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Multimode squeeze and rotation operators are de6ned such that they have extremely similar alge-

braic properties as those of their single-mode counterparts. It is shown that the introduction of N-

mode squeeze operators provides a convenient set of parameters to describe the variances of the

quadrature amplitudes in multimode Gaussian squeezed states. Some important properties of these

N-mode unitary operators are investigated. It is also shown that the time-evolution operator for a
general N-mode quadratic Hamiltonian can be conveniently expressed as an operator product con-

taining an N-mode squeeze operator, an N-mode rotation operator, and an N-mode displacement

operator.

I. INTRODUCTION

(1.2)

S,2(z, 2) is called the two-mode squeeze operator
defined by

S,2(z12) =exp(z12& 18 2
—z,*2&,&2), (1.3)

8; and 8; are boson creation and annihilation operators
for the ith mode, and la„a2& is a two-mode coherent
state which is a direct product of single-mode coherent
states defined by"

Q, la, &=a, la, & i =1,2 . (1.4)

It should be noted that a general two-mode GSS is not
simply a direct product of two single-mode GSS's
lzi, ai & lz2, a2&, where

lz„a, &=S,(z, )la, & . (1.5)

A possible definition of N-mode GSS's could be

N N
—= g S;(;) g S,„( .„)la, & la &, . . . , la

j&k
(1.6)

However, the above definition of N-mode GSS's is not
convenient because the operator product in (1.6) is often
difficult to manipulate when N is large. Another kind of

Single-mode Gaussian squeezed states (GSS's) of quan-
tum harmonic oscillators have been studied extensively in
recent years. ' ' However, multimode GSS's have not
been studied as much. Some time ago Schumaker inves-

tigated the properties of the most general two-mode
GSS's ("two-mode Gaussian pure states") defined by

lz„z2,z, 2, a„a2&=S,(z, )S2(z2)S12(z,2}la1,a2&, (1.1)

where S, (z, ) is the single-mode squeeze operator for the
ith mode (i =1,2),

operator product that will be frequently encountered in
describing N-mode coherent states and N-mode GSS's is

~jk(kjk ) xP(kjk~ ~k 0 'k~ 'k~j ) (1.9)

The properties of these operator products are often
difficult to see. For example, the unitary transformation
of the annihilation or creation operators by these opera-
tor products are generally hard to find because repeated
applications of these single-mode and two-mode opera-
tors many times involve tedious algebras that eventually
lead to messy results. As a consequence, it is incon-
venient and awkward to describe the variances of the
quadrature amplitudes in multimode GSS's in terms of
the parameters z, and z k (i,j,k =1,2, . . . , X, j (k) in
(1.6).

In this paper we define N-mode squeeze and rotation
operators to eliminate the difficulties mentioned above.
These N-mode operators turn out to have extremely simi-
lar algebraic properties as those of single-mode operators
and are thus easy to handle. It will be seen that the intro-
duction of the so-defined N-mode squeeze operators also
gives a convenient set of parameters for the description of
all possible second-order moments of the quadrature am-
plitudes. The two-mode squeeze operator (1.3) defined by
Caves and Schumaker is a special case of our general
two-mode squeeze operators, and the mixing operator
(1.9) is included into our definition of multimode rotation
operators. In Sec. II, we give the definition of the most
general multimode GSS which naturally follows when
multimode squeeze and rotation operators are defined.
Some important properties of these multimode operators
are investigated in Sec. III. It is shown in Sec. IV that

j&k

where P;(P; ) are single-mode rotation operators
defined by

P;(P;) =exp(itti, a t&, ) (1.8)

with real parameters 1I},, and R,k(pjk) are called mixing
operators defined by
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the time evolution of the systems driven by multimode
quadratic Hamiltonians can be succinctly described by
these multimode operators.

and a unitary matrix. In particular, for a symmetric ma-
trix z, we have

z =re' =e' r, (2.13)
II. N-MODE SQUEEZE AND ROTATION OPERATORS

We now consider an N-mode case. Let it and 8 be

column matrices as defined below with & and & denoting
their transposes:

~ =(&i»z (2.1)

=(& ),8 z, ~, a~) (2.2)

(2.3)

