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The Husimi distribution for the eigenstates of a classically nonintegrable two-dimensional system

with mixed phase space was calculated in order to analyze its structure in terms of classical trajec-
tories. Besides eigenfunctions concentrated on invariant tori or with support on chaotic regions of
phase space, we also found others that combine different classical invariant sets (like a stable and an

unstable periodic orbit) and families of eigenstates scarred by classically unstable periodic orbits.

I. INTRODUCTION

A basic goal of semiclassical quantum mechanics is to
provide a connection between classical trajectories and ei-
genvalues and eigenfunctions of a given system. In this
paper we are concerned with a particular aspect of this
quantal-classical correspondence: the interpretation of
the structure of indiuidual eigenfunctions of Hamiltonian
systems in terms of classical trajectories when the system
has a mixed phase-space structure, i.e., a inixture of regu-
lar and chaotic motion in the classical limit.

Since the semiclassical theory of such systems is far
from being completed, our purpose here is to present nu-
merical results illustrating how difFerent trajectories com-
bine in order to build up a given eigenfunction. We do
not pretend to recover the eigenfunctions or the eigenval-
ues starting from classical mechanics but just the oppo-
site way: given a certain eigenfunction, we want to iden-
tify classical patterns on it. Doing so, we hope to shed
some light on the kind of problems we are facing from
the theoretical point of view.

In order to compare directly the classical and the
quantum solutions we must formulate both theories in
terms of a unifying mathematical formalism. A particu-
larly convenient representation of quantum mechanics is
provided by the coherent states in which to the squared
modulus of an (arbitrary) wave function is associated a
positive definite phase-space distribution (sometimes
called the Husimi distribution'). An important property
of this distribution crucial to our purposes is that in the
semiclassical limit the Husimi distribution associated to
an eigenfunction of a Hamiltonian system peaks smoothly
on the classical trajectories; ' the typical singularities
and nonanalyticities of the semiclassical limit, although
of great interest, * are eliminated in the Husimi represen-
tation.

From the correspondence principle we expect, in the
semiclassical limit, that a phase-space Husimi distribu-
tion associated to a certain eigenfunction approaches

some classical stationary distribution localized on the
corresponding energy shell ~ For integrable systems, we
know that the eigenfunctions are peaked on the quantized
invariant torus. On the contrary, in the case of strongly
chaotic motion where no invariant tori exist we expect a
spreading of the eigenfunctions over the entire energy
shell. In fact, some theorems prove ' that this set is the
invariant set supporting almost all eigenfunctions of er-
godic systems in the semiclassical limit. However,
several recent studies " show that many eigenfunctions
of these systems are far from being "uniform" distribu-
tions over the energy shell but present simple regular pat-
terns that can, in general, be interpreted in terms of
periodic orbits. Finally, in the case of mixed systems we
get an even more complicated classical phase-space struc-
ture, where the minimal invariant sets are, apart from the
energy shell as a whole, the (bounded) chaotic regions,
tori, cantori, and periodic orbits. ' Very little is known
about the structure of individual eigenstates of such sys-
tems and their connection to the classical invariant sets, a
point we want to address.

The results we are going to present were obtained in a
many-body system related to nuclear physics, a schematic
shell model with SU(3) symmetry whose classical coun-
terpart is represented by a two degrees of freedom conser-
vative Hamiltonian. Although the model is far from be-
ing the simplest system having a mixed phase space (for
instance, it has no energy scaling and it is not defined as a
map), it has the important property that its Hilbert space
is compact, and therefore there are no numerical errors
introduced by a truncation of the basis. Moreover, it
provides an example of how models not belonging to the
usual Weyl group can also be treated in a simple way. '

II. THE SU(3) MODEL

A. Quantum description

The SU(3) model is a three-level schematic nuclear
shell model. ' ' It is defined by N interacting fermions
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are "collective" operators completely symmetric under
the interchange of two fermions obeying a U(3) algebra. '

However, as is explained below, the conservation of the
total number of particles implies that we can eliminate
one of the generators, resulting in an SU(3) algebra. The
(a;,a; ) are the usual fermionic operators obeying an-
ticommutation relations which create and/or annihilate
the fermion m of the i shell and U;, are interaction param-
eters.

