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Theory of the nonequilibrium phase transition for nematic liquid crystals under shear How
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We consider the impact of shear flow on the isotropic-nematic transition in crystalline liquids

by generalizing Leslie-Ericksen dynamics of nematic systems to include amplitude and biaxial de-

grees of freedom. Neglecting fluctuations, we find steady-state solutions to the equations of
motion for the nematic order parameter and fluid velocity and interpret them in terms of non-

equilibrium steady states. We predict a transition temperature increasing wi.h shear rate up to a

nonequilibrium critical point, and discuss the singular behavior of the order parameter and exter-

nal stress near this point.

The purpose of this Rapid Communication is to de-
scribe the impact of shear flow on the first-order iso-
tropic-nematic (I-N) equilibrium phase transition in crys-
talline liquids. Shear flow induces alignment above the
equilibrium phase transition and, below it, selects a partic-
ular alignment from the degenerate collection of orienta-
tions that the equilibrium nematic liquid crystal can
adopt. (For general reviews, see Refs. 1-4.) Our aim will

be to show that shear flow has the following effects: (i) the
discontinuity in the degree of nematic order which exists
between high- and low-temperature states in the absence
of shear flow persists up to a finite critical shear rate; (ii)
as the shear rate is increased, this discontinuity occurs at
higher temperatures and decreases continuously, vanish-

ing at a nonequilibrium critical point; and (iii) for higher
shear rates the system exhibits a single state.

Nematic systems in shear flow provide a simple exam-
ple of phase transitions under nonequilibrium, nonpoten-
tial conditions. The effects of shear flow on critical fluc-
tuations in the binary fluid have been discussed by Onuki
and Kawasaki using renormalization-group methods.
The binary fluid possesses an equilibrium critical point
and shear flow suppresses fluctuations. In contrast, the
equilibrium I-N transition is first order, and the suppres-
sion of orientation fluctuations by the shear flow makes
possible a nonequilibrium critical point associated with
amplitude fluctuations.

Imagine the cavity of a cylindrical Couette cell filled
with a thermotropic nematic liquid-crystal-mesophase-
forming substance (nematogen). The outer cylinder is
rotated at a constant rate while the inner cylinder is fixed,
and both are maintained at a common constant tempera-
ture. In steady state (which we call a nonequilibrium
phase) one inonitors (i) torque, (ii) nematic alignment,
and (iii) nematic correlations. The nonequilibrium phase
diagram is then spanned by temperature T and shear rate
D.

To describe qualitatively this phase diagram we develop
a closed set of coupled deterministic dynamical equations
which describe phenomenologically the local evolution of

the fluid velocity v(r, t) and the nematic order parameter

Q,ti(r, t). We neglect temporal and spatial temperature
variations and restrict attention to a planar Couette
geometry, assuming the boundary stress necessary to pro-
duce steady, uniform shear flow v(r, t) Dye„. These
conditions ensure that the order parameter can be spatial-
ly uniform in steady state. Among the stationary solu-
tions to the equation of motion for Q,tt(r, t), given D and

T, the linearly stable subset comprises candidates for the
physically selected state. Since the present method does
not resolve questions of metastability, we shall not address
the issue of selection here. However, if only one linearly
stable solution exists, then we assume that it describes the
physical steady state. 'o Using this scheme we construct
the nonequilibrium phase diagram.

Leslie-Ericksen (LE) dynamics of nematic systems"
describes the hydrodynamics of uniaxial nematic liquid
crystals in flow, for which the relevant hydrodynamic
modes are orientation fluctuations. To address the role of
shear flow near the I-N transition, we shall generalize LE
dynamics of nematic systems to incorporate biaxial and
amplitude fluctuations. Following de Gennes, we derive
the equations of motion for Q,ti(r, t) and v(r, t) by (i)
deriving the entropy production, (ii) identifying the
relevant thermodynamic forces and fluxes, and (iii) ex-
panding the fluxes linearly in the forces in accordance
with the Onsager reciprocal relations. ' Since the equilib-
rium I-N transition is weakly first order, the critical shear
rate is expected to be small and, hence, to lie within the
domain of validity of linear nonequilibrium thermo-
dynamics.

For isothermal processes, the local entropy production 8
follows from the rate of change of the free energy F ac-
cording to

F=E —TS = — j„dX,+ T j„dZ„—T 81V, (1)

~here E is the total energy, S is the total entropy, j is the
energy flux, j is the entropy flux, and 8 is the local entro-

py production.

4578 1990 The American Physical Society



THEORY OF THE NONEQUILIBRIUM PHASE TRANSITION. . . 4579

Since we shall be considering homogeneous steady states,
the explicit form of the Frank term fF is irrelevant, pro-
vided it stabilizes the homogeneous equilibrium nematic
phase. We close the system of equations by assuming ex-
plicit forms for I 1'pllp and M,lpl~p. An expansion of I p~p

and Mg, p in powers of Q,p does not terminate, in contrast
with the LE theory. However, as Q,p is small near the
first-order equilibrium transition, and we find it to be
small throughout the two-phase region, it is consistent to
neglect the dependence of I lIIj,p and Mlpllp on Q,p.