(2.4)

where 8; and 8; (i = 1,2, . . . , N ) are the annihilation and
creation operators for the ith mode. For convenience,
some shorthand notations will be used in the formula-
tions belo~, such as

, & lg&)',

S dS—= (S diS, S &2S, . . . , S Q~S)T,

e' f(r) if f( r)=f—(r),
f(r)e' = '

e' f(r) if f( r)= f—(r), — (2.14)

where f(r) is assumed to be expandable in a power series
of r Sub.stitution of (2.13) into (2.12) gives

S z(z)&S&(z) =cosh(r)&+sinh(r)e' Q

where r and 8 are Hermitian and the matrix r is positive
semidefinite or positive definite, which can be written as
r ~ 0, depending on whether ~z~—:det(z) =0 or not, 8 can
be chosen such that 2m.I)0~0. The matrix r is always
uniquely determined but 8 is not when ~z~ =0. It should
be noted that r and 8 generally do not commute. From
(2.13) it follows that

and

a a a a

M Mg a&2 M~

((&;,) „„&:—((&IQ„I&&) „

(2.5)

One can similarly obtain the unitary transformations of
the annihilation operator matrix & by the N-mode rota-
tion and displacement operators

R ~(4)dP~(@)=e' a (2.16)

5 ~(a)dD~(a)=&+a . (2.17)
We define N-mode squeeze operators in a compact

form as

(2.6)

S ~(z)=S ~'(z)=S~( —z), (2.&)

R ~(4)=P ~'(4)=R~( —4) . (2.9)
N-mode displacement operators are commonly defined as

8~(a ):—exp(a& —ata ), (2.10)

where a = (af,a,'—, . . . , a„*).
Using the operator identity'

a zl &zxz =exp
2 2

where z is an N XN matrix which is assumed to be sym-
metric for convenience. This definition of N-mode
squeeze operators has the advantage that S~(z) behaves
very much like a single-mode squeeze operator as we will
see in a moment. We may also define N-mode rotation
operators in a similar way as

P~(4) =exp(i8 4a ), (2.7)

where 4=4 is an N XN Hermitian matrix. It is clear
that S~(z) and Pz(4) are unitary operators with

Notice that Eqs. (2.15)—(2.17) are of exactly the same
forms as their single-mode counterparts. From
(2.15)—(2.17) one immediately obtains the transformed
creation operator matrix,

S z(z)a Sz(z) =cosh(r )I +sinh(r )e

R ~(4)8 R~(4) =e ' a

8 z(a)a Dz(a)=d +a* .

(2.18)

(2.19)

(2.20)

R ~(4)S~(z)R~(4)=S~(e ' ze ' ),
P g(4)D~(a)R~(4)=D~(e ' a),

(2.22)

(2.23)

which show that the orders of these N-mode operators
can be switched at will with appropriate changes in the
parameters.

N-mode GSS's may be naturally defined as

A straightforward application of Eqs. (2.15)—(2.20) gives
the following transformation relations:

S ~(z )D~(a)S&(z) =Dz[cosh( r )a —sinh(r )e' a*],
(2.21)

e "Se "=8+[ A, 8]+—[ A, [ A, B]]+ (2.11) ~z, a&=—S (z)~a&, (2.24)

we find that

zz' z0~(z)aS~(z)=a+z& + 8+
2! 3!

+ a+
$ 2

4!
(2.12)

okla&=a&la&, k=1,2, . . . , X (2.25)

where ~a & = ~a, & ~a2 &, . . . , ~a~ & is an X-mode coherent
state, which is simply a direct product of N single-mode
coherent states, satisfying

It is well known that any matrix of finite dimension
may be decomposed into a product of a Hermitian matrix

a~a&=a~a& .

Since N-mode coherent states ~a & can be written as

(2.26)
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la)=D (a}l0&

where l0) is the vacuum state, we may write

lz, a) =S (z)8 (a)l0) .

(2.27) III. SOME PROPERTIES OF N-MODE
SQUEEZE OPERATORS

In this section we investigate some important proper-
ties of N-mode squeeze operators S~(z).

