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Viscosity of concentrated suspensions: An approach based on percolation theory
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A different approach to study the viscosity of concentrated suspensions is proposed. It is based
on percolation theory. It is suggested that at the critical concentration of fillers, p, a macroscopic
interconnected cluster (secondary structure) of fillers is formed. This cluster extends from one
wall of the rheometer to the other. It is the properties of this macroscopic cluster which deter-
mine the viscosity for p ti, . An analytic formula is derived for t), (ti) above ti„which is tested
against a number of sets of experimental data.

The theoretical calculation of the zero shear viscosity of
suspensions has a long history. Since the pioneering work
of Einstein, ' a number of expressions have been pro-
posed. ~ These expressions almost invariably are exten-
sions of Einstein's formula and as such are valid only for
dilute suspensions. No methods effectively treating dense
suspensions have been established.

A different approach was followed by Thomas, who,
using data from a number of authors, established an
empirical relationship

ri, 1 +2.5p+ 10.05p2+0.00273 exp(16.6&) . (1)
Here ri„r)/rin (tl is the viscosity of the suspension, rishi is
the viscosity of the suspending medium), and P are the rel-
ative viscosity of the suspension and the volume fraction
of the fillers, respectively. The above expression turned
out to be so successful that results for r)„(p) derived on the
basis of theoretical considerations are tested against it.
An extensive comparison of the theoretical ri„(p) depen-
dencies with Thomas' formula is given in Ref. 4. It has to
be noted that (1) is valid only for 0~ p ~ 0.55, it does not
allow for ri, eo for any p~ 1. An expression valid in
the asymptotic region (p-p, where p is the concentra-
tion of close packing at which no further flow is passible)
was derived by Frankel and Acrivos on the basis of only
hydrodynamic interactions between suspended particles.

Although the hydrodynamic characteristics of the flow
and the microscopic interactions affecting the individual
fluid and filler particles undoubtedly are important in es-
tablishing the correct ri„(p) relation, it has been realized
that the effect of structure formation also has to be con-
sidered. In Ref. 7 it was suggested that in a concentrated
suspension of solid spheres relatively low shear may in-
duce a structure. In Ref. 8 it was established that in an
8% solution of polyisobutylene in cyclohexane filled with
chalk, a secondary structure formed at P 0.15. In Ref. 9
the formation of clusters of fillers, their distribution, and
effect on the relative viscosity was studied. Pair-cor-
relation functions of fillers in noncolloidal suspensions
were measured experimentally in Ref. 10.

In the present work the ri, (p) dependence of concen-

trated suspensions (0.16~&) is reexamined. Our ap-
proach, however, differs from all the previous theoretical
studies of this problem. It is based on the consequences of
structure formation. It employs percolation theory. " Us-
ing ideas of percolation theory, together with some simpli-
fying physical assumptions about the flow, we propose a
new expression for ri„(p). Our expression, when tested
against a number of sets of experimental data [including
those based on (1)l, gives excellent agreement for 0.16
~ p ~ p . The only adjustable parameter is p

Percolation theory was first applied to the problem of
suspensions by de Gennes' who studied the equations of
hydrodynamics in the presence of an infinite percolation
cluster of the suspended particles. de Gennes's analysis
predicted a plug flow and an anomaly in the plot of the
relative viscosity versus p. No attempt was made to deter-
mine the functional relationship ri„ri, (p). Numerical
simulations by Brady and Bossis's and experimental re-
sults by Blanc et al. ' do support some qualitative predic-
tions of de Gennes' ideas. " The importance of clustering
for the understanding of the rheology of concentrated
dispersions was also emphasized by Quemada. 's Very re-
cently percolation theory was successfully applied to the
analysis of experimental results on the viscosity of mi-
croemulsions by Peyrelasse, Moha-Ouchane, and
Boned. ' What we propose here is the application of per-
colation theory to obtain quantitative results on the
viscosity of a concentrated suspension.

We consider a suspension of monodispersed hard
spheres. The solvent and the fillers are mutually buoyant.
We assume a Newtonian Aow, which can be characterized
by a shear independent viscosity. The spheres are ideal in
that except for hydrodynamic interactions all other forces
are neglected or included in the parameters characterizing
the percolation structure. (The spheres cannot penetrate
each other, so that a contact interaction is present by
definition. ) Upon increasing their volume fraction the
fillers form more and more complicated clusters. This is
possible due to hydrodynamic forces alone. Indeed, two
spheres can be brought together in a simple shear and
form a temporary doublet whose average lifetime varies
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with the shear rate y as'

r —2.5 y (2)

(a) (c)

FIG. l. (a) Schematic illustration of the very small p region.
(b) Possible cluster structures for p ~ p, . Particle a can easily
be displaced; particle c is constrained in its motion; particle b is
entirely blocked. (c) The case p =p„,.

