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A critical review of Casimir forces and their various interpretations is given. The Casimir effect
for the case of dielectric slabs is studied in detail. The electromagnetic field is quantized in the pres-
ence of dielectric material and the notion of physical photons is introduced. The Casimir force orig-
inates from the pressure of the electromagnetic field in the vacuum state on the slab and is calculat-
ed with the help of the Maxwell stress tensor. It is shown that the Casimir force depends in a simple

way on the mode density of the electromagnetic field. The dependence of the Casimir force on the
reflection coefficient and the plate thickness is found.

I. INTRODUCTION: EXAMPLES
AND INTERPRETATIONS OF THE CASIMIR EFFECT

What is the Casimir effect? One of several possible
answers is that it is an attractive interaction between two
neutral perfectly conducting parallel plates placed in the
vacuum. The expression for this force was first given in
1948 by Casimir
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where a is the distance between the plates. The effect is
very sinall: for a distance of 1 micrometer (a =10 m)
it is about 1.3 X 10 N/m . Nevertheless, the effect was
confirmed experimentally.

Speaking more generally, Casimir forces form a class of
long-range retarded interactions between particles,
atoms, molecules, and macroscopic bodies. Long-range
forces between neutral objects with zero dipole moment
are known as van der Waals forces. The first explanation
of such forces, based on quantum mechanics, was given
for two atoms by London in 1930. From second-order
perturbation theory with the interaction given by the
electrostatic dipole-dipole potential, he got the familiar
R distance dependence of the van der Waals potential.
As it is now well understood, the atom-atom interaction
may be explained on the basis of the semiclassical theory
by the correlations of the fluctuating atomic dipole mo-
ments.

London's expression for the interaction potential is not
valid if R is larger than c /cop (too denotes a typical atomic
frequency), as retardation effects connected with the finite
velocity of light must be taken into account. This was
done in 1948 by Casimir and Polder in fourth-order per-
turbation theory. For large distances their result for the
interaction potential can be written as

where a, and a2 are the polarizabilities of the atoms.
A simplified derivation of this result has been present-

ed; it goes roughly as follows. The electric field of the
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to & c/R (according to the assumption c/R « coo), we get
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A similar approach may be used to calculate the interac-
tion between any two polarizable bodies.

The derivation presented above suggests that the
Casimir force may be interpreted as the direct effect of
vacuum fluctuations. This is even better seen in the
Casimir derivation of the wall-wall interaction, based on
the calculation of the zero-point energy shift of the elec-
tromagnetic field in the presence of the plates. ' In this
case the Casimir force also has a simple interpretation as
the vacuum pressure, as was recently stressed by Milonni
et QI. '

An alternative approach exists in which Casimir poten-
tials arise not from vacuum fluctuations, but rather from
the radiation reaction field. It is just the same situation
that is met in the calculations of the Lamb shift, where
the possible interpretation depends upon the ordering of
creation and annihilation operators: if we choose the
symmetric ordering, the Lamb shift may be explained by
vacuum fluctuations, but with normal ordering all the
effect seems to come from the radiation reaction (Ref. 7

vacuum induces in the first atom the dipole moment

d, =a,EO(x, ). The electric field produced by d, at the
position of the second atom is E& iced, /(c R). The
time-averaged interaction of two atoms is thus:

V= —,'d2E& 2 dcoa2 co Eo ~ ~2
0

COX, a, (to)EO(co, x, )N(to),
c R

where N(co) is the mode density function. For large fre-
quencies (as compared to c/R) the integrand is a rapidly
oscillating function, and the contributions from different
frequencies cancel. The integral may be roughly evalu-
ated as
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and references therein). So, the Lamb shift and the
Casimir effect have the same origin, and, furthermore,
there are situations where one may be calculated from the
other. This is, for example, the case of an atom located
near a perfectly conducting wall. The energy shift for
such an atom depends upon the distance from the wail,
and the force is given by the derivative of this shift with
respect to the distance. On the other hand, Power ca1-
culated the Lamb shift from the change of the vacuum
energy when a small number of hydrogen atoms is put
into the quantization box, which is from the Casimir en-
ergy.