P„(e)la&=le'~a& . (2.29)

Now let us examine how all the variances of the quad-
rature amplitudes

The operator R~(4) is called an N-mode rotation
operator sim ly because an N-mode coherent state la)
acted on by ~(4) is still an N-mode coherent state but
is "rotated" such that

A. Disentangling of S~(z}

In the following we perform disentangling (factoriza-
tion} of the N-mode squeeze operators with Lie algebra
matrix techniques' ' to derive the Baker-Campbell-
Hausdorff relation' for S~(z).

Let us define the operators

a+ =——,'(&+a t), 8 = —.(& —& t)1

21

described by the variance matrices

cT+ = ( l&+ M+ ), M+ =&+ (8+ )

cr' —= (a8 b& ), 6d =8 —(8 ),
a', = ,'((~e, ~-a &+(~a ~n, &')

(2.30)

(2.31)

(2.32)

(2.33)

&u d

2

& v&
A (v)=

2

S(w)=——,'(I w&+Sw& )=a tw&+ —'Tr(w),

(3.1)

(3.2)

(3.3)

exp[ —k(w )]A (u)exp[B(w)] = A (e tuel't)

exp[8(w)]A (v)exp[ —B(w)]=A (e ve ) .

The operator set

(3 4)o+ =
—,
' [cosh(2r )+sinh(2r )e' +cosh(2r )

+sinh(2r )e ' ], (2.34) (3.5)

cr =
—,'[cosh(2r )

—sinh(2r )e' +cosh(2r )

are related to the squeeze matrix z. It is straightforward where u, v, and m are N XN matrices. It is easy «»ow
to show that in an N-mode GSS lz, a), where z= re' th—at
=e' r,

—sinh(2r }e ' ],
10.+ =—[—cosh(2r )+sinh(2r )e '

81

+cosh(2r) —sinh(2r)e ' ],
satisfying

(2.35)

(2.36)

[ A(u), A (v),S(w)l u, v=(zz )"z, w =(zzt)

n=0, 1, . . . , m=1, 2, . . . ]

with z =z forms a Lie algebra' X of infinite dimension,

2a+cr = I+(o+ ) (2.37)
[A(u), A(v)]=[A (u), A (v)]=[B(w),B(w')]=0,

When z=z, that is, e' =e ' and r=r=(z )', we
have

cr+ =0,2

o+0 —0 0+ 4I
(2.38)
(2.39)

Therefore, an N-mode GSS is an N-mode minimum-
uncertainty state in a sense of (2.39) if the squeeze matrix
z is real and symmetric. In particular, when z =z~ ~0 or
z =z 0, we have e' =+I and r.=r =+z which gives

[A(u), A (v)]=B(vu ),

[B(w), A (v)]=A (wv)+A t(wv),

[B(w), A(u)]= —A(wu) —A(wu),

(3.6a)

(3.6b)

(3.6c)

(3.6d}

(2.40)

Equations (2.34)—(2.40) show that variances can be de-

scribed very conveniently by the squeeze matrix z.
It should be pointed out that our definition of N-mode

GSS's (2.24) and the definition (1.6) define the same set of
states but they are characterized by different parameters.
The diC'erence between our general two-mode squeeze
operator S2(z) and the two-mode squeeze operator of
Caves and Schumaker (1.3) should also be noticed.

which is homomorphic to the Lie algebra su(1, 1) under
the mapping g defined by

P[ (Au)]=L, /[A (v)]=L+, g[B(w)]=2Lo,

Vu, v, and w (3.7)

where L, L+, and Lo satisfy the following commuta-
tion relations
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[L,L+ ]=2Lo,

[Lo L+]=+L+ .

(3.8a)

(3.8b)

0 0 '0 v
A (v)—=

(3.9)

The Lie algebra X. has a faithful matrix representation

[A(u), A (U), B(w)i u, u=(zz )"z, w=(zz )

n=0, 1, . . . , m=1, 2, . . .I,
where

m 0
0 —w

are 2% X2N matrices which obey the same commutation
rules as (3.6).

