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Surface entropy of liquids via a direct Monte Carlo approach: Application to liquid Si
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We present two methods for a direct Monte Carlo evaluation of the surface entropy S, of a
liquid interacting by specified, volume-independent potentials. The first method is based on an

application of the approach of Ferrenberg and Swcndsen [Phys. Rev. Lett. 61, 2635 (1988); 63,
1195 (1989)I to Monte Carlo simulations at two different temperatures; it gives much more reli-

able results for S, in liquid Si than previous calculations based on numerical differentiation. The

second method expresses the surface entropy directly as a canonical average at fixed temperature.

I. INTRODUCTION

The surface tension r plays an important role in many
properties of liquids. Of equal importance, however, are
the various derivatives of r, in particular the temperature
derivative dr/dT and concentration derivative 8r/8c;,
where T is the temperature and c; the concentration of
one of the components. These derivatives act as driving
forces for convection parallel to the liquid surface whenev-
er the temperature or concentration along the surface is
nonuniform. In the low-gravity environment of space,
where other gravity-driven sources of convection may be
absent, such convection, known as Marangoni convec-
tion, may be a dominant process governing fluid motion.

The derivatives of the surface tension are notably
difficult quantities to obtain in a computer simulation.
The obvious method of direct numerical differentiation of
i is subject to large numerical inaccuracies, particularly
since r itself is usually the result of an extensive numerical
calculation. In this paper, we describe two much more ac-
curate methods of computing these derivatives. The first
method is an extension of the approach of Ferrenberg and
Swendsen, ' whereby complete thermodynamic informa-
tion can be obtained over a broad temperature region us-

ing only one or a few Monte Carlo simulations. We illus-
trate the value of this method by using it to compute the
surface entropy S,—= dr/dT for a—model of liquid Si near
the melting temperature, and showing that it gives much
more accurate results than direct numerical differentia-

I

tion. The second method involves expressing the deriva-
tives as explicit canonical averages. This method must

give the same results as that of Ferrenberg and Swendsen
in the limit of small temperature and concentration
differences, but is likely to take somewhat longer to con-
verge.

The remainder of this paper is arranged as follows. In
Sec. II and Sec. III, we describe the methods for calculat-
ing the surface tension derivatives. A brief discussion fol-
lows in Sec. IV.

II. FERRENSERt -SWENDSEN METHOD

We first consider a system of N classical particles in-

teracting by some potential U(R|, . . . , Rtv) at tempera-
ture T, with some stated boundary conditions. Let
p(jR|, . . . , RN};T) denote the probability density that the
system of N particles is in a configuration iR|, . . . , Riv} at
temperature T. The ratio of these two probability densi-
ties at different temperatures is

p(jR;};T2) l l

p(IR;};Tl)
'" '

ktt Ti k, T2

Thus, if we generate M atomic configurations fR;} by the
usual Metropolis process at temperature T i, we can calcu-
late the averages of a thermodynamic quantity A at tem-
peratures Ti and T2 from the formulas

g ~(jR,}.)
(~(T,))-" '

M

ktt Ti
r

g exp H(jR;},)
n 1 kg T2 kg Tl

M
lg ~(fR,}„)exp H(fR, }.)

n 1 B 2

&w(T2)&-

where A(fR;},) denotes the value of 2 in the nth configuration at temperature Ti. By means of these formulas, as first
noted by Ferrenberg and Swendsen, we can calculate the average of A at several values of the temperature in a single
Monte Carlo simulation, with no additional memory and negligible extra computer time. This strategy is very useful in

calculating the parameter dependence of various thermodynamic quantities over a limited parameter range. The closer
the values of parameters, the more accurate are the results. It is ideally suited to calculating temperature derivatives,
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since these require a temperature range which is as small

as possible. On the contrary, if these derivatives are cal-
culated through separate runs at different temperatures,
the numerical uncertainties will probably overshadow the
sought-for differences produced by a very small tempera-
ture change.

