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Thermal information-entropic uncertainty relation
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Within the framework of thermo-field-dynamics, we define the reduced probability densities, and

investigate the sum of information-theoretic entropies in quantum mechanics associated with the

measurements of the position and momentum of a particle surrounded by the thermal environment.

It is found that this quantity cannot be made arbitrarily small but has a universal lower bound

dependent on the temperature. We develop the finite-temperature variational technique for the re-

duced system, and show that this relation, termed the thermal information-entropic uncertainty re-

lation, is exactly saturated by the thermal coherent state. We also show that the Heisenberg uncer-

tainty relation at finite temperature can be derived from this relation.

I. INTRODUCTION

In the last few years, information-theoretic entropies in

quantum mechanics' have been repeatedly studied in
order to establish stronger relations than the standard
Heisenberg uncertainty principle. Deutsch' and Partovi
discussed that the sum of entropies associated with the
measurements of a generic noncommutative pair of ob-
servables ( A, B ) in a normalized state

~ f), that is,

U[A, B:td(]=S„[g]+S[g],

cannot be made arbitrarily small but has an irreducible
lower bound independent of the choice of ~P), where the
information entropy is defined by

(2)

with I ~a) I, the eigenbasis of A. The symbol S stands
for the summation (integration) over the discrete (con-
tinuous) spectra IaI. Prior to their discussion, for a
canonically conjugate pair of continuous observables, the
position and momentum (X,P) with the commutation re-
lation [X,P]=i (fi= 1 ), Bialynicki-Birula and Mycielski
proved the optimal relation

U[X,P:g]~ 1+1nvr .

This is closely related to the logarithmic Sobolev inequal-
ity, and seems to be a purely mathematical result in
Fourier analysis. Indeed, in their proof, it is only as-
sumed that the probability amplitudes & x

~ P) and &p ~ P )
are connected with each other simply by the Fourier
transformation.

The authors of Ref. 3 and, more recently, Aragone and
Zypman discussed that the information-entropic uncer-
tainty relation of the form (3) is exactly saturated by the
coherent state, which is known to also saturate the
Heisenberg uncertainty relation: AXhI' =

—,'.
Our interest here concerns a more physically general

situation where the system under consideration is open.
A general formalism for such a nonidealized situation has

been presented and analyzed by Blankenbecler and Parto-
V1.

In extending the relation like Eq. (3) to the case of an
open system, a difficulty is caused by the fact that it
might stay not in a pure state but in a mixed state. Tech-
nically, this means that the probability density p(x ) is not
equal to ~&x ~it ) ~

but may be expressed by the density
operator p as the unfactorizable form &x~p~x), and,
therefore, the method of the logarithmic Sobolev inequal-
ity might not be directly applicable any longer.

In this paper, we derive the uncertainty relation to the
sum of the information entropies associated with the
measurements of the position and momentum of a parti-
cle in equilibrium with the thermal reservoir. A universal
nonnegative temperature correction to the right-hand
side of Eq. (3) is determined. This has the significance of
a precise realization of the statement in information
theory that the thermal disturbance leads to the loss of
information in general. As an application of this thermal
information-entropic uncertainty relation, we also show
that the thermal Heisenberg uncertainty relation, the
Heisenberg uncertainty relation at finite temperature, can
be derived from it.

For this purpose, we employ thermo-field-dynamics
(TFD) originally formulated and extensively developed by
Takahashi and Umezawa. This theory is equivalent to
the standard density matrix formalism, at least, as long as
equilibrium systems concern. It, however, supplies a very
convenient tool in treating the thermal systems, since it
enables us to discuss them in a manner analogous to the
pure state quantum theory. A main feature of TFD is the
basic requirements of the doubled Hilbert space H(3)H,
the normal operator ( A) acting on the objective space H,
and its corresponding tildian operator ( A ) on the ficti-
tious space H. The necessity of these extra objects was
investigated mathematically by Ojima' in the context of
the operator (C') algebra. Their physical meanings,
however, seem still not to have been satisfactorily
clarified.