In a fluid subjected to shear, the geometrical distribu-
tion of suspended fillers is continuously modified. Conse-
quently, the clusters these fillers form have to be con-
sidered as dynamical ones, whose structure is constantly
changing in the sense that they are losing and gaining par-
ticles. At any given moment there is a well-defined distri-
bution of clusters and this distribution evolves in time in a
stationary manner. ' We postulate, similarly to de
Gennes, that at a critical volume fraction p, an "infinite"
percolating cluster of fillers forms. In an actual experi-
ment "infinite" means a macroscopic cluster which ex-
tends from one wall of the viscosimeter to the other.
Below the percolation threshold only microscopic clusters
exist and the flow is effectively the same as in the dilute
limit. The effect of the microscopic clusters may be taken
into account in a systematic way by including higher-
order terms in the power series expansion of ri, in terms of
p. Early theories should, therefore, give a rather accurate
account of the microscopic clusters. Above the percola-
tion threshold, for the flow to persist the infinite cluster
has to be rearranged. Such a rearrangement is possible
only if the fillers in the infinite cluster can find empty
space to move into. Clearly, at p only the infinite cluster
exists, the fillers cannot move, and the viscosity is infinite.
For p, ~ p ~ p the fillers still can move, but this motion
becomes more and more difficult as p p . This is illus-
trated in Fig. l.

We then assume that for p ~ p, the viscosity is deter-
mined by the properties of the infinite cluster. In what
follows, on the basis of this assumption we derive an ana-
lytic form for rI, (p).

Transport coefficients in the presence of percolation
structures like heterogeneous solids, composites, porous
media, amorphous metals, etc. are calculated typically by
solving the transport equations on a percolation cluster, ei-
ther numerically or using some kind of effective medium
theory. ' Here we follow another route which allows us to
perform the calculations analytically.

From our earlier discussion it is clear that the lower the
probability that a given particle in the infinite cluster finds
empty space to move into, the larger the value of rl, should
be. Therefore, it is reasonable to assume that the contri-
bution of the individual fillers to the increase of the viscos-
ity is inversely proportional to their probability finding
empty space around themselves. To simplify the discus-
sion we assume that the fillers occupy the vertices of a reg-

ular (say simple-cubic) lattice. Therefore, we wish to
determine the probability that a given filler (which origi-
nally is part of the macroscopic cluster) is at the surface
of a cluster of voids of N sites. These ideas (in the contin-
uum limit; see later) are schematically illustrated in Fig.
1(b), where for particle a and c N&0, whereas for particle
b, N 0. The filler particle b is blocked, it cannot move.
The calculation of the above probability, in general, is a
formidable task. The following mean-field-type approxi-
mation, however, makes the calculation rather straightfor-
ward. We assume that the probability of a given site in
the N-site cluster to be empty is q(p) independent of all
the other sites, and therefore, the probability of an N-site
void is

P -q" (3)

Here q q(p) can be determined as follows. For a given p
the relative volume fraction of the empty sites is propor-
tional to (p —p) (we completely ignore the microscopic
clusters). Since for us the completely "empty space" is
that at p p„q(p, ) 1. Also at p p no empty space is
available, and therefore q(p ) 0. We then arrive at

q(y)- (4)
Am Pc

According to our assumption, the contribution of the
N-site clusters to ri, is'

q, (N)- (5)CNq~
[A possible proportionality constant in (3) can be incor-
porated into rlo.] Here C(N) is the weight of the N-site
clusters with the above discussed properties. A given filler
at the surface of the N-site empty cluster can be pushed
into any of the N sites, therefore the weight C(N) in (5)
should be proportional to N. Now imagine that a single
filler indeed has been pushed into one of the empty sites.
In the N-site void it becomes loose, since it can freely
move between the empty sites and, therefore, it does not
hinder the flow. The next filler at the surface can be
placed now only at N —1 sites, the third at N —2, and so
on, until the empty cluster disappears. (We assume that
every time a filler from the surface enters the empty clus-
ter its place is immediately occupied by another filler from
the infinite cluster. ) With this we arrive at C(N) N!
and by summing (5) over N (Ref. 20) (1 ~ N ~ ~) we
obtain

1/q (6)
This expression, in view of (4), is highly nonanalytic in p
and no power series in p could reproduce it.