We are going to work on the representation of the
group for which all the particles are in the lowest shell 0
in the noninteracting ground state (the [N 00] represen-
tation of the group). Because the interaction conserves
the total number N of particles, a basis of this representa-
tion can be labeled by the occupation numbers n, of only
two of the three shells [we choose shells 1 and 2, the occu-
pation numbers of the lowest shell 0 being given by Eq.
(2.4) below],

n1n2
¹!n,tn

(N n, nz )!——

' 1/2

GioGzo10) (2.3)

where l0) is the vacuum state for which all the particles
are in the lowest shell 0.

These states are eigenstates of the particle number
operators 611 and G22 with eigenvalues n1 and n2, re-

spectively. Due to conservation of N, the n; satisfy the
equation

n0=N —n, —n2

with

(2.4)

that can occupy three different single particle levels

(shells): 0, 1, and 2 for the ground, first, and second excit-

ed states with energies c, Each shell is X degenerate s'o

that fermions are labeled by an index m =1, . . . , N (see
Refs. 16, 17, and 13 for more details of quantum and clas-
sical aspects of the model).

The Hamiltonian of the system can be written in the
following way:

H =H0+ V,

and it is then clear that the states (2.3) are also eigen-
states of G00 and therefore of H0. We use the operator
version of (2.4),

G00=N —G„—G22 ) (2.6)

The classical limit of the SU(3) model is obtained when
the total number of particles N goes to infinity. ' ' ' In
particular, in Ref. 17 Meredith, Koonin, and Zirnbauer
have compared, considering the classical underlying
phase-space structure, the spectral fluctuations and over-
lap probability distributions of the eigenstates of the sys-
tem with Gaussian orthogonal ensemble (GOE) predic-
tions.

Using the appropriate coherent states for the [N 00]
representation, which are parametrized by two complex
parameters z, and z2,

lzizz ) exp(z l 610+z2620) l0) (2.7)

and making a (noncanonical) change of variables
(z;,z;)~(I, , 8, ) to the action-angle variables of the un-

perturbed Hamiltonian H0,
1/2

1 —I —I
1 2

i8,
e ', i=12, (2.8)

the classical limit of Hamiltonian (2.1) is given by

&(I,8)=Ho(I)+gV(I, 8),
&(I,8)= —1+I, +2Iz

+y[(1 I, Iz )(I, cos28—, +I—z cos28z)

(2.9)

to eliminate in (2. 1) the occupation number Goo of the
lowest shell; all the results from now on are going to be
expressed only in terms of the variables labeling the shells
1 and 2.

The second term on the right-hand side of Eq. (2.1)
represents a two-body interaction that moves pairs of par-
ticles between levels. Due to the fact that the interaction
conserves the oddness or evenness of the occupation
numbers, when written in the basis (2.3), the Hamiltonian
of the system splits into four blocks determined by the
parity of n, and n 2. The dimension of the different parity
blocks of H for N even or odd are given in Table I. In the
numerical calculations presented in Sec. IVB we have
used N even and computed eigenstates of the (+,+) mul-

tiplet, to which the ground state of the system belongs.

B. The classical limit

O~n, +n2(N (2.5) +I,Iz cos2(8z —8, )],

TABLE I. Dimension of the different parity multiplets of H.

N even

N odd

(+,+)
(N+2){N+4)

8

(N+ 1)(N+3)
8

(+,—)

N(N+2)
8

(N+1)(N+3)
8

( —, +)
N(N+2)

8

(N+1){N+3)
8

( ——)

N(N+2)
8

(N —1)(N+1)
8
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y=(X —1)v (2.11)

and we have normalized the Hamiltonian &(I,8) by the
total number of particles X [with the choice (2.10) for the
single-particle energies, the energy and interaction pa-
rameter y correspond to dimensionless quantities].
Through the canonical transformation

q;=+2I; cos8, , p, =+2I, sin8, , i =1,2 (2.12)

Eq. (2.9) can be written in the usual (p, q) coordinates; we
then get a Hamiltonian which has not the kinetic plus po-
tential form and containing terms of fourth order in p. '

Putting y=0, Eq. (2.9) reduces to two uncoupled har-
monic oscillators written in action-angle variables, with
frequencies m& =1 and hz=2. The action variables I,
and Iz, therefore, represent the classical continuous ver-
sion of the normalized occupation numbers n&/N and
n z /N, respectively, defined as

(z, z2~6;;~z, z2)I;=—
N (z, z2 lz iz2 )

The term in y in the classical Hamiltonian (2.9) is the
classical analog of the two-body interaction term of (2.1),
and provides an interaction between the oscillators.
There is, however, an important difference between these
oscillators and the usual Weyl group oscillators due to
the fact that we have now an upper bound limit to the to-
tal number of particles that can occupy the shells 2 and 3.
The classical statement of this finite-size effect is obtained
taking the coherent-state representation of (2.6) and
definition (2.13) to obtain

Io+I ) +Iz = 1 (2.14)

that imposes the following restriction to the classical ac-
tions [cf. (2.5)]:

0 Ii+Iz 1 . (2.15)

This equation states that the classical phase space ob-
tained is a compact space, a fact related to the finite size
of the irreducible representations of the SU(3) group.