Our strategy is as follows. First we define the reduc-
tion of states in TFD which ensures that the measure-
ments of physical quantities should be characterized by
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the coordinates of the representations in H alone. Next
we perform this for the coherent state of a harmonic os-
cillator in TFD," and calculate the sum of entropies for
the measurements of (X,P ) in the reduced thermal
coherent state. Then, by developing a new finite-
ternperature variational technique for the reduced sys-
tem, we prove that it is indeed the minimum value, and
consequently establish the thermal information-entropic
uncertainty relation.

We feel that, as we shall see, the questions concerning
the reduction in TFD cannot be answered by mathemat-
ics alone, but requires some physical assumptions on
dealing with the tildian degrees of freedom. In this sense,
our discussion may also shed new light on their own attri-
butes.

II. BASICS OF THERMO-FIELD-DYNAMICS
AND THE THERMAL COHERENT STATE

&A &=&o(p)IAlo(p)& . (5)

However, they immediately recognized that such a
temperature-dependent vacuum cannot be written as a
superposition of the basis in the ordinary Hilbert space
H. To see this simply, let us examine its expansion in
terms of the orthonorrnal complete energy eigenbasis
[ln &]:

lo(p) &= yf„(p)ln & . (6)

In this section, we briefly recapitulate the basics of
TFD and some properties of the thermal coherent state
relevant to our discussion. (For further details and many
applications of TFD, see Ref. 12.) The expectation value
of an operator A in quantum-statistical physics is usually
defined by

& A &=Z '(P)T„[A exp( —P&)],
where Z(p)=T„exp( —p%) is the partition function for
the system, & is the total Hamiltonian (including a possi-
ble chemical potential term}, and p=(k~T} '. One may

say that this is not in the field theoretical fashion, since
an expectation value in quantum field theory is cus-
tornarily expressed as a certain vacuum expectation
value. In this respect, Takahashi and Umezawa claimed
that the expectation value should be written in terms of
the thermal vacuum as follows:

space H, one also has to work with an extra operator A

termed the tildian operator on the fictitious space H,
which is assumed to (anti) commute with A. They are
connected with each other by the so-called tilde conjuga-
tion rules

JV=coa a (10)

where a and a are the usual creation and annihilation
operators, respectively. Together with the associated til-
dian operators a and a, they obey the commutation rela-
tions

[a,a ]=[a,a ]=1, (others)=0 .

In this case, the thermal vacuum (8) is related to the
zero-temperature vacuum lo, o &—:lo & lo & by the fol-
lowing unitary transformation:

lo(P) & =exp( iG)lo, o &-,
i G =8(P)(a —a —aa ) .

(12)

(13)

Correspondingly, the operators undergo the Bogoliubov
transformations

a(P)=exp( iG)a ex—p(iG)

=a cosh[8(P)] —a sinh[8(P)],

a(P) =exp( iG )a exp—(iG }

=acosh[8(P)] —a sinh[8(P)],

and so on, where 8(P) is given by

(14a)

(14b)

(A, A2) =A, A~, (c, A, +c2Ai) =c*, A, +ci A2,

(A) =crA, (A ) =A t,
where c's are complex c numbers and o.=+ I( —1) for
bosonic (fermionic) A.

Ojima' showed that this doubling property naturally
appears in the C* algebraic approach to quantum field
theory combined with the Kubo-Martin-Schwinger con-
dition and the Gelfand-Naimark-Segal representation
theorem. This supplies a firm foundation to the investi-
gations of systems of infinite degrees of freedom with
continuous spectra, for example.

Let us consider here a harmonic oscillator with a fre-
quency co described by the Hamiltonian

Then, from Eqs. (4) and (5), we find the condition

f '(P)f„(P)=5 „Z '(P)exp( PE„) . —
cosh[8(P) ]= [1—exp( —

Pco ) ]

sinh [8(P)]= [exp(Pc@}—1]
(15)

It should be noted that this cannot be satisfied as long as
f„(P)'s are merely numbers. Consequently, the authors
of Ref. 9 introduced another Hilbert space H and con-
structed the normalized thermal vacuum as follows:

lo(P) & =Z ' (P) g exp( PE„/2)ln, n &, —

a(p) and a(p) are now the annihilation operators at finite
temperature ( TWO) with respect to the thermal vacuum.

