diamagnetic
contribution jd are given, respectively, by

j =(film)Im[Vp(r;r')I„„]

jd =(e/mc) Ap .

(27b)

(27c)

In order to obtain the energy quantities as density func-
tionals, the parameters c.F and co are to be expressed in
terms of the density-related quantities.

It is, however, important to note that the expressions
for p(r;r'), s„;„,and s„derived here are exact in the limit

B~O. The corresponding vector potential, for example,
A=( By, 0,—0) within the Landau gauge, also vanishes
in the same limit. The density matrix given by Eq. (18)
has been obtained for this limit and does not contain A
explicitly. We now discuss the gauge transformation
properties of this density matrix under the gauge trans-
formations

(28a)

(28b)

ek;„~E„';„=s„;„—(e/c)VA, j~+(e /2mc )(VA, ) p . (29)

The exchange energy, however, is gauge invariant and
would not change under the transformation (28). This
leaves the total energy expression gauge invariant as ex-
pected.

For the gauge transformation of the density matrix
given by Eq. (28c), the paramagnetic current density also
transforms as

j~ ~j~ = j~
—(e/me}(VA. )p . (30)

The net current density j defined in Eq. (27a) is, however,

where P is the scalar potential. The proper gauge trans-
formation of the density matrix is given by

p(r;r') ~p'(r;r')

=p(r;r') expt (t'e/Sic)[A—(r, t) —A(r', t)]I, (28c)

which demands that the kinetic energy density of Eq. (19)
should accordingly transform as
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gauge invariant and vanishes in the limit of zero magnet-
ic field. The exact current density for an electron gas in a
uniform magnetic field vanishes as well. We therefore
demand j=0 in Eq. (27) and express co in terms of the
density variables p and j by

1.5

1.0
co= —VX(j~/p), (31)

—(e /2mc )fdr A (r)p(r)

+ rc„;„r +U,„, p, j rc„r, (32)

which consists of a potential dependent (the first three
terms) and a universal functional part (the last three
terms, viz. , the kinetic, exchange, and the internal
Coulomb energy contributions). Equation (32), as has al-
ready been mentioned, can easily be shown to be gauge
invariant under the gauge transformation (28) and the
corresponding transformation of Ez;„given by Eq. (29).
The energy can be minimized with respect to the varia-
tions of p and j, and the resulting Euler equations would
provide a scheme for the calculation of the density and
the current density. This defines the Thomas-Fermi-
Dirac-type statistical theory in the presence of a magnet-
ic field. The exchange energy density expression can be
used in a Kohn-Sham type calculation as well.

V. ILLUSTRATIVE RESULTS AND DISCUSSION

It would be of interest to study the behavior of the den-
sity quantities discussed here as the magnetic field
strength is varied. In Fig. 1, we have plotted the calcu-
lated values of the electron density p, the mean kinetic
energy per electron e„;„(=Ez;„/p), and the mean ex-
change energy per electron E„(=e„/p) relative to the
corresponding free-electron gas results under zero field.

where j is related to j by j =j—(e/mc) Ap and there-
fore co= —VX(j/p)+(e/mc)B. Also by inverting Eq.
(6), one can obtain eF as a function of the density p.
Equations (19), (22), and (25) that express the kinetic and
exchange energy functionals in terms of cF and co, can
therefore be evaluated through the density quantities p
and jz. The quantity V X ( j~ /p) has appeared earlier in
the recent work of Vignale and Rasolt, ' but its
significance as the cyclotron frequency co is now evident
from Eq. (31).

Although the functionals obtained here correspond to
a homogeneous electron gas in a constant scalar potential
and uniform weak magnetic field, they can be used also
for an inhornogeneous many-electron system as an ap-
proximation. This local-density approximation amounts
to assuming the validity of these expressions locally and
the actual kinetic and exchange energies are to be evalu-
ated by integrating the energy densities after replacing p
and j by actual position dependent p(r) and j(r) at the
point r.

For an actual many-electron system characterized by a
scalar potential v (r) and a vector potential A(r), the net
energy density functional is given by

E[p,j]j=fdr U(r)p(r)+(e/c) f dr A(r) j(r)

0.5— ——--kinetic energy

———exchange energy

0.0
I

0.5 1.0 1.5

FIG. 1. Magneti" field dependence of the electron density
( ), the mean kinetic energy ( ———~ ), and the mean ex-
change energy ( ———) relative to the corresponding free-
electron gas results (see text).

The oscillations are characteristic of the de Haas —van
Alphen type effect; ' however, here closed shell has been
assumed in deriving the expressions and therefore the in-
terpretation is somewhat different.

The density p as well as the mean energy quantities cz;„
and c„oscillate around the corresponding field free re-
sults and the periodic rise is observed at identical values
of the parameter fico/eF. Another interesting aspect is
that both c.„;„and c, attain the free-electron results at
identical values of this parameter. Also, the period as
well as the amplitude of the oscillations exhibit an in-
crease with the magnetic field strength. These aspects
arise from the field dependence of the magnitude and the
degeneracy of the quantized Landau energy levels.

VI. CONCLUDING REMARKS

We have derived here expressions for the density ma-
trix, kinetic, and exchange energies for a system of elec-
trons subjected to a weak uniform magnetic field and the
de Haas-van Alphen type oscillations are demonstrated.
A density functional scheme in the spirit of Thomas-
Ferrni-Dirac-type statistical theory for a magnetic field is
outlined. The energy functionals are shown to be
expressible in terms of cF or p and the quantity
co= —VX(j~/p). The latter combination has been first
introduced by Vignale and Rasolt in their recent work '

and now finds the interpretation of an effective loca1 cy-
clotron frequency in the density-functional description of
an inhomogeneous many-electron system in arbitrary
magnetic field. For the case of time-dependent magnetic
field, the expressions for the density functionals can be
evaluated using time-dependent densities as variables. As
has been proved elsewhere, ' the important quantity in
such situations for obtaining the energy density function-
als is the current density j (or j and p for convenience).

The present work, for simplicity, is developed using the
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spin-averaged densities at zero temperature. The exten-
sion to spin polarized as well as finite temperature cases is
straightforward. The Coulomb correlation energy which
has not been discussed here is also of interest.
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