The dynamics of the system in this limit is provided by
the usual Hamilton equations (they correspond to the
time-dependent Hartree-Fock approximation of the
quantum fermion dynamics)

(2.16)

(2.17)

or, using (2.9),

which is a two degrees of freedom stationary Hamiltoni-
an. In deriving Eq. (2.9) we have chosen the parameters

co= —1, c& =0, cz= 1

(2.10)
v;, =u; =u, Vi&j

in (2.1), we have introduced the new interaction parame-
ter y via

0, =1+p cos20, —2', cos20)

—yI2 [cos282+ cos28, —cos2( 82 —8, )],
Oz =2+g cos20z —2gIz cos26Iz

y—I, [cos282+ cos28, —cos2(82 —8, )],
I, =2y(1 I, —I2—)I, sin28, 2+I—, I2 sin2(82 —8, ),
I2 =2y(1 I, I—2)—I2 sin282+2yI, I2 sin2(82 —8, ) .

(2.18)

From the last two of Eqs. (2.18) it can be shown that
the total number of particles is conserved by the equa-
tions of motion, i.e., I, +Iz= —Io, and therefore Eqs.
(2.14) and (2.15) are preserved by the dynamics.

The Hamiltonian (2.9) has two discrete symmetries,
corresponding to the quantum splitting in four parity
multiplets. These are

(81 82) (81 82)
(2.19)

(8„82)~(m —8„m —8, ) .
Therefore the trajectories will always appear as single,
double, or quadruple symmetry partners depending on
whether none, one, or both symmetries (2.19) are broken.

We have thus obtained for the classical limit of the
SU(3) model a two degrees of freedom Hamiltonian
defined on a compact four-dimensional phase space with
a dynamics provided by Eqs. (2.18). The only constant of
the motion is the energy and therefore the Hamiltonian
flow will be globally nonintegrable. There are, however,
for any y, as we will see, regions of phase space where
most trajectories lie on invariant tori. As the energy
changes, these are mixed with other regions where chaot-
ic motion prevails.

The model has an extremely rich classical structure.
There are many stationary points (both stable and unsta-
ble) which branch out as the interaction parameter y
grows. It cannot be represented as a kinetic plus poten-
tial energy Hamiltonian and thus phase-space methods
are imperative. Moreover, only a finite range of energies
is allowed, reflecting the fact that the phase space is com-
pact.

As our objective is a comparison of the eigenfunctions
of the system with classical structures, we now proceed to
a more detailed analysis of the associated classical phase
space.

III. CLASSICAL PHASE-SPACE
STRUCTURE

In order to begin with an analysis of the different re-
gions of phase space, let us calculate the location and sta-
bility of the stationary points of (2.9). For that purpose,
we must solve the set of equations

7&=0 . (3.1)
This represents a system of four nonlinear coupled equa-
tions [cf. (2.18)]. We were able to find analytically 13
different stationary points of & and determine their sta-
bility. One more solution was found numerically.

Not all these solutions exist for all values of g. In
Table II we summarize the energies, coordinates, normal
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mode frequencies, and the range in g where the solutions
exist. The fourteen points are labeled from 3 to N. For
g=10 (the value of the interaction parameter we will use
for the numerical calculations), they are ordered by in-

creasing energy. The sign of co; determines the stability
of each solution: both positives, stable; one negative, un-

stable along one normal direction; both negatives, unsta-
ble along both directions. The hyphen appearing in the
value of the angle of certain stationary points means that
any value of it is allowed.