Recently, Mann and Revzen" gave a natural extension
of the definition of the well-known coherent state' to the
one at TWO. The thermal coherent state (TCS} they con-
structed is the normalized eigenstate of both a(p) and
a(p):

where ln, n &
= ln &S ln &. Thus the dynamical degrees of

freedom are doubled in this formalism. Accordingly, in
addition to a normal operator A acting on the objective

(p)l, ;p&= I, ;p&,

a(p)lz, z;p& =z *lz,z;p&,

(16a)

(16b)
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~z, z;p) =exp[za (p) —z "a(p)

+z *a '(P) —z a(P) ] ~
O(P) &, (17)

where z and z ' are the complex eigenvalues. The choice
of Eq. (16b) is consistent with the rules (9).

TCS was also investigated by Emch and Hegerfeldt'

within the framework of the standard density matrix for-
malism, which can be completely characterized by the
observable quantities alone in contrast to TFD.

In order to see the equivalence between these two ap-
proaches, the authors of Ref'. 11 considered the quantum
characteristic function labeled by the c-number phase-
space variables (x,p, x,p ):

X(x,p, x,P) —= (z, z;P~exp[ —i(xX+pP+x X+p P)]~z,z; P)

=exp[ —
—,'cosh[28(P)](p +x +p +x ) ——,'sinh[28(P)](pp+xx ) i—(x (X),+p(P ),

(18}

X= —(a+a ), P= —(a —a ),1 y 1

i&2

X= —(a+a ), P = — —(a —a ),1 g
— 1

v'2 i &2

(19a)

(19b)

(X),= cosh[8(P)]+ sinh[8(P)],
2

(20a)

(P ),= — cosh[8(P)]+ sinh[8(P)],
i 2 1 2

(X),= — cosh[8(P)]+ sinh[8(P)],
2

(20b)

provided that the position and momentum operators
(co—= 1, henceforth} and their expectation values with
respect to TCS (17) are, respectively, given by

I

physical observable quantities in the coordinates of the
representations in 0 alone, not in the whole including the
tildian. Therefore a state in the full space HH must be
reduced to a suitable substate. This is a problem charac-
teristic of the present discussion, since the information en

tropy (2) depends on the choice of the basis of representa
tion Ia) in general and is not expressed as a quantum
mechanical expectation value of a certain operator. Let us
discuss this by employing the probability amplitude asso-
ciated with the measurement of a normal quantity A in a
thermal state f,p;p). In accordance with the general
quantum-mechanical framework, such an amplitude may
be represented as (a, a

~ g, 1(;p), where
I a, a ) =

I
a )8

~

a )
is the complete eigenbasis of the operator A and its tilde
conjugation A. A possible reduction procedure is tracing
out the tildian coordinate in the probability density:

(P),= cosh[8(P)]+ — sinh[8(P)] .
l 2 i 2

pii(a) =S(a,a~/, p;p) (p, p;p~a, a) . (24)

(X'&, = i X(x,p, x,p)~

= (X),+ —,'cosh[28(P)],

X(x,p, x,p) ~,
p

(P'& = i

= (P ),+ —,'cosh[28(P) ] .

Therefore we find

A, X=6,,P =
[ —,'cosh[28(P)] )

'

b,,XE,P =
—,'cosh[28(P)] .

(21a)

(21b)

(22)

(23)

In Sec. V, we shall show that Eq. (23) gives the minimum
value at fixed T.

III. REDUCTION OF THERMAL STATES

This quantum characteristic function becomes identical
with that in Ref. 14, if x =p =0.

For the later discussion, here we calculate the Heisen-
berg uncertainty in TCS. From Eq. (18) we immediately
obtain the following second moments:

This finds formal conformities with the standard reduc-
tion procedure in quantum theory of open systems, ' '
when the density operator describing the total system and
the reduced probability density of an open subsystem in
that theory are compared to the present density supero-
perator

~ p, p; p ) ( g, g; p~ and pR (a ), respectively. We
note that the above prescription does not bring any
difficulties to usual TFD calculations of expectation
values of normal operators.

Next let us examine this concretely with respect to the
measurements of the position X and momentum P of an
oscillator in TCS defined by Eq. (17). The bases of the
position and momentum representations are the eigen-
states of the operators (19), and are, respectively, given by

fx, x ) = —exp[ ——'(x +x )]
1

~Fr

Xexp[ —
—,'a +&2xa —

—,'a +&2xd' ]~O, O),
(25a)

lS»p &
= Z- exp[ —

—,'(p'+p '}l1

Xexp[ —,'a +i+2pa + —,'a —i+2pa ]~O, O) .