As a final example of Casimir forces it is worth men-
tioning that such a force was supposed to play the role of
a Poincare stress which stabilizes the electron. Howev-
er, calculations for the model of electron as a perfectly
conducting charged shell gave a positive value of the
Casimir energy, so the force was repulsive rather than at-
tractive. ' This showed that Casimir forces are in a sense
a more general notion than the "usual" van der Waals at-
traction forces.

It should be also noticed that the concept of Casimir
energy refers not only to the electromagnetic interac-
tions. It was applied among other areas in the quantum-
chromodynamics (QCD) bag model and in gravitation
theory (Ref. 11 and references therein).

II. THE CONCEPT OF CASIMIR ENERGY

In the preceding section we presented various interpre-
tations of the Casimir effect. However, the most popular
one is based upon the electromagnetic vacuum Auctua-
tions and the shift of the zero-point energy. In this sec-
tion we will review some problems connected with this
approach. As an example we will present the derivation
of the Casimir energy for the case of metallic plates.

While calculating the vacuum energy, one faces the
problem of infinities and the fundamental question —if
such divergent quantities connected with the vacuum
have any physical meaning. Casimir's concept for energy
renormalization is as follows. In any real situation we do
not deal with free space, but there are always certain
boundaries present, for example conducting walls, some
material objects, or fields in general. Then, the physical
vacuum energy (Casimir energy) should be understood as
the difference between the zero-point energy in the pres-
ence of boundaries and that of the free vacuum:

Ephor,
=Ec= & fllHlf1 &b,„„d

—
& fllIIlfl &„„.

Any change of boundaries is connected with a change of
the Casimir energy, which is a measurable quantity —as
for example the force between two conducting plates.

There are two methods of calculating the Casimir ener-
gy: (i) the direct mode summation, with the proper
schemes of regularization (that is just what Casimir has
done), and (ii) calculation of the vacuum energy-
momentum tensor T"„'(r) from the difference of photon
propagators for free space and that with boundaries.
This local formulation was introduced in 1969 by Brown
and Macley. '

In the case of perfectly conducting boundaries both

methods give the same result, that is the quantities

and

E,"= fd'rT (r)
ren

Ec= f dk A'co+ g irico — f dk fico,
77 0 g 0 7T 0

where co=kc and the summation runs over k =lir/ci,
(1=0,1,2, . . .). The first term is the sum of the zero-
point energies in regions I and III, where for large L the
sum over modes can be replaced by an integral. The
second term gives the energy in region II and the last
term is the zero-point energy in the absence of the plates.

As it stands the expression for the Casimir energy is
still divergent due to the infinite summation over k.
However, in the real physical situation the walls are

FIG. 1. Position of metallic plates and boundaries.

Ei„=f d r [T (r)„„)
are equal [the subscript ren refers to the procedure of re-
normalization given by (2)]. However, as pointed out by
Deutsch and Candelas, ' the above identity need not be
the rule.

It may seem that in order to get the nonzero vacuum
energy the normal ordering cannot be used. In fact, it is
so for the free vacuum, but not for the physical vacuum.
In the latter case it would probably be better not to speak
about the "vacuum, " but about the ground state of the
combined system: electromagnetic field plus boundaries,
as when the interaction is switched on, all the photonic
states combine into the resulting ground state. The phys-
ical vacuum energy, given by formula (2}, may be under-
stood as the expectation value of the normally ordered
(with respect to the free-space photon creation and an-
nihilation operators) Hamiltonian in the ground state:

Ephor,
= &gl:H(~, ~'):Ig &

= &gl&lg &
—

& fIIHIII & .

However, this last definition is not convenient, as the
ground state is expressed by free-space photonic states
and the Hamiltonian by free-space operators. In most
practical situations it is more natural to introduce "phys-
ical photons" and creation and annihilation operators for
these photons. We will do this for calculating the
Casimir force between dielectric plates, but first we will
show the derivation for metallic plates.