Figure 1 shows the energy of these stationary points as
a function of y, for y ~ 0. The continuous lines represent
stable stationary points, while dotted lines are unstable
stationary points. We have only analyzed the y & 0 case
because for the special parameters chosen in (2.10) the
solutions for g &0 can be deduced by simply changing the
sign of the energy. In this sense it should be noticed that
our convention for the sign of g differs from that of Ref.
16, the difference resulting in an opposite sign for the en-

ergies.
As the interaction parameter g grows, the phase-space

structure evolves through branchings of the stationary
points from a relatively simple situation with three stable
stationary points for g~1 to 14 stationary points for
y=10, five of which are stable and nine unstable. The
branching points have been indicated by heavy dots. At
these values of g there is usually a change in the symme-
try of the stationary points. Thus, for example, for g & 1

the upper stable branch has both symmetries (2.19). Be-
tween g=2 and 3 it has only one and therefore it
represents two degenerate stable points. For g) 3 all
symmetries have been broken and there is a fourfold de-
generacy. A similar analysis can be done for the other
branches.

N

M

L

K

Near each stable stationary point the Hamiltonian can
be approximated by two uncoupled harmonic oscillators.
We then expect to find a regular region in the neighbor-
hood of each of them. As we move away from these
points, we can think of the anharmonicities as a perturba-
tion to this approximation, the energy measured from the
stable point being the perturbation Kol'mogorov-
Arnol'd-Moser (KAM) parameter. We have checked nu-

merically the existence of these regular regions, and es-

tablished the fact that they occupy most of the phase
space associated to the well up to the energy of the
nearest unstable point, after which a large portion of the
tori are destroyed.

On the other hand, far from these stable points, for ex-
ample, near E=0 for g=10, we have checked that the
phase space is almost covered by chaotic trajectories.

To illustrate these facts, in Fig. 2 we show two Poin-
care sections for several trajectories at y=10 lying (in en-

ergy) close to the upper stable stationary point N (that
has E =3.43). The sections were made through the plane
I2=0.4 and displayed in the polar variables (I„O&). The
circles correspond to the maximum allowed value for I1,
i.e., I~ =1 I~ =0.6 [c—f. (2.15)]. The energy of the
nearest unstable point is E =3.025 (point M of Fig. 1).
Part (a) of the figure shows several trajectories with ener-

gy E =3.1568, intermediate between the stable and un-
stable points: they all lie on invariant tori; it is also clear
the appearance of higher-order tori (the chaotic regions
are too small to be visible). Part (b) shows the same sec-
tion but for trajectories with E =2.8946, below 3.025: al-
though we still find some trajectories lying on invariant
tori, a large portion of them have been destroyed and
now chaotic motion occupies a large portion of the avail-
able phase space.

Besides the stationary points, periodic orbits are also
very important. For nonintegrable systems, they form
one-parameter families isolated in the energy shell which
can branch and bifurcate in very complicated trees. ' We
have not attempted such an exhaustive numerical study
for the SU(3) model but instead we have concentrated on
those families which exist because of the symmetries of
the Hamiltonian and which are very simple. To find
them we notice that the Hamiltonian (2.9) has three in-
variant planes defined by

0UJ
z', I1 =0 I2 =0, and I1 +I2 = 1 (3.2)

I. . . . j. . . . (. . . . I. . . . I. . . . I. . . . ). . . . I. . . . I

0 1 2 3 4 5 6 7 8 9 10

H

F
p

E
C
B
A

In fact, it is easy to check from the last two of equations

FIG. 1. Energy of the stationary points of the classical Ham-
iltonian as a function of the interacation parameter y. The solid
lines represent stable stationary points, while dotted lines the
unstable stationary points. Labels A -X for y= 10 correspond
to the labeling of Fig. 1. The branching points have been indi-

cated by heavy dots.

FIG. 2. Classical Poincare sections for several trajectories at

g = 10 located close to the maximum stable stationary point X;
(a) Trajectories whose energy is above the unstable stationary

point M and (b) for an energy below that of point M.
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(2.18) that

I;=0 I;=0, i=1 2

I) +I2 = 1 I]+I2 =0
(3.3)

(3.4)

In these special planes the motion has only one degree of
freedom and the resulting trajectories constitute special
cases of periodic orbits of the system. %'e will call them
the three principal families. Each of them starts and ends

at some of the 14 stationary points of Fig. 1. Physically,
as one of the shells is unoccupied, the resulting periodic
motion corresponds to simple SU(2) trajectories.