Using (2.14) we can factor the matrix exp[ A (z)—A (z)] that represents S~(z) as

texp[A (z) —A(z)]=exp
z 0

cosh(r) sinh(r)e'

e ' sinh(r) cosh(r )

I T S 0 I 0
0 I 05''T I

=exp[ A ( T) ]exp [8 ( lnS ) ]exp [—A ( T)], (3.10}

where z=re', T:—tanh(r)e', and S=—sech(r). Since the
disentangling of SN(z) is uniquely determined by the
structure of the Lie algebra X, we can obtain simply from
(3.10) the disentangled form of the N-mode squeeze
operators

n =0 In, . ) i,j =1 nij '. . f

[0 t(e I)ff]":—
exp(8 Mff)= g

m=0 nt

S~(z)=exp[A t(T)]exp[B(lnS)]exp[ —A(T)]

=~S~'~ exp( —,'I 78 )exp[8 (InS}8]

Xexp( —
—,'8T &),

where we have used

(3.11)

N
g

N

Xff &gf (314)
k=1

where qk =g n„, pk =g n k, denotes the normal
ordering and g(„}means a summation over all parti-

IJ

tions of n =g+~, n;J
From (2.11) we have

exp[Tr(lnS }]= IS I
. (3.12) exp( —& tMI)& exp(& M&) =e

which may be rewritten as

(3.15)

The exponential operators in (3.11) can be put in any oth-
er orders using Eqs. (3.4) and (3.5) and the following iden-

tity: [8,exp(& M& )]=(e I )exp(8 M& )—& . (3.16)

exp[ —A ( T, )]exp[ A ( Tz )]
Now lef, F(fl, &) be the normal-ordered form of the

operator exp(a tM& ), then from (2.26) we have

=exp[ A (tT~P )]exp[8(l Pn)]exp[ —A ( T~P )],
(3.13)

(a(exp(& M&) IP) = (a IP)F(a*,P), (3.17)

where T& and T2 are symmetric matrices and
P =(I+T2T, )

(a~[it, exp(t Mit)]~P) =(a~P) F(a*,P} .

From (3.16)—(3.18) we obtain a differential equation

(3.18)

B. Normal ordering of 8'N(z}

In order to cast Sz(z) into the normal-ordered form,
all we need to do is to find the normal-ordered form for

the exponential operator exp[8 (lnS}8] in (3.11). In the
following we show that for an arbitrary matrix M,

a F(a*,13)= (e I )F(a*,P)P-
Bcl

with the boundary condition

F(O,P)=1 .

Integration of (3.19) yields

(3.19a)

(3.19b)
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F(a*,P) =exp[a (e —I )P]

[a (e —I)P]"
n=0 n!

which immediately leads to (3.14).

00 (eM I)"'J' N N=r x n, " n "IIp.'"
n=O In, I ij =1 ij' k=1 k=1

(3.20)

X exp( ,'—dT—8). (3.21)

Equation (3.20) also enables us to find the normal-
ordered form of the operator product S~(z)BN(a)P~(4):

Application of (3.14) to (3.11) gives the normal-ordered
form of Sz(z):

Sz(z)=~S~'~ exp( —,'8 TB )
:[0t(S —I}8]":

n=0 n!

oa .[g t(Sel'o I )Q ]tl.
Sz(z}DN(a)PN(4)=~S~'~ exp[ —

—,'(ata+aT a}]exp(aS& + —,'8 78 )
n=0 ni

Xexp[ (aT +—a )e' ff——,'&e' T e'~n] . (3.22)

C. Products of Sz(z)

S„(z,)S~(z, )=exp —Tr(4) S~(z3)PQ(4),
2

(3.23)

where z3 and 4 are given by

With the help of Eqs. (3.4), (3.5), and (3.13), the prod-
uct of two N-mode squeeze operators can be easily found
to be

i 8~ i ok
with zk = rj, e ",—Tk =—tanh(rk )e ", Sk =—sech(rk ), and
k =1,2, 3.