As we aim only at presentation of the physical idea we
will use a simplified, one-dimensional configuration (Fig.
1}, following Pleunien et al. " To calculate the Casimir
energy it is convenient to introduce the spatial cutoff.
The Casimir energy is
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a g I y(l n'c /a) —f dl t y(l mc /a) (4)

The simplest choice for the function y(co) is the exponen-
tial one: y(co) =exp( —A,co/c). It leads to

f "dl 1 exp( Ale—/a) ,
=.(km /a)

0

and

oo a QO

g I exp( A, ln/a—)= —— g exp( A, ln. /a—)
1=1 1=1

exp( —
A, m /a)

[1—exp( —
A,m. /a)]

—(A, m. /a) —1/12+0(& ) .
A, ~O

In the limit A, ~O we get the final result:

Ac~
C

which leads to the attractive force Fc =A'c n. /12a .
As previously mentioned, for the case of macroscopic

bodies the Casimir force may be regarded as the pressure
of the electromagnetic vacuum. We consider this ap-
proach in more detai1 later, for dielectric plates.

III. CASIMIR EFFECT FOR DIELECTRICS

transparent for waves with high frequencies, that is to say
the modes with frequencies co) co, are not altered by the
boundaries and their contribution to the Casimir energy
cancels. According to that, the regularization procedure
may consist in the introduction of the cutoff function
y(co) = 1 for co 5 co, and y(co) =0 for co »co, . Introducing
such a function in the expression (3) one gets

Ec= g %coy(co) ——f dk coy(co)
k 7T

e(x)= f des [co e(co)](E (x))1 d
4' d co

L

+ [co p, (co)](H (x) )

The second disagreement concerns the cutoff dependent,
infinite terms in the energy. One concept is to disregard
such terms as unphysical, the other is to choose the prop-
er cutoff.

The Casimir forces for the temperature T=O are of
purely quantum origin which suggests that one look for
their source in the theory of quantum electrodynamics in
the presence of dielectrics. The microscopic approach
was applied by Renne, ' who derived the formula for the
retarded van der Waals potential in the system of atoms
represented by harmonic oscillators, interacting with the
electromagnetic field, from the zero-point energy of the
coupled system.

We have briefly reviewed various approaches to the
Casimir force in case of dielectric. In the following part
we give our own interpretation of the effect. In our for-
mulation the Casimir effect originates from the vacuum
pressure. As opposed to previous treatments, we intro-
duce physical photons which are the basis of the elec-
tromagnetic field quantization in the presence of dielec-
trics. As we will show the physical photons are a very
convenient and natural tool for studying various quan-
tum effects, with the presence of macroscopic dielectric
bodies taken into account in the most natural way. The
Casimir force is derived from simple arguments regarding
the Maxwell stress tensor.

We will study the dependence of the Casimir force not
only upon the distance between plates, but also upon the
value of the refraction index and the thickness of the
plates.

Finally, we have arrived at the problem of the Casimir
effect for the case when dielectrics are present. The
literature on this subject comprises over a dozen articles,
most of them concerning semi-infinite walls or spheres
(Refs. 14-19 and references therein). However, they give
no common, generally approved solution. The first calcu-
lation of the force between semi-infinite dielectric walls
was given by Lifschitz. ' He based his result on the
theory of the fluctuating electromagnetic field, where the
dielectric polarization of the medium was a stochastic
variable. However, several authors stated that Lifshitz's
results are not correct in the case of finite temperature, in
the limit e~ ~. ' Schwinger et al. gave their own cal-
culations based on the source theory. ' ' Later their re-
sults were questioned by Candelas, ' who pointed out
several mistakes in Schwinger's and Milton's calculations
and, furthermore, some contradictions in their different
papers. The basic disagreement refers to the proper form
of the energy density. Instead of the incorrect expression

e(x)= f dao [e(co)t'E'(x)) +p(co)(~'(x)) ]
1

4~

used by Milton, Candelas derived the expression

IV. QUANTIZATION OF
THE ELECTROMAGNETIC FIELD

IN THE PRESENCE OF DIELECTRICS

We will assume that the electromagnetic field in the
presence of a dielectric medium may be described phe-
nomenologically, by introducing the dielectric constant e.
The Maxwell equations without sources take the follow-
ing form:

1 BD
curlH —— =0,

c BE

l BBcurlE+ — =0,
c Bt

divB=0,

divD=O .