As an example, let us discuss the family I2=0. Then
the Hamiltonian reduces to

~(I„8,) = —1+I,+y(1 I, )I
~

—cos(28~ ) . (3.5)

FIG. 3. A family of periodic orbits of the system correspond-
ing to the I2=0case.

which is a one-dimensional stationary Hamiltonian corre-
sponding to the SU(2) Lipkin model. '

Figure 3 shows the trajectories at various energies of
(3.5) with y=10 in the (I, -O, ) plane (polar coordinates).
The family starts at E = —3.025 with a two-degenerate
stationary point at 9,=~l2 and 3m. /2; these stationary
points correspond to point A of Fig. 1 (the absolute
minimum of the system}. As the energy increases, there
is a first saddle point (point H of Fig. 1) at E = —1

(I& =0) where the two degenerate trajectories coalesce.
A second saddle point (I) occurs at E =0 (I, =1). Above
this energy the solutions appear again in degenerate pairs
but now circling around the stationary points at 6& =0
and n, which correspond to point K (E =2.025) of Fig.
1. Since the family starts at a stable point its Lyapunov
exponent for low energies is imaginary. At E = —2.010
it vanishes and remains real until the end of the family
(E=2.025), indicating the instability of the family in this
energy range.

As a summary of this section we want to emphasize the
differences and similarities that this model has with
respect to other nonintegrable Hamiltonians with two
freedoms that are currently being investigated in connec-
tion with soft quantum chaotic systems. First the phase
space is compact, leading to an exact quantum descrip-
tion in terms of finite Hermitian matrices, without the
need for truncation. Second, the classical limit is ob-

tained as X~~. Third, the Hamiltonian cannot be ex-
pressed as kinetic plus potential energy. Once these
differences have been understood the model can be used
for numerical and analytical purposes in exactly the same
way as any of the models related to the more usual Weyl
group.

IV. EIGENFUNCTIONS AND CLASSICAL
TRAJECTORIES

We are now concerned with the problem of the
correspondence between classical trajectories and eigen-
functions.

For that purpose, we have computed the eigenfunc-
tions by diagonalizing the SU(3) Hamiltonian for y=10
in the (+,+) multiplet, and we have chosen N =80 as the
number of particles. According to Table I, this results in
matrices of dimension 861. The 1owest state in energy of
the system is then labeled by ~1) (E = —3.0312), while
the upper one by ~

861 }(E =3.4580).
The phase-space representation of these eigenfunctions

was obtained using the methods of Ref. 13 to calculate
the generalized Husimi distributions in action-angle vari-
ables as

(4.1)

where ~I8) is the SU(3) coherent state (2.7) expressed in
terms of the action-angle variables (2.8) and P is an eigen-
state of the system. It provides a smoothed positive
definite distribution representing the eigenstate in the
four-dimensional phase space labeled by the variables
(I,O). This distribution can be conveniently studied by
taking projections and Poincare sections just as for any
classical distribution (see Ref. 13).

A. Association of classical trajectories
to eigenfunctions

In order to associate some classical orbits to a given
eigenstate, we proceed as follows: we locate the max-
imum of the four-dimensional phase-space distribution
and propagate a classical trajectory from it as an initial
condition. The quantum distribution and this classical
orbit (that we will call the dominant traj'ectory) can then
be compared through their projections and sections; this
trajectory will not of course necessarily explain all the
features of the eigenfunction.

To identify other classical structures, this procedure
can be repeated with other relative maxima of the distri-
bution which are not accounted for by the dominant tra-
jectory. The final result is an association between a single
eigenfunction and some classical trajectories. These tra-
jectories can then be said to account for the main features
of the eigenfunction.

There is, however, at least one characteristic of the
semiclassical limit that compromises the validity and sim-
plicity of this association: the A dependence of the classi-
cal phase-space structure detected from the quantum
point of view. On the one hand, because quantum
mechanically we suppress the infinitely fine complexity of
classical phase space through the finite (2M) resolution
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(g is the number of degrees of freedom), the quantal phase
space is simpler. But, on the other hand, this finite reso-
lution also implies an A' dependence of the existent classi-
cal structures. As an example, we mention the fact that
quantum mechanically we can detect as a full barrier a
classically partial barrier (as a cantorus). In that case,
the eigenfunction will be localized by the presence of the
cantorus, while the classical trajectory will spread over
the entire chaotic region (the classical partial barrier can
act as a full barrier from the quantum point of view). We
will illustrate this effect in Sec. IV B.

B. Numerical results

We now present the projections and Poincare sections
for some eigenfunctions of the SU(3) model for y = 10,
and try to understand their structure in terms of classical
orbits.