The products of N-mode rotation and displacement
operators are also straightforward to get

(e, )R (e,)=u (4,), (3.26)

Bz(a)8&(P)=exp[ —,'(P a —a P)]BN(a+P), (3.27)

where 43 is given by

i+3 i4& i 4&
e =e e (3.28)

T3=S, '(T, +T2}(I+T)Ti) 'S),
e'+=Si 'S, (I+T2Tt) 'S2

(3.24)

(3.25)
Using Eqs. (3.22) and (3.23) one can easily find overlaps
of N-mode GSS's:

&
—z, ,ailzz, az) =exp —'Tr(e) &aiIS„(z3}P~(e)la2)

1
exp —Tr(4 ) ——,'(a, a, +a&a&} exp( —,'atT3a', )exp(atiS&e'@az)exp( —,'y2e'@Tt&e'+az),

(3.29}

where T3, S&, and e' are given by Eqs. (3.24) and (3.25).

D. Nonexistence of proper eigenstates of f~(z)

Recently we proved that single-mode squeeze operators
and two-mode squeeze operators of Caves and Schumak-
er do not have proper eigenstates, the eigenstates that can
be normalized to unity. ' This conclusion is also true for
our general N-mode squeeze operators Sz(z) as is shown
below.

Let us first assume that Sz(z) (zAO) has a proper
eigenstate ~A,(z)) with the eigenvalue e' ",i.e.,

SN(z)(8+e' 8 )S ~(z)=e+"(d+e' dt) .

It follows that

(3.31)

S~(z)(Q+e' & )~A(z)) =e' "'e+'(&Re' I )~A(z)),

(3.32)

with &A.(z)~X(z) ) =1, where A.(z) is real because Sz(z) is
unitary.

Now consider the set of states in the column matrix
(I+e' it )~A(z)), where e' is given by z=re' From.
(2.15}and (2.18), we have

S (z)~A,(z)) =e' "~A,(z)) (3.30)
If we let R be the unitary matrix of dimension N that di-
agonalizes r, namely,
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RrR =r —=
d (3.33)

where r„(k =1,2, . . . , N) are nonnegative real numbers,
then we have

S~(z)R(a+e' d )~A,(z))

=RS&(z}(tive' tt )~A(z))

=exp[+r„+ii(z)I]R(8+e' & )~X(z)} . (3.34)

IV. TIME-EVOLUTION OPERATORS FOR N-MODE
QUADRATIC HAMILTONIANS

For the Hamiltonians of the form

8(t)= g f, (t)8,
i=1

(4.1)

where f;(t) are c numbers and [A';, i =1,2, . . . , n j forms
a Lie algebra of dimension n, the time-evolution operator
0(t) can be expressed as'

n

0(t)= P exp[c, (t)8, ] .
i=1

For example, single-mode quadratic Hamiltonians

8, (t)=to(t)tt 'tt+ f(t}& +f'(t}a

(4.2)

Since the states in R(8+e' a )~A,(z)) are not vanishing
and can be normalized to 1, Eq. (3.34} implies that all the
states in that column matrix are proper eigenstates (un-
normalized) of Sz(z} with the eigenvalues given by the di-

agonal matrix exp[+ rd+ik(z)I]. However, the unitari-

ty of Sz(z) demands that rd =0, which leads to

(3.35)

contradicting the assumption z%0. Therefore we are
forced to conclude that proper eigenstates of S~(z) do
not exist.

mension N, and h(t) is an arbitrary real function, the
time-evolution operator 0~(t) can be expressed as a
product of —,'(3N +7N+2) exponential factors because
of the structure of Lie algebra associated with 8~(t) W. e
now show that these exponential operators can be ar-
ranged in such an order that 0~(t) is simply a product of
an N-mode squeeze operator, an N-mode rotation opera-
tor, and an N-mode displacement operator multiplied by
an overall phase factor, namely,

0~(t) =e " S~(z(t))8~(a(t))Rtt(4(t}) . (4.6)

Using normal ordering techniques' one may find the
time-evolution operator 0~(t) in the normal-ordered
form,

0~(t) =exp[ A (t)]exp[8(t)& 1+8 C(t)tt t]

X g ', 'exp[E(t)&+SF(t)8]
n=0 nf

(4.7)

where A(t), 8(t), C(t), D(t), E(t), and F(t) are given by
the following equations:

iA =Tr[f (2C+BB)]+g 8+h(t), (4.8a)

iB =(4Cf +a) )8+2Cg *+g,
iC=4Cf C+2ri)C+f,

(4.8b)