We apply the Ferrenberg-Swenden (FS) method to ob-
tain the surface entropy S, —dr/dT of liquid Si. We
use the method of Miyazaki, Barker, and Pound to calcu-
late the surface tension. In this method, the free surface is
created in several stages. First, the bulk liquid is simulat-
ed through standard Monte Carlo techniques with a cubic
supercell of edge a and periodic boundary conditions.
Next, the bulk liquid is given two free, parallel surfaces in

two steps. In the first step, two of the six faces of the
periodic Monte Carlo cell (at z —a/2 and z +a/2)
are given hard wall rather than periodic boundary condi-
tions (periodic boundary conditions being maintained in

the x and y directions). The free-energy change associat-
ed with this change is AFi. Next, the two hard walls at
z —a/2 and z +a/2 are moved adiabatically very far
away from the liquid, creating a slab with two free sur-
faces and periodic boundary conditions in the x and y
directions. The change in free energy associated with this
process is hF2 The su.rface tension is

(dd' +1BF2)/2A, (3)

where A is the area of one of the free surfaces.
The term BED can be written as

~1-—ktt T ln(Q|/Qp), (4)

where Qp and Ql are the configurational integrals for the
1V particles before and after stage 1, i.e.,

Q- „exp[—U(xi, . . . , xg)/kgTidxi dxN,

(s)
where the indices of Q and U are omitted and Up and Ul
are the potential-energy functions before and after stage
1, i.e., with periodic boundary conditions in all three
directions, and with hard wall boundary conditions in the
z direction. The ratio Ql/Qp can be expressed as the
canonical average of an acceptance probability for a
Monte Carlo move, using the Metropolis function

where &n(l)) is the atomic number density at the wall,

when the wall is at position z I, i.e.,

n(l) -g b(l —z;), (9)

z; being the z coordinate of the ith particle.
We first confirmed that the FS method gives good re-

sults for bulk properties, calculating the specific heat Cv
for bulk Si using the FS method and from the usual
fluctuation expression Cv [(0 ) —(0) ]/ka T at
7 i 1760 K. In both cases the two- and three-body
empirical potentials of Stillinger and Webers were used.
For the purposes of the present calculation, these poten-
tials can be viewed simply as model potentials on which to
test two different numerical methods of calculating sta-
tistical properties of liquids. In applying the FS method,
we used T2 1.015Ti. Both methods gave Cy 3.4k'/
atom, as quoted in Ref. 7, but the FS method converged in
about half as many sweeps through the lattice as the
canonical average.

Next, we used the method of FS to calculate the surface
entropy S, —dz/dT for liquid Si at T 1760 K. Table I
shows S, as calculated by direct numerical differentiation
and by the method of FS; for comparison, the experimen-
tal results of Hardys are also given. In evaluating the in-
tegral for ~z, we took five steps to move the hard walls to
"infinity, " i.e., sufficiently far from the liquid as to insure
nearly zero liquid density at the wall. The column labeled
"FS" is the average of two separate runs, each using a
temperature difference of 0.015T, which yielded dz/dT

—0.189 and —0.182 dyn/cm K. It is clear that the FS
method gives far less numerical uncertainty than the
method of numerical differentiation. We also find that
about 90% of S, is due to dE2, even though this part con-
tributes only about 20% to the surface tension itself. We
were unable to draw this conclusion from our previous cal-
culations because of the much larger uncertainties in-
volved in direct numerical differentiation. As indicated in
Ref. 4, the uncertainty of the calculation of ~2 itself is
larger than ~1, so 5, would be expected to be less pre-
cisely known than z itself. The fact that we obtain results
within 4% in two separate runs suggests, however, that
this is not a serious problem.

M(x)-min[i, e "]. (6)

The result is

Qi &M(U/ Up ))p

Qp &M(Up —U;))i '

where ()p and & )i denote canonical averages taken with
potentials Up and Ul, and Up Up/knT, Ul Ui/kit7'.
The Metropolis function can be replaced by other func-
tions, e.g., the Fermi function, which can lead to less nu-
merical uncertainty.