In all the figures, we have plotted in an (I,-I2) plane
the projection of the Husimi distribution 'N&(I, H) for the

I 86i &

quantum pictures [i.e., I d8, d8z%'&(I, O)] and the pro-

jection of the classical dominant trajectory for the classi-
cal pictures. Because of Eq. (2.15) these kind of plots
have a triangular shape. In both cases, the associated cir-
cle placed on the right of the triangle shows a Poincare
section in polar variables. The I plane employed for that
section has been indicated by two small tick marks in the
corresponding triangle; for Figs. 4 and 5 the canonical
angle conjugate to that plane was fixed by the energy of
the quantum state, while in Figs. 7 and 9 it was simply in-

tegrated (i.e., projected). For the quantum distributions
we have mainly used contour plots, with the upper
95 —100% of the projection or section painted in full
black and the lower contour line placed at 10'1/o of the
maximum.

As an example, let us explain in more detail the first
state of Fig. 4, that is

~
861 ); other figures are similar.

There we have plotted on the triangle the projection on
the (I&-Iz) plane of the phase-space distribution calculat-

I8470

i85e&
C

l845&

~e52&

FIG. 4. Projections and Poincare sections of five eigenfunctions located in the neighborhood of the stable stationary point N (max-
imum of the system for y= 10). Below each of the eigenfunctions, except for the first one

~
861 ), we have plotted the projection and

Poincare section of the associated dominant trajectory. Compare these to Fig. 2. See text for more details.
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)169& I 170& I 171&

I 172& l 173& i174&

FIG. 5. A sequence of eigenfunctions and their corresponding dominant trajectory for a region of phase space with mixed struc-
ture, as is shown in part (a) of Fig. 6.

ed for the state ~861). The quantum Poincare section has
been done through the plane I2=0.45, as indicated by
the small ticks in the triangle, while the conjugate angle
82 was calculated in each point (I, , 8, ) using Eq. (2.9) for
the energy of the eigenstate. When I2 is fixed in 0.45, the
allowed range for I, is O~I2 &0.55 [cf. (2.15)]. What is
shown on the right of the triangle is the Poincare section
for the I2 =0.45 plane in polar coordinates, where I& is
the radius and varies from 0 (center of the disk) to 0.55
(edge of the disk) and ei is the angle.

Let us now then show some eigenfunctions associated
with the regular regions surrounding a stable stationary
point. Figure 4 displays five eigenfunctions lying (in en-
ergy) close to the upper stable stationary point (point N
of Fig. 1) and whose dominant trajectory is a torus. The
first state of the figure is ~861), the maximum of the sys-
tem. This eigenfunction is the first state of the well asso-
ciated to the classical stable stationary point; the location
of this latter point coincides with the full black painted
regions of the figure (i.e., the maximum of the distribu-
tion is located at the classical stable stationary point).
For the remaining four eigenfunctions of the figure, we
have plotted in a separate picture below the eigenfunction
the classical dominant trajectory.

As was explained in Sec. III, the nearest unstable point
to N is point M, whose energy is E =3.025. The states
~856) and ~852) (E =3.1568 and E =3.0357, respective-
ly) possess an energy lying between these two stationary
points. In this energy range, the phase-space structure
was shown in Fig. 2(a) (E =3.1568). Comparing the
dominant trajectories obtained for these two eigenfunc-

tions with Fig. 2(a), we see that the state 856) is dom-
inated by an invariant torus lying very close to the cen-
tral stable periodic orbit, while the state ~852) corre-
sponds to an original parent torus which circles around
this periodic orbit. The appearance of two tori in the
quantum plot, as opposed to only one in the classical
counterpart, is a tunneling effect between tori associated
with a symmetry of the Hamiltonian; a classical orbit re-
lated by parity also exists.

The states
~
847 ) and

~
845 ) (E =2.8946 and 2.8741, re-

spectively) possess an energy below the unstable station-
ary point M, and in this case their dominant trajectories
must be compared with the phase-space structure of Fig.
2(b). The dominant trajectory of ~847) is similar to the
~852), but now we have obtained a resonant torus; the
state ~845) is another state associated with the central
periodic orbit. While all the states from ~861) to ~852)
are concentrated on invariant tori, the difference now is
that at the energy of states

~
847 ) and

~
845 ) most tori

have been destroyed, and these states coexist, at similar
energies, with states lying in the chaotic regions of phase
space; these latter states present, however, strong scars in
the I, +I2 = 1 family of periodic orbits that exists for en-
ergies below M (see below).