We assume the material relations to be linear: D =e(r)E
and B=H. We may introduce vector and scalar poten-
tials

1 BAB=curl A, E= —— —grad/
c Bt
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and choose the gauge as /=0, div[e(r)A]=0. With
such potentials and the gauge, the last three Maxwell
equations are automatically fulfilled. The equation of
motion for the vector potential is

curl curl A+ A=O .
e(r) 5

Bt~

If e is constant in the region of the dielectric, then the po-
tential A satisfies the wave equation:

—V' A+ A=O .
c Bt

Boundary conditions are such that the tangential com-
ponents of E and H and normal components of D and B
are continuous at the interface of the two media.

The Lagrangian which implies the equation of motion
(5) is

L= d r A —(curlA)
l 3 e(r) 2

c'

d 3r(eE~ —Q2)1

8m

From that we get the generalized momentum as the fol-
lowing:

BX e(r) A D
g A 4mc2 4mc

may be chosen to fulfill the orthonormality conditions:

J d r e(r) f„(r) f„.(r) =5„„
and

CO@
d r curlf„(r) curlf„, (r)= "5„„,.

The Hamiltonian when expressed in terms of /3„ takes the
form:

H =
—,
' g (@3„*+P„*13„)fico„.

The quantization will be achieved in the same way as in
the case of free space. The classical amplitudes P„and 13„"

are replaced by the operators b„and b„, which are postu-
lated to fulfill the commutation relations:

[b„,b„]=5„„,
[b„,b„]=0 .

The time evolution of the creation and the annihilation
operators b„and b„ is

b„= [b„,H] = i n)„b„—.

The vector potential also becomes an operator and takes
the form:

Then the Hamiltonian reads A(r, t)= gc
] /2

[b„(t)f„(r)+b„(t)f„'(r)].

H=fd r . A L= fd—r
&

A +(curlA)
gA 8m c~

D2' fd'. D +B
8~

and

co„e(r )
curl curlf„(r) — " f„(r)=0

(6)

together with the appropriate boundary conditions and
the gauge condition

The solution of equation (5) may be presented in the fol-
lowing form:

' 1/2

A(r, t) = g c [P„(t)f„(r)+P„'(t)f„'(r)],2mB

)M P

where the factor before the brackets was added for the
convenience of future quantization, and the parameter p
may take discrete or continuous values. The amplitudes
P„(t) and the mode functions f„(r) obey the equations

a'p„(t)
+cog„(t)=0

The operators b„and b„act in the Fock space, whose
construction is again analogous to that for the free space.
Of course the photon created by b„ is di6'erent from the
photon created by the free-space operator a„. These new
photons ("physical photons") are associated not with
plane waves, but with the mode functions f„(r). The
"physical vacuum" is given by b„~Q h) =0.

It should be stressed that the spatial dependence of the
field, described. by the mode functions f„(r), is not de-
rived from quantum mechanics, but from the classical
equation (6). The electric polarization of the medium P
does not enter as an additional variable but is assumed
to depend on the electric field according to
P = [(e—l )/4n ]E. Physically it means that the dielectric
is a passive agent, without its own dynamics.

Let us apply the above considerations to the
configuration with two parallel infinite dielectric plates
each of thickness d, a distance a apart, in free space. The
refractive index is assumed to be constant and equal to n.
As in the case of perfectly conducting plates, we will
confine ourselves to the one-dimensional configuration,
that is, to modes with the wave vector perpendicular to
the plate's surface (Fig. 2). Then the vector potential
may be written as

div[e(r)f„(r)]=0 . A(xt)=g f +1 dk c
1/2

2+4'

Solutions of Eq. (6) form a complete set of functions in
the space of functions satisfying the condition (7). They Xe~[b„„e "f„(x)+b„~e "fk*(x)] .
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TABLE I. Mode functions f„(x).