The term AF2 can be similarly calculated as a canonical
average. It involves the work required to move the two
hard walls to infinity, and can be shown to take the form

TABLE I. Surface entropy of liquid Si at 1760 K, as calcu-
lated using the potentials of Stillinger and Weber, Ref. 6. S, is
the surface entropy, in dyn/cmK. The column labeled FS
denotes calculations using the method of Ferrenberg and
Swendsen (Refs. 2 and 3), as described in the text. The next
column gives results obtained from numerical differentiation in

Ref. 7. The uncertainty listed for FS is half the difference be-
tween the two separate Monte Carlo simulations from which
these results were obtained, while that given for Ref. 7 is a judg-
ment about numerical uncertainties involved in calculating
differences between Monte Carlo data at two different tempera-
tures. Experimental results are due to Hardy (Ref. 8).

FS Ref. 7 Expt.

kaT „(n(l))dl+—
e -a/2

&n(l))dl, (8) S(dyldT) —0.186(~ 0.004)——0.2( ~ 0.2) —0.28, —0.13
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III. SURFACE ENTROPY AS A CANONICAL AVERAGE

Next, we describe a method to compute S, d—r/dT
directly as an average in the canonical ensemble. Given
this expression, the derivative can be obtained, in princi-

ple, to the same accuracy as the surface tension itself,
working only at a single temperature. This approach is an
alternative to the FS method, and is operationally distinct
from it, although it must, of course, yield the same deriva-
tive. By analogy with our findings in the calculation of
specific heat, we expect that the FS method will converge
more rapidly. Nevertheless, it is useful to have an explicit
expression for the surface entropy, which can be evaluated

by standard Monte Carlo techniques.
We begin by writing down the well-known expression

for the average of any quantity A(T) in the classical
canonical ensemble at temperature T. Denoting the
canonical average by & &, we have

+ [&~H& —&~&&H&],
dT dT

where

(d/dT)&M(Ui Uo )&o (d/dT)&M(Uo Ui )&i

&M(U1* —Up )&p &M(Uo —Ui )&i

(i2)

The temperature derivatives in this equation can readily
be calculated, using Eq. (6), to give

&M(Ui —Up )&p 2
[2&MUp&p &MUi&p—

T knT2

—&M &p&U&pl, (i3)

where H is the Hamiltonian. Now the surface tension,
from Eq. (3), is the sum of two terms involving free-
energy changes hF~ and M2. From Eqs. (4)-(7), we ob-
tain

d~i dd') —kn TG,

Likewise, the second term in the surface entropy takes the
form

d~F2 AF2 ' d&n(l)&

dT T «~2 dT.— ~2 d&n(I)&
dl

dT
(i7)

where

d&n(l)& i
[&n(l) U1& —&n (I)&&U~ & I .

dT kaT

U~ and n(l) are defined below Eq. (5) and in Eq. (9), and
the averages are to be calculated with the walls at + l.
Using these formulas, the surface entropy can be calculat-
ed by explicit integrals and canonical averages, to the
same accuracy as the surface tension itself. Like the sur-
face tension, S, must be evaluated by a two-step process
as in Refs. 4 and 5.

IV. DISCUSSION

We have presented two practical methods for direct
computation of the surface entropy of a liquid without the
necessity of explicit numerical differentiation of the sur-
face tension. The first, based on the technique of Ferren-
berg and Swendsen, is shown to give much more reliable
numerical values of this quantity than numerical dif-
ferentiation. The second method, although not tested nu-
merically here, should give similarly reliable results and
hence be useful in many applications.

Similar expressions can readily be derived for concen-
tration derivatives of the surface tension. This derivative,
which is equally important in studies of convection at
liquid surfaces, is even more difficult than the surface en-
tropy to compute from numerical differentiation. We plan
to present such calculations in a subsequent publication.

&M(Uo —Ui )&i
2

[2&M'Ui&i —&M'Up&i
T kgT

—&M'&, &U, &, ),
where we have used the notation

M-=M(U; —Up ),
M'=—M(Up —U) ) .

(i4)

(is)
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