As is clear from the comparison of the quantum and
classical projections and sections, the dominant classical
trajectory obtained for the state ~845 ) does not account
for all the structures observed in the eigenfunction. In its
projection we can see an additional structure located in
the I, +I2=1 axis, whose counterpart in the Poincare
section are four small marks in the circle. The second
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classical object besides the dominant trajectory is very
easy to identify, since we know from Sec. III that in the
plane I, +I2 = 1 we have a family of periodic orbits, that
starts and ends in the stationary points D and M of Fig.
1, respectively. At the energy of this eigenfunction, this
orbit is unstable. We can therefore say that this eigen-
function is "made" of two different classical invariant
sets in terms of which we interpret the quantum distribu-
tion: a stable periodic orbit (the dominant one, in fact a
torus lying very close to the periodic orbit) and an unsta-
ble periodic orbit. Other eigenfunctions, combining, for
example, two stable trajectories separated by chaotic re-
gions have also been found. The intriguing facts concern-
ing this phenomenon are why these classical objects are
combined in a given eigenfunction and how these two (or
several) objects are coupled. We do not have a theory for
such behavior but some steps towards its understanding
were made in Ref. 21.

In order to illustate now the behavior of eigenfunctions
in regions of phase space where the system has a mixed
structure (i.e., where the volume corresponding to chaot-
ic and regular regions are of the same magnitude), we

plot in Fig. 5 a sequence of six consecutive eigenstates
close to an energy for which the underlying classical
phase-space structure is shown in Fig. 6(a). The available
phase space for the same section and energy of part (a) of
Fig. 6 is shown in Fig. 6(b). The energy we have used is
E = —1.3770 and corresponds to the energy of the state

~
172) of Fig. 5. The dispersion in energy of the group of

six states is DE=0.02 and we assume that the phase-
space structure does not change appreciably in that ener-

gy range; we will compare all the dominant trajectories of
Fig. 5 with Fig. 6(a) [note how joining up together all the
dominant trajectories of Fig. 5 we get a picture similar to
Fig. 6(a)).

The eigenfunctions ~170), ~172), and ~173) have their
support on regular invariant classical sets, as is clear
from the comparison of the classical and quantum plots.
States

~
170) and

~
172 ) are very close to a stable periodic

orbit, while ~173) is related to a torus located near the
more chaotic regions of phase space. In the eigenfunc-
tions, a tunneling effect mixes the classical tori related by
symmetry, which are not shown in the classical Poincare
sections.

Conversely, the eigenstates ~169), ~171), and ~174) lie
on chaotic regions of phase space. The first and the last

of them have very similar dominant orbits. However,
and in spite of being localized in the same region of phase
space, the structure of the quantum Poincare sections of
these eigenfunctions is very different and far from being a
uniform distribution in the chaotic region. An interpre-
tation of these eigenfunctions in terms of homoclinic (and
heteroclinic) structures belonging to this chaotic region is
out of our scope, but remains a very important prob-

21, 11

A very different chaotic dominant trajectory has been
obtained for the eigenfunctions ~171). The associated
chaotic domain is (up to the times of propagation used)
disconnected from the remaining chaotic region, presum-
ably due to the presence of a cantorus. However, the
quantum section presents a much more complicated
structure than the associated dominant trajectory, with
an important probability in the regular region close to the
stable periodic orbit related with the eigenfunctions
1170) and 1172)

Other eigenfunctions belonging to the most chaotic re-
gions of phase space ( —1 ~ E ~ 1) have an ergodic-type
behavior: they spread over most the energy shell. In Fig.
7 we plot one of these eigenstates, which has
E = —0. 10625, using now scattered dots instead of con-
tour lines for the quantum pictures. The classical dom-
inant trajectory is shown below the eigenfunction, as in
previous figures. The comparison of the quantum and
classical projections and sections shows that the chaotic
trajectory accounts for the main features of the Husimi
distribution. In order to test the ergodicity of the eigen-
function and classical trajectory, in Fig. 8 we have plot-
ted the accessible region in the section allowed by energy
conservation. Clearly the eigenfunction occupies most of
the available phase space. However, there is a small
nonoccupied region close to the origin in the quantum
and classical Poincare sections. Numerical experiments
indicate that this localization is due to a partial barrier
(cantorus) that limits the spreading of the eigenstate over
the entire energy shell. In fact, if we follow the classical
trajectory of Fig. 7 for longer times, the motion finally

~ ~ ~
~ ~
~ ~
7

~ .\

FIG. 6. (a) The structure of phase space associated to the
eigenfunctions of Fig. 5. Compare the dominant trajectories of
Fig. 5 with this figure. (b) Classical phase space available in the
Poincare sections of Fig. 5 and (a).