Y
eikx+ g e

—ikx
k

T+ tkx aXE
2

& tknx+g &
—tknx g +eiknx+ F+ —iknx

FIG. 2. Configuration of dielectric plates.
e tkx+ D e tkx ikx+ D 4 —tkx a axE ——,+—2' 2

eiknx+ F e
—iknx g 4e tknx+ g +e tknx X ~ +—,+—+d2' 2

The first integral comprises the waves going from left to
right, and the second one the waves going from right to
left. The parameter A, =1,2 labels the two possible polar-
izations. The mode functions satisfying the equation of
motion

T e'kx
k

&tkx+ g +e —ikx
k x E. +—+d, + ao

a
2

d2 co k(ex)
fk(x) — fk(x) =0

dx c

with appropriate boundary conditions, and normalized
according to

f dx &(x)fk(x)fk (x)=2m 5(k —k')

are given in Table I. The coefficients Rk, Tk, Ak, Bk, Ck,
Dk, Ek, and Fk are

and 8=curl A. The Hamiltonian may be written as

& =-,' X dk (bkkbkk+bkkbkk)&~k .
27T

The commutation relations are

[bkk, bk k ]=2m. 5(k —k')5kk. ,

[bkk, bk k. ]=0 .

t 2re 2ika

k 2 2ika
1 —re''

—ik (a +2d)e V. CLASSICAL EXPRESSION
FOR THE LIGHT PRESSURE

—ik [(a /2)+ d] ikna /2
t(1+rrde '"')

( 1 r2e2lkQ)

—ik [(a /2)+ d] —ikna /2
t(rd+re '"')

( 1 r2e2ikG)

—ikd
Ck=

2 2tka

rteIk'a —d)

Dk=
1

k

ik [(a/2) —d] —ikn [(a/2)+d]
(1 r2e2ika)t

2
ik [(a/2) —d] ikn [(a/2)+d]t rd

( 1
2 2ika)t

d

t2 —2ikd
2 2Ika

with r and t the reflection and transmission coefficients
for one plate

(e 2!klld
1 )r= . , t=

2 2iknd '
( I + )2 I 2 2iknd

d n rde

n —1 2n
n+1' n+1

The expressions for the electric and magnetic field
operators follow from (8) on using E= —(I/c)(BA/dt)

With the explicit form of the mode functions given, we
are almost ready to calculate the Casimir force. As we
are going to derive it as the effect of the vacuum pressure,
let us look for a moment at the problem of the radiation
pressure in classical electrodynamics.

The first results connected with the problem of the
mechanical effect of light are due to Maxwell who pre-
dicted in 1873 that when light impinges on a wall it ex-
erts a pressure proportional to the energy density of the
wave and to the quantity 1+R, where R is the reflection
coefficient. Maxwell also gave the conservation law for
the system composed of the electromagnetic field and free
particles:

divT+ = —(pE+ jXB),as
at

where S=(EXB/4nc) is the momentum density of the

electromagnetic field, and

T'i= — [2F.'Fi+2B'BJ (E +B )5, ]—1

8~ V

is the Maxwe11 stress tensor, whose components give the
flow of the momentum density.

The correct form of the analogous law for the more
general case when material bodies are present was for a
long time controversial. For example the momentum
density vector given by the T components of the



41 CASIMIR EFFECT FOR DIELECTRIC PLATES 4641

Minkowski's energy-momentum density tensor is propor-
tional to D XB, while in Abraham's tensor the same role
is played by EXH. The discussion of such controversies
together with a very careful derivation of the expression
for the force density in the material body in the presence
of electromagnetic field may be found in Refs. 20 and 21.
Here we need not go into detail as we are not interested
in the force densities inside the plates, but in the overall
force acting on it. All we need is the general law for the
closed system:

divT+ —0,S

where T is the properly defined total stress tensor, and S
is the total momentum density, composed of the field and
material momentum densities. In the stationary ease
where the momentum of the electromagnetic. field inside
the plates does not change, the force acting on the body
will be given by

F'= —f T/n/dS,

where the integration is taken over the surrounding sur-
face and may be calculated from the value of the stress
tensor outside the dielectric. In our case of two parallel
plates the pressure exerted by the light will be the
difference between the T„components of the stress ten-

sor outside the plates and that between the plates, calcu-
lated on the surface:

8 = T,',"[x= —(a /2) —d ]—T,',""(x= —d) .

For the one-dimensional configuration, the value of the
T" component of the stress tensor is equal to the energy
density:

T„(x)=TOO(x)= [E (x)+8 (x)] .
1

VI. CASIMIR FORCE FOR DIELECTRIC PLATES

The expression for the Casimir force will be given if we
replace classical quantities by quantum operators and
evaluate their value for the vacuum state. Of course the
vacuum value of T„ is divergent, however, the difference
(10), after a proper regularization, turns out to be finite.