'4

Within this approximation we find

The free energy of the system is given by

F=„4p I v(r) I2+fL+fF jdV,

where p is the uniform density, fL is the Landau-de
Gennes free-energy density which describes the equilibri-
um I-N transition, and fF is the Frank free-energy density
associated with order-parameter inhomogeneities. There
are two contributions to F, one due to local changes in the
order parameter and one due to material distortion (i.e.,
fluid motion).

Making a local change in Q,p(r) which preserves trace-
lessness and symmetry yields the equilibrium condition
that the molecular field H,'p' =0, where H.p

—= —8F/bQ, p.

We denote the symmetric and traceless part of any
second-rank tensor J,p by J,lp and the antisymmetric part
by J,lp. ' Combining this with an incompressible materi-
al distortion r r' r+u(r) for which Q,'p(r') =Q,p(r),
we obtain a total change in free energy

&i[s] & y[s] & 0[s]&ap ~1 ap ~3 cp ~

Qap Vay Qyp QayVyp + v3Vap + Hap
[a] [a] [s] l [s)

V2

where we have introduced two temperature-dependent
dissipative coefficients (with dimensions of viscosity) v~

and v2, and one dimensionless temperature-dependent ki-
netic coefficient vi. The required positivity of the entropy
production is ensured if v~ and v2 are positive.

The stationary values of Q,p satisfy a set of five coupled
third-order algebraic equations which we are unable to
solve analytically; hence, we proceed numerically. We
choose 8 —1.2C and vs 0.9, consistent with typical
nematics. ' The inset in Fig. 1 shows the largest eigenval-
ue q of all stationary points as a function of the reduced
temperature r=A(T —Tt)/C, for a particular reduced
shear rate b=Dv2/C 0.005. Figure 1 shows branches of
q containing stable roots for a range of shear rates. For
large temperatures there is a unique root and thus a single
phase. As the temperature is reduced in nonzero shear,
this phase acquires more order; this pretransitional order-
ing has been discussed by Zvetkov' and de Gennes. ' As
the temperature is reduced further, there are two possibil-
ities. For shear rates above a critical value b the phase
varies smoothly with temperature. Alternatively, for
shear rates smaller than b', the physical state must vary

bF I [(cy,p
—Pb,p)8, up H, p bQ, p—]dV, (2)
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where cy,p
=—yr,p„8pQp„ is the distortion stress tensor,

try, p—= —b'F/b8yQ, p, and P(r) is a Lagrange multiplier en-

forcing liquid incompressibility.
Using the equation of motion for the fluid velocity,

pdv, /dt 8pcyp„our expression for 8F, an integration by
parts, and Eq. (1), we obtain 8, the local entropy produc-
tion: TH cy,'pVp, +H, p Q,p. Here, Vp, =—B,vg and cy,p

cy,"p+c—r,'p is the total stress tensor. o,"p—=cy,p
—P8,p is

the reversible part of o,p, and cy,'p is the irreversible part.
The overdot denotes a material derivative, d/dt= 8/Bt-
+v V

We separate cy,'p and V,p into their symmetric-traceless
and antisymmetric parts, ' and parametrize cr,'pl'l by the
vector I via cy,'p' —= —,

' e,pyIy. I is the bulk torque density
due to distortion of the nematic from its equilibrium value
and is given by Iq H,lpl (ei,„Qpp+e&p„Q,„).Consequent-
ly, the entropy production acquires the compact form

(3)

where K,p
=—Q,p

—(V,'„Q„p—Q, yVylp ). We identify the
dissipative forces (Vial and H,lpl) and fluxes (K,p and
cy,'lil) from Eq. (3) and expand the fluxes to linear order
in the forces, obtaining

i[s] [1] [s) [1] [s]
&ap ~a@.p~kp +~apkpHAp

+ 3 ~QapQpyQya+ 4 C(QapQpa) (5)

K,p M,pi,pVip +I,pg~ip .[2] [s) [2] [s]

By virtue of the time-reversal properties of cy,'p and K,p,
the matrices I l'pl& and M,~z

satisfy the Onsager recipro-
cal relations, M,lpga p

—Mi p,p and I ~p~p
=I ~p,p. From the

tracelessness and symmetry of the forces and fluxes, they
also satisf~ M„'~~=I 1',izp=0, M,pqp =Mp,'ip =M,pp~, and
I pyp I p yp I ppy The equations of motion for v (r, t )[i] [i

and Q,p(r, t) follow from Eq. (4).
For the Landau-de Gennes free energy fL we take

fL —,
' A(T Tt)Q,pQp,

—
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FIG. 1. Branches containing the largest eigenvalue q of the
stable roots Q,p as a function of reduced temperature for a
range of values of the reduced shear rate and for 8 —1.2C
and v -0.9: (a) b'-0, (b) I bI &b, (c) Ib'I b, and (d)

I b I & b . Solid lines correspond to linearly stable steady states,
while broken lines represent unstable states. The inset shows

q for all stationary points for 8' + 0.005.
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discontinuously with temperature; there is a range of tem-
peratures for which there are two distinct linearly stable
roots, the more (less) ordered one continuing to the low-

(high-) temperature phase. This range shifts to higher
temperatures and shrinks as the shear rate is increased,
vanishing at the point (z, b ). Upon further reduction of
z, with

~
b ( (b, there is a unique phase.