FIG. 7. An eigenfunction having E = —0. 10625 and that
spreads over most of the available phase space at that energy
(compare with Fig. 8). Its localization is due to the presence of
a cantorus.
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FIG. 8. Phase space available for the energy of the eigenfunc-

tion of Fig. 7 and in the same Poincare section.

enters the nonoccupied region.
We have also found sets of eigenfunctions whose classi-

cal support is a (stable or unstable) family of periodic or-
bits. Simple examples are eigenfunctions related to the
three principal families of periodic orbits reported in Sec.
III, and for which we have found all members of the
quantized one-dimensional corresponding problem. In
Fig. 9 we show some of the members of the Iz =0 family
of eigenstates (using again scattered dots instead of con-
tour plots). They are all characterized by a strong con-
centration on the I2=0 plane, as is apparent from the
projections of the eigenfunctions in the I, -I2 plane. The
Poincare sections of these states must be compared with
the classical periodic family shown in Fig. 3 [cf. (3.5)].
The state ~1) is concentrated near the stable stationary
point 3 at 8, =@/2 and 3~/2, where the classical family
starts. As the energy increases, we obtain eigenfunctions
associated with all the different types of trajectories of the
family, to finally end in the state ~784) associated to the
unstable stationary point K at 8=0 and n/2. The first

l446&

l5& l741&

l34& l76|&

1238& l784&

l337&

FIG. 9. Some eigenfunctions associated with the classical family of periodic orbits lying in the plane I2 =O. The projections are
charactenzed by a strong probability in that plane while the quantum sections must be compared with the classical trajectories shown

in Fig. 3.
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three states of Fig. 9 lie in the stable energy range of the
classical family, while the remaining states are in the un-
stable range. The instability of the family is reflected in
the spreading of the eigengfunctions from the Iz =0 axis
(compare the projections of states

~
1) and ~784)).

The states ~238) and ~446) are associated with the two
saddle points of the family, at E = —1 (I& =0) and E =0
(I, =1). The strong concentration of these states on an
unstable stationary point is remarkable.

Other eigenstates associated with more complicated
families of periodic trajectories were also observed. The
existence of this type of eigenfunction strongly concen-
trated on unstable periodic orbits was also observed by
Heller in the Bunimovich stadium and by Delande and
Gay in the hydrogen atom in a constant magnetic field.
Recently a theory of such scars has been developed.

V. CONCLUSION

The SU(3) model thus possesses a very complicated
classical phase-space structure that we have analyzed in
terms of its stationary points and locating its regular and
irregular regions. Some simple families of periodic orbits
were studied analytically.

Our results for the structure of the Husimi distribution
of the eigenstates of a system whose classical phase space
is mixed indicate that most eigenfunctions are peaked in
one classical invariant set, at least to our precision of
10% of its maximum. These are families of periodic or-
bits (stable or unstable), tori, or chaotic regions of phase
space. In the latter case, some of the eigenfunctions are
far from being "uniform" over the chaotic set, but
present some structure that probably reflects the
influence of unstable periodic orbits. In many cases, the
spreading of these eigenstates over the entire accessible

chaotic region is also restricted by the presence of can-
tori.

We must emphasize the coexistence of regular and ir-
regular classical structures that exists at a given energy in
the model, a fact that leads in turn to the coexistence of
regular and irregular states located in the corresponding
regions of phase space. Although the SU(3) model is a
very schematic approximation to real nuclei, experimen-
tal results indicate that this coexistence actually happens
up to very high excited states in the case of ' Dy, where
the presence of regular prolate-shaped states immersed in
an irregular sequence of levels was detected up to spin

However, we have found that the structure of some
eigenfunctions cannot be explained in terms of only one
classical invariant set. This raises the picture of an eigen-
function as made up from combinations of several classi-
cal objects that can be stable or unstable, coupled in a
way that we essentially ignored. This conclusion breaks
the simple classification scheme of eigenfunctions of such
systems into regular and irregular states, due to Per-
cival. Although it seems to be a good approximation
for most eigenstates since only one classical trajectory ac-
counts for the main features of its structure, the general
scheme emerging from our studies is more complicated,
with eigenfunctions combining regular and irregular
structures.
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