This approach yields an intuitive, very simple explana-
tion of the attractive force between metallic plates. The
modes of the electromagnetic field are discrete between
the plates and form a continuum outside the plates. The
energy density is then bigger outside, and the plates are
pushed together.

In the one-dimensional case of dielectric plates the sit-
uation is somehow different, as there are no discrete
modes. However, the energy is not distributed uniformly.
As an example let us calculate the energy density in re-
gion I (it is of course equal to that in region V). From (8)
we get

1/2

E(x)= g J dk

r 1/2

ek(bkk/cok e+gf dk
' '"k'Te ikx+H )—

ek[bkk/~ke ' (e'""+R/, e '"')+H. c. ]

' 1/2

B( ) f dk
1 21TA

e2[bk, e " (ike'"" ikRke —'"")+H.c. ]

1/2
a) 1+ k c e, bI, 2e

0 2K COI

"
( ike'""+ik—Rke '"")+H.c. ]

+f dk c

+f' dk
'

~

1/2

(b e "ikT'e'""+H c )
COI

1/2

[b k
( k)Te ikx+H ]

where we have chosen vectors e, and e2 to point, respec-
tively, in the y and z directions.

The time-averaged vacuum value of the energy density
outside the plates will be

&nlT ln},=-,' y f dk (1+lR„l'g~„

+2 g f dk lTk l ACdk

Taking into account that Tk =T k and lRkl +lTkl =1,
we can transform the above into

&&IT Ifl&t=-,' g f dk /r~k(1+IRkl'+ITkl')
0 2'

=2Ac dk k .
0 2'

Similarly for the region between the plates
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&&IT I&&„,=-,'y f "dk ' r~„(Ic„I'+ID„I2)2'

+ —,
' g f dk firuk(ICq*I +IDk*I )

2 1T

=2trtc f dk k(IC„I'+ID„I') .

Finally we get the expression for the Casimir force in

the form:

Fc= f dk[1 —(ICI,. I'+ID,. I')]k

quencies: one connected with the resonances of the
coefficient r and determined by the effective thickness nd,
the other connected with the resonances inside the cavity
formed by the two plates and determined by the distance
a (Fig. 3). If d ))a (to get a measurable effect the plates
should be sufficiently thick or their separation sufficiently
small) the oscillations of r are tnuch faster, and we may
replace r by its mean value. Now we get, after a change
of variable,

Fc= f du f(u)ue
4~a

or when the explicit form of the coefficients Cj,. and D„. is

used

where

1
4
df(u)=1 — =1-

I
1 r2e'—" 2

1 —rd4

1+rd —2rd COSu

Fc dk 1
2 2~~~2 k.

As it stands, the expression is infinite. We will regular-
ize it, as in the case of metallic plates, by means of an ex-
ponential cutoff function.

The expression in the brackets is a rapidly oscillating
function of k and is determined by two characteristic fre-

Depending on the value of rd, the function f ( u ) is com-
posed of broader or narrower resonances (Fig. 4) and
gives rise to the repulsive force for u near a resonance
and the attractive force outside a resonance. Let us
evaluate the Casimir force for rd ~1. The second term in
the brackets is nonzero only for u„=2an, n =0, 1,2, . . . .
For u near resonances we may write

1+re (1—
rd )/rd

(1 rd )—
+(u —u„)

fd

= lim
rd ~1 rd

1 —r 4 4.
d 1 fd

lim = lim
~~- t I + rd 2rd cosu —

~d - & 1+rd 2rd [I—
—,
'

(
—u —u„) ]

=2m 5(u —u„) .