Until now we basically assumed that the fillers can
move only in discrete steps. It was done only for conveni-
ence. In reality it is not so and we should use the results
of continuous percolation theory. ' According to this
theory, if clusters are formed by identical uncorrelated
spherical particles, to a very good approximation, the per-
colation threshold p, is independent of the underlying
structure and p, 0.16. ' (Note that this value is very
close to the one reported in Ref. 8 for the appearance of a
secondary structure. ) Contrary to p, the value of p de-
pends on the structure. For a hexagonal structure
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0.74 and for any other structure of monodispersed

spheres p (0.74.
Before comparing the simple formula (6) with experi-

mental results, a few remarks on the effect of experimen-

tal errors on Eq. (6) are necessary. If dp is the uncertain-

ty in measuring the concentration of fillers, Eq. (6) leads

to a relative error (in percents) of the viscosity
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TABLE I. Relative error in g, due to the uncertainty in p for
different values of filler volume fraction. p 0.68, p, 0.16.

Error (%}

0.16
0.25
0.40
0.50
0.55
0.60

0.95
1.48
3.30
7.70

14.7
36.3

In Table I we list the relative errors for dp 0.005 or half
of a percent (with p 0.685 and p, 0.16). It can be
seen that in an expression like (6) a small uncertainty in p
can lead to a substantial error in q„especially for concen-
trations above 0.5. This has to be taken into account
when Eq. (6) is compared with experimental results.

There exists a large number of experimental results for
the relative viscosity of concentrated suspensions. Experi-
ments, however, are never performed with an ideal system
like the one we study in this work. In comparing our re-
sults with experiments, we tried to select experiments
which in our opinion, approximate most closely the condi-
tions at which our discussion has validity. This compar-
ison is shown in Fig. 2.

As mentioned earlier we consider only the interval
0.16~ p ~ p, with p being the only adjustable parame-
ter. Since the Thomas' curve (1) is the result of an extra-
polation (in which 17 sets of experimental data were used)
to minimize finite shear, non-Newtonian, inertial, and
nonhomogeneous effects, an important test of our ap-
proach is the comparison of Eqs. (1) and (6). As can be
seen from Fig. 2 the fit is excellent in the region where Eq.
(1) is valid.

The next set of data to which Eq. (6) is fitted is an ear-
lier one by Lewis and NielsonzI (not present in Thomas'
analysis). This data set represents a sample of glass beads
with a fairly broad distribution in size (45-60 pm) and
the reported shear rates were between 0.03 and 1 sec
As can be seen from Fig. 2 the fit is excellent up to a con-
centration of 0.45. The fit at &-0.5 is poor. However, as
can be seen from Fig. 2, on the basis of the experimental
results, ri(p) is not a convex function in the region around
&-0.45, which is contrary to the expectation II(p

) ~Do. In addition, for high values of p it is increas-
ingly difficult to sustain experimentally the conditions
necessary for a Newtonian ffow.
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FIG. 2. Comparison of expression (6) with experimental re-

sults. II is the only adjustable parameter. Solid circles, open
circles, and open squares stand, respectively, for Thomas's data

(p 0.685), the data of Lewis and Nielsen (Ii 0.58), and
Patzold's data (4 0.645). The corresponding curves, ob-
tained by using Eq. (6) are theoretical fits to the experimental
results.

Finally, we compare our result with a data set published
by Patzold. These data were taken in a specifically
designed system which was constructed to minimize any
segregation of fillers while the suspension was being test-
ed. At the same time monodispersity was carefully con-
trolled. The data compare very well in this case with Eq.
(6)."

The following remarks are in place concerning the
presented ideas. We assume no correlations between the
fillers. As mentioned, such correlations are considered
here only inasmuch as the fillers cannot penetrate each
other. Any more sophisticated correlation in our formula-
tion would lead to correlated percolation and could be in-
corporated in a more complicated theory. Our discussion
is valid only above the percolation threshold. Expression
(6) for Il, valid for p ~ p, should be matched with results
valid for p & p, obtained by other methods. Our final ex-
pression (6) for ri, was obtained on the assumption that
all the fillers are in the infinite cluster. In fact, at p, a
substantial fraction of the particles are in the microscopic
clusters, which are not in physical contact with the macro-
scopic cluster. The number of particles in the infinite
cluster grows, ho~ever, very rapidly after the onset of per-
colation, " which could explain the excellent fit for
0.2~&. We fully realize that our discussion is highly
oversimplified [especially on the form of C(N)]. We be-
lieve, however, that the good agreement with experimental
results is not accidental; our model grabs the essentials of
the flow and opens the possibility to study the rheology of
concentrated solutions in a new way.

It is quite remarkable that despite the number of as-
sumptions and simplifications we have made, our final re-
sult, Eq. (6), describes the presented experimental results
so well over a large range of concentrations. %'e cannot
expect our formula to fit any arbitrary data set. The
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present work should be considered as a starting point to-
wards the possible application of percolation theory to the
quantitative analysis of the viscosity of concentrated sus-
pensions. To make further progress and apply our ideas to
other systems for which at this point our final result may
not be a good fit, we will have to take into account more
specific features of the individual physical systems,

rheometers, and conditions at which the experiments are
carried out.
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