We start with some heuristic discussions concerning
the measurement of physical quantities in TFD.

First of all, we point out that we always measure the

(25b)

Straightforward calculations lead to the following full
probability amplitudes:
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(x,x lz, z;P) = —exp —
—,'cosh[28(P) ](x —(X ), )

—
—,'cosh[28(P) ](x —(X ), ) + sinh[28(P)](x —(X), )(x —(X), )

l

+i(P ),(x —(X), )
—

~ (P &,(x —&X),)+ —((X), (P &,
—(X &, (P &, ) (26a}

(p,plz, z;p) = —exp —
—,'cosh[28(p)](p —(P ), ) —

—,'cosh[28(p)](p —(P ), ) +sinh[28(p)](p —(P ), )(p —(P ), )

—
~ &X),(p —&P), )+f(X),(P —(P), )

——((X),(P), —(X),(P), ) (26b)

Tracing out the tildian coordinates, we obtain the follow-
ing reduced probability densities:

P~R '(x)= fdx(x, xlz, z;p) (z,z;plx, x)

pair (X,P) is

U[X,P:z,z;P] —=Sx[z,z;P]+Sp[z,z;P]

=1+1nn+lntcosh[28(P)]] . (30}
=

t m cosh[28(P)] )

X exp — (x —(X ), )'
cosh 28(

p (p)= f dp&p, plz, z;P& (z,z;Plp, p &

=
[ n. cosh[28(P) ]]

(27a)

cosh[28(P) ]
(27b)

Thus we verify the desirable property that the observable
probability densities are characterized by the (expectation
values oi} normal operators alone.

IV. A NEW FINITE-TEMPERATURE VARIATIONAL
TECHNIQUE FOR REDUCED SYSTEMS IN TFD

AND THERMAL INFORMATION-ENTROPIC
UNCERTAINTY RELATION

We define the entropy for the rrieasurement of a normal
observable A at given T in a normalized state l1(,1(;p) as
follows:

U[X,P:g,g;P) =S [P,g;P]+S [tP, Q;P], (32)

In what follows, we develop the variational technique for
the reduced system and prove that Eq. (30) gives the op-
timal value at given T.

As emphasized in Sec. III, we are not concerned with
the whole system including the tildian but only with its
reduced one. Such a situation should be also reflected in
the procedure of variational calculus. So, it is quite
reasonable to assume that the variation of a thermal state
is undertaken by the H component alone. That is, the
finite-temperature variational operation in the reduced
system, proposed here, is expressed as

(31)

where e and g denote an infinitesimal variation parameter
and an arbitrary deformation of the K component, re-
spectively. Here we note that the variation must be gen-
erated by the thermal state with P, since we are consider-
ing the variation at fixed T.

Now we would like to find the thermal state giving rise
to the stationary value of the functional

where
28S„[P,P;P]= SpR (~)lnpR (~—),

and so on, where PR 's are given in Eq. (24).
For the measurements of the position X and the

momentum P in TCS [i.e., PR 's in Eqs. (27)],

Sx[1(,P;P]= —f dx ln
PR(x ) PR(x )

N N

p„(x)= fdx&x, xi&, &P) &y, qPlx, x),

(33)

(34)

Sx[z,r;p] =SR[z,z;p]
=

—,'(1+lnn+ln{cosh[28(P)] j }, (29)

and so on, with

(35)

and, therefore, the entropy for the measurements of a

I

Owing to the operation (31), the functional varies as

U[X,P:1(,1t;p] U[X,P:p, g;p]+eI +0(E'),
I"—= f dx PR(x )lnpR(x )+ f dppR(p )lnpR(p) & q, y;Ply, q;P&

—f f dx dx ln[PR(x)]&&, p;plx, x & &x,xi(, g;p& —f f dp dp ln[PR(p)]&&, p;pip, p & &p,pl( p'p&

(36)

(37)

where we have employed the normalization condition N = 1. We do not know how to solve the equation I =0 generally
with respect to the unknown state lg, g;p). Here TCS (17) is examined, since, in the T=O case, the coherent state satu-
rates the entropic uncertainty relation (3). ' For PR 's in Eqs. (27), I becomes