We find that shear flow induces biaxiality rather strong-
ly in the high-temperature phase, whereas the low-

temperature phase remains almost uniaxial. Stable states
have an order parameter with one minor axis orthogonal
to the shear plane, and the alignment of the major axis
with the fluid velocity is greater for better-ordered states.
LE theory predicts flow alignment at an angle

2 cos '(I/A, ), where X is the LE kinetic coefficient. "
For general Q,s, and alignment in the shear plane, this
generalizes to vicos2& 3x+y, where x and y are defined
in Ref. 9.

Figure 2 shows the nonequilibrium phase diagram. The
shaded region identifies the points with two locally stable
steady states, while outside it we find a single-phase re-
gion. For an equilibrium problem, a Maxwell construc-
tion would produce a phase boundary (or line of first-
order transitions) within the shaded area. Except on this
boundary, such a construction would distinguish the phys-
ical equilibrium phase from the metastable state. Howev-
er, the system is not in equilibrium when DAO, and an al-
ternative criterion is required to determine whether or not
a physical phase is selected. If one steady state is selected,
then we have a nonequilibrium analog of a first-order
phase transition, with a phase boundary connecting the
equilibrium first order and critical points. In the absence
of a selection mechanism, neither state is metastable, the
exhibited state depends on preparation, and the system is
intrinsically hysteretic. '

The nonequilibrium critical points (z, ~ b ) are
analogous to the equilibrium liquid-gas critical point, pro-
vided one makes the identifications Q,s pl g, T
and D PI g where pl s, TI g, and PI g are the density,
temperature, and pressure of the liquid-gas system. Near
the liquid-gas critical point (PI g, TI s) the thermody-
namic functions are singular. For example, Bpr s/BTI g—

/ TI —TI g/~ ' at PI s, and Bpr g/BPI g- /PI g—Pl*g ' ' at T~ g, wit an ta ing t e approximate
values 0.35 and 4.5, respectively, in three dimensions. 's

For the nonequilibrium system, we expect analogous
divergences as either nonequilibrium critical point is ap-
proached. Preliminary numerical analysis suggests that,
within our approximations, BQ,p/Bz-

~
z —z~ s ' at $»,

and BQ,e/Bb- ( b —b ('i ' at z, with P= —,
' and

b = 3. We expect that when fluctuations are neglected, P
and b are independent of our truncation of the expansion
of I,'~~ and M,~~. We anticipate that the inclusion of
fluctuations will alter their values, and it is also conceiv-
able that couplings set to zero by our truncation of I lI)u~

and M,L will produce a variety of universality classes.
As a consequence of the singular behavior of Q,p, the

0.01--

0.1

FIG. 2. Nonequilibrium phase diagram spanned by reduced
temperature (abscissa) and reduced shear rate (ordinate) for
B —1.2C and v3 0.9. The shaded region is the two-phase re-
gion. The internal black point locates the equilibrium first-order
phase transition. The boundary points at (z', ~ b' )
= (0.079 ~ 0.0078) locate the nonequilibrium critical points.

boundary stress will depend in a singular way on the tem-
perature and shear rate as the critical point is approached.
To see this, regard the system as a black box. In steady
state, the work put into the system by the stress applied at
the boundary balances the heat flowing out through the
boundary, while the total entropy production is balanced
by the entropy flux out of the system. Hence, Tfv8dV is
equal to the work done on the system, fzdZ, cr,pvp. Thus,
for the planar Couette geometry and for a homogeneous
steady state, we find T8 a„~D. Hence, we see that near
the critical point the boundary stress cr„~will be singular
through the dependence of 8 on Q,p. For example,
Brr.,/BT- J T —T'fi' ' atb'.

Finally, we illustrate these phenomena by considering
physically reasonable parameters for low molecular-
weight nematogens: A 50 kJm ' K ', 8 —360
k3m ', and C 300 kJm ', vq 0.9 and v2 0.1

kg m ' s '. We then find T —T t =0.47 K, which
should be compared with TI Iv

—T 0.32 K, and
D 23700 s '. While low-molecular-weight nemato-
gens are significantly affected only by rather large shear
rates, the much larger viscosity of polymeric nematogens
enhances their response to shear flow and suggests them as
candidate materials in which to observe the effects that we
have introduced here.

Note added. After this work was submitted for publi-
cation we received a copy of a manuscript, subsequently
published, from See, ' in which a number of the results
contained in this manuscript were independently derived
using quite different methods.

It is a pleasure to thank Nigel Goldenfeld and Yoshi
Oono for several especially helpful conversations. Support
is gratefully acknowledged from the National Science
Foundation through Grants No. DMR-88-18713 and No.
DMR-86-12860.
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