In this limit the Casimir force reads

Fc= f du 1 —2tr g 5(u —u„) ue
4ma o „—0

where
2v;

a =a = f (u)e"""du2' 0

2~
e imudu

277 0
A'c

4a

Ac vr

a

1
du ue '"—2 ue

0 n=0

f dnne "—g ne
0 n=0

(1 rd )e"""—
du

The structure of that expression is just the same as for
metallic plates. Using the results of earlier calculations,
at once we get

F fice
12a

0.5

O

—0.5—

Having checked that the expression (11)gives a correct
value for rd~l, let us calculate how the Casimir force
depends on rd The functio. n f (u) is periodic and sym-
metric so it may be expressed as

f(u)= g a e ' "=an+2 g a cos(mu),
m = —oo m =1

—1.0—

—1.50.0 0.5 1.0 1.5 2.0 2.5 3.0
ka

FIG. 3. Plot of the function f (ka) = I —
I C„. I

—
I D„ I

~, n =2,
d/a=5.
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FIG. 4. Plot of the function f(u): (a) rd'=0. 2, (h) r„'=0.5,
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FIG. 6. Dependence of the Casimir force (in units

nacrd /2vra') on the thickness of the plates.

The first integral is equal 5 o. The second may be easily
calculated putting z =e'" and integrating in the complex
plane over the unit circle. One thereby obtains

1 1 —rd
4

z
a =5 + It)dz a

rd (z rd
—)(z rd )—

f2m
m0 d

Finally f (u) may be written as

f (u) = —2 g rd cos(mu) .
m=1

Now the Casimir force takes the form

Ac
Fc = — g rd u cos(mu )e "du

2m'a

For rd = 1 it gives the familiar result

Ac
"

1 Ace
C

2 "=1 ' 12a'

For rd (1 the formula (12) gives the result that agrees
with our intuition, that for dielectric plates the force
should be smaller than for metallic plates (Fig. 5). The
Casimir force decreases rapidly for smaller values of the
reflection coefficient and may become undetectable in the
framework of the present experimental possibilities.

The dependence of the Casimir force on the plate
thickness d cannot be calculated analytically in the gen-
eral case. However, it may be done for small r, that is,
for n —1 small. We then have

r r (e2iknd I )

and, by Eq. (11),

2ma =& (m +A, ) Fc= Ac
dk 1

1

7T 0 2 2ika e 2 —2ika

In the limit A, ~O we get

F tlc ~ rd

27Ta m —
) Pl

1.0

0.2—

0.0 I

0.0 0.2 0.4 0.6 0,8 1.0
reflection coefficient

FIG. 5. Dependence of the Casimir force (in units Ac/2m. a')
on the reflection coefficient.

2 2ika e2 —2ika k
—

A, k

0

In the limit A. ~O we get (Fig. 6)

AcrdFc= [(I+2ndla) —2(1+ndla) +I] .
2vra

The increase of the Casimir force with the increase of the
thickness d can easily be understood if one remembers
that the attraction between the plates may be regarded as
the macroscopic manifestation of the microscopic in-
teraction between the atoms. In the present case, that is
the case of rarefied media, F& is the sum of atom-atom in-
teractions so it must increase with the number of in-
teracting atoms.

VII. FINAL REMARKS

In the preceding section we gave a discussion of the
Casimir force in the case of dielectric plates. Here we
would like to make additional comments on the validity
of our approach.
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(1) All of the above calculations are valid for the tem-
perature T=O. Higher temperatures lead to incoherent
excitation of dielectric media which in turn emit black-
body radiation. This radiation is a source of additional
pressure, which is of classical rather than quantum na-
ture.

(2) We have assumed magnetic permeability p, = 1,
which means that the media are nonmagnetic and the en-

ergy connected with the spontaneous and induced mag-
netic dipole moment may be neglected. This assumption
may not be valid in some special cases.

(3) The results derived above for dielectric plates have
qualitative character only. To be compared with any real
experiment, they should be repeated in three dimensions.
The mode functions may be easily written in analogy to
(9). The basic modification refers to the coefficients

which now depend on the polarization of the wave and
the angle between the wave vector k and the dielectric
surface. Moreover, additional kinds of modes exist,
which may be called "evanescent modes, " as they behave
like e +~"~ for x~ao. For these modes the inequality
to /c ((k, +kr )=k~~ holds, and k~~ may take discrete
values only.

(4) Our approach neglects the absorption of energy in-
side the dielectric. This may be taken into account by us-

ing the complex, frequency-dependent refractive index.
Then there will be no need to introduce a cutoff function,
as it will be introduced naturally by n (co)~1 for co~ 00.
The exact theory should be based on the quantum Hamil-
tonian containing the field, the atoms, the "heat bath, "
and their interaction.
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