(4.8c)

iD = (4Cf + cu )(D +I ),
iE=(D+I)(2f 8+g'),
iF=(D+I)f (D+I)

with the initial condition

(4.8d}

(4.8e)

(4.8f}

A (0)=8 (0)=C(0)=D(0)=E(0)=F(0)=0 . (4.9)

E(t) and F(t) are related to B(t), C(t), and D(t) because
of the unitarity of 0&(t). From Eq. (4.7) and the identi-
ties

[a, U~(t)] =
t &tv(t), [at , Ott(t)]= — Otv(t),a~

+g(t)& +g*(t)a+h(t) (4.3)
(4.10)

are associated with a six-dimensional Lie algebra

P tt~t, —,
' aI t&+ —,', 'tt, 'tt, I j. Thus 0&(t) may have six

exponential factors. It has been shown ' that these fac-
tors can be arranged in such an order that

0, (t)=e" S,(z(t)}D,(a(t))N, (P(t)), (4.4)

8&(t)=& tao(t)8+8 f(t)ft +Bf (t)it

+g(t)& +gt(t)8+h(t) (4.5)

where co(t) is an NXN Hermitian matrix, f(t) is an
N XN symmetric matrix, g(t) is a column matrix of di-

where S,(z), R, (P), and D, (a) are single-mode squeeze,

rotation, and displacement operators and e ' is a phase
factor. Similarly, for general N-mode quadratic Hamil-
tonians

we find

0'~(t)aU~(t)=(I 4CC ) '[(D+I)a+—2C(D +I)&

+(2CB'+8)]
Uz(t)a Uz(t)=(D+I) '( —258+a t E) . —

(4.11)

(4.12)

F= (D*+I ) 'C (D+—I),
E = (D*+I ) '(2C 8+8*)—,
I 4CC =(D+I)(D —+I) .

(4.13)

(4.14)

(4.15)

Equation (4.15) implies that I—4CC~ ~0. We may thus
define

C =——,'tanh(r)e' (4.16)

Comparison of (4.12) with the Hermitian conjugate of
(4.1 1) gives
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where r ~ 0, and let

B —=sech(r)a

so that

I—4CC =sech (r),
D+I =sech(r)e'

Otz(t)dO&(t)=[cosh(r)e' &+sinh(r)e' e ' d

(4.17)

(4.18)

(4.19)

displacement operators. Our multimode operator formu-
lation can be applied to many problems such as theoreti-
cal calculation of molecular spectroscopies.

From (2.21)—(2.23) and (4.21) it is clear that any N
mode quadratic Hamiltonian preserves all N-mode GSS's.
On the other hand, it can be shown with exactly the same
approach used in Ref. 10 that only N-mode quadratic
Hamiltonians preserve all N-mode GSS's.

V. CONCLUSION

+cosh(r)e' a+sinh(r)e' e ' a']

XaS (z)8 (a)P (4), (4.20)

where we used Eqs. (2.15)—(2.17). Equation (4.20) implies
that

0 (t)=e "S (z}8 (a)P (4) . (4.21)

y& =1m( A +aC a) . (4.22)

The existence and uniqueness of a solution to the Riccati
equation (4.8c) guarantee that 0~(t) can be uniquely ex-
pressed in the form of (4.21). This result is very impor-
tant in describing the time evolution of the systems
governed by multimode quadratic Hamiltonians. Wave-
packet propagations may be exactly calculated with ease
using the properties of multimode squeeze, rotation, and

Comparison of (4.21) with (3.22) and (4.7) gives the phase
angle yz to be

We have defined general multimode squeeze operators
and rotation operators such that they have extremely
similar algebraic properties as those of their single-mode
counterparts. The definitions include two-mode squeeze
and mixing operators of Caves and Schumaker as special
cases. It has been shown that all the variances of the
quadrature amplitudes in multimode Gaussian squeezed
states can be conveniently described by the squeeze ma-
trix introduced. The disentangling, normal ordering, and
some other properties of N-mode squeeze operators have
been formulated in matrix notations. We have also
shown that the time-evolution operator for a general N-
mode quadratic Hamiltonian can be expressed as an
operator product containing an N-mode squeeze opera-
tor, an N-mode rotation operator and an N-mode dis-
placement operator.
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