4612 SUMIYOSHI ABE AND NORIKAZU SUZUKI

r."'=—&z,z;ply, z;p& — &z,z;pl f f ax «lx, x & &x,x l(x —&x&, )'
cosh 28

+ f f ap aPlp, p& &p,pl{a —&P&, }' lg, z;p& (3g)

The operator in the second term of I can be easily calculated by the so-called integration within ordered product
technique. ' By use of Eqs. (25) and the formula

lO, O& &O, Ol=:exp( —a a —a a):

with the normal ordered product with respect to the T=O vacuum, the integration is performed as

f f ax ax lx, x & & x,x l(x &—x &, )'+ f f ap apl p, p & & p,p (p —
& P &, )'=:(x—&x &, )'+(P —

& P &, )': .

{39}

(40)

Substituting this into Eq. (38} and doing some simple
algebraic calculations with Eqs. (14), (16), and (19a), we
find

1

2(b,x) (46)

I Tcs P

which leads to

(41)

U[X,P:z,z;P]~1+lnn+1nt cosh[28(P)] j+0(E ) .

(42)

pÃ'"(x ) = 1 1
exp — (x —&X &

}'
[2~(sx)']'" 2(sx)'

(47)

provided that pz'" has been normalized. The associated
entropy is

This means that TCS yields the stationary value of the
entropy functional (32).

Thus we have established the thermal information-
entropic uncertainty relation

Sx'"[g,g;P] =
—,'1n[2ne(bx) ],

and therefore the following inequality holds:

Sx[g, g;P] ~
—,'1n[2ne(bx) ] .

(4g)

(49)

U[X,P:P,g;P] & 1+1nn+lnt cosh[28(P)] j . (43) Repeating a similar calculation for the entropy functional
for the momentum P, one can also obtain

This is our main result. The third term on the right-hand
side determines the minimum of the loss of information
due to the thermal disturbance effects in the measure-
ments of' the position and momentum in finite-
temperature quantum theory.

Sp[g, f;P]~ —,'ln[2ne(bP) ] .

The combination of Eqs. (49) and (50) leads to

2(EP) &exp{ —1 inn+—2S~[g, g;P] j

(50)

V. DERIVATION OF THE THERMAL HEISENBERG
UNCERTAINTY RELATION FROM THE THERMAL

INFORMATION-ENTROPIC UNCERTAINTY RELATION

It is also possible to derive the thermal Heisenberg un-
certainty relation along the same line discussed so far.
Here, instead, we derive it from the thermal
information-entropic uncertainty relation (43). The
method is essentially based on the discussion in Ref. 3.

Let us find the reduced probability density pa(x) that
maximize the concave entropy functional (33) under the
condition

& exp(1+inn+2lnI cosh[28(P)] j 2Sx[P, P;P]—)
&

—,
' cosh [28(P) ](bx ) (51)

where we have used Eq. (43) in the second inequality.
Thus we have shown that the thermal Heisenberg un-

certainty relation

Lxb,P &
—,'cosh[28(P) ], (52)

can be derived from the thermal information-entropic un-
certainty relation. From Eq. (23}, TCS is also found to
saturate this inequality, analogously to the T=O case.

&(x—&x & )'& =(bx)' . (44) VI. REMARKS

Here the brackets denote the expectation values with
respect to p~(x )/N . This is just the constrained varia-
tiona1 problexn characterized by the functional

+[I AP]=—S [e,AP] —~[&(x—&X&)'&—(~)'],
(45)

where A, is Lagrange s multiplier. Applying the variation-
al operation (31) to 4, the stationarity conditions are
found to yield

As can be seen from Eqs. (22) and (23), the (thermal)
coherent state makes the variances AX and hP equal to
each other, keeping the {thermal) Heisenberg uncertainty
in its minimum value. Also, from Eqs. (29) and (30), a
similar situation is found in the information entropies.

Recently, much attention has been focused on the
squeezed states in quantum optics both from experimen-
tal and theoretical aspects. ' These states are known to
reduce either AX or AP, also keeping ~AP minimum.
In this context, one may discuss squeezing the thermal in-
formation entropies. '
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