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We investigate the current flow under anomalous-diffusion conditions (disordered media and
also turbulent motion) in the limit of strong-bias fields. A unified picture for anomalous behavior
is provided by Lévy walks. These are continuous-time random walks with coupled spatial and
temporal memories. We find that the long-time asymptotic behavior of the current adheres to the

following power laws:

dispersive transport decreasing and enhanced diffusion increasing with

time. In both cases the characteristic exponents depend (in a complex way) on the memory
terms. We corroborate the values of the exponents by Monte Carlo simulations.

For large classes of materials, transport does not follow
diffusive (Brownian) behavior. Examples are diffusion in
porous media (dispersive behavior) on the one hand and
enhanced diffusion, such as that found in turbulent
motion, on the other hand. The unique shape of the
diffusive character is given by the asymptotic long-time
behavior of the mean-squared displacement {r2(¢)) that
usually obeys the form

(r2()y~re. 1)

For simple Brownian motion one has a=1. The case
a <1 characterizes the sublinear dispersive behavior typi-
cal for transport in tortuous systems.' 3 In chaotic dy-
namics and in turbulent motion one finds a > 1, i.e., su-
perlinear enhanced diffusional behavior.* ™%

What is now the influence of a strong external field?
The question has been investigated intensively for the case
of dispersive motion in disordered media: important fields
of research are the photoconductivity in xerographic ma-
terials 'Y and material flow in percolating systems (such as
porous rocks). In general one finds for the current I(r)

I1(t)~zc. )

Whereas for materials that show diffusive behavior the
current is, in general, constant in time, € =0, for dispersive
motion one finds € <0, i.e., a decay with time. Such a sit-
uation was studied for geometrical disorder by Scher and
Montroll! in terms of the continuous-time random-walk
(CTRW) approach. Similar results are also found for en-
ergetical disorder in multiple-trapping models.’

What happens now with the currents under conditions
of enhanced motion? Such questions have only recently
begun to emerge; a recent experimental work on anoma-
lous diffusion in a linear array of vortices'® mentions as
examples the diffusion of a magnetic field in convective
cells in stars and dispersion of pollutants by atmospheric
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turbulence. Evidently, one still expects behavior as that in
Eq. (2), now with ¢> 0.

Theoretically, nowadays one is in the fortunate position
of being able to describe, using Lévy walks, both disper-
sive and also enhanced motion in a unified way. This
method opens the possibility—given the microscopic
waiting-time distribution— to compute the parameter e.

In the following we perform this task for a CTRW
memory function of widespread use; we start, however, by
recalling several basic CTRW features. For the theoreti-
cal description of anomalous diffusion CTRW models
have proven to be a very adequate tool.!"*~%!! The basic
ingredients of such models are the waiting time distribu-
tions y(r,t); w(r,t) gives the probability distribution to
step a distance r in the time interval from ¢ to ¢ +dt.

The general CTRW procedure is complex. However, a
considerable simplification is achieved by taking for
w(r,t) decoupled forms'!

w(r,t) =r(c)y(e). 3)

In this case the temporal behavior of several basic quanti-
ties such as (2(z)) may depend on the waiting-time distri-
bution y(z) only. Exemplarily, for waiting-time distribu-
tions which asymptotically obey

v(@)~t 77T y<1, 4)

one finds that (r2(¢))~1¢?, i.e., a=y. Furthermore, for y
values well below the critical value y. =1, one has in the
pretransit region /(t) ~¢7~"!,'> which reproduces a classi-
cal result of Scher and Montroll.! Here one may note
that e=y—1;i.e., €<0.

Unfortunately, decoupled memories cannot be used to
model enhanced motion; as previously stressed,® only
dispersive or regular behavior may result from Eq. (3).
The description of enhanced diffusion in terms of the
CTRW approach requires coupled memory kernels.®
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Most technical difficulties which arise from coupled
memories can, however, be alleviated by choosing as
waiting-time distribution the form® %

w(r,t) =Ar ~*6(r—1t"). (5)

This expression provides a very good means to describe
anomalous diffusion. Through the & function the position
r and the time ¢ are coupled; at a given time ¢ positions far
away from the occupied site are not yet accessible, and
nearby positions are no more accessible. Moreover, from
a technical point of view, the § function renders some
quite cumbersome integrals manageable.

In former works we used the coupled memory approach
in our study of the mean-squared displacement (r2(¢))
(Refs. 5-7) and of S(¢), the mean number of distinct sites
visited.® The connection of coupled memories to experi-
mental situations was made for superlinear phase
diffusion in Josephson junctions® and for turbulent dif-
fusion'3 using Lévy walks. In this work we apply the cou-
pled memory approach to the analysis of current flow un-
der dispersive and enhanced diffusion conditions.

We first note that the current I(¢) in a biasing field can
be evaluated as being the time derivative of the mean posi-
tion (r(z)) of a charge carrier, I(z) =(d/dt){r(¢)). On
the other hand, {r(z)) follows directly from the knowledge
of P(r,t), the probability distribution to be at r at time ¢,
provided that the particle started at ¢ =0 from r =0; thus
one has

(@)= rP(r,1). (6)

Now }7’(r,t) obeys the following generalized Master equa-
tion: "

P.) =3 [ P,y —r\ = Ddr+ 050, (D

In Eq. (7), ®(z) is the probability of not having until ¢ left
the starting site of the walk. One can express ®(¢) as a
function of y(z) =X w(r,t):

o) =1- [ y(x)dr. ®)

For the analytical calculation of I(¢) it is advisable to use
the Laplace-Fourier transform (t— u, r— k) of Eq. (7),
which results in

N el O)) 1
P(k,u) ” =R 9)

The sum in Eq. (6) can be expressed by means of the
derivative of the Fourier transform, and one finds for the
current:

- —i dyku)
=0 1—ww) 8k [ o

(10)

4
I(u) iU P(k,u)

Equation (10) may be compared to the expression for the
mean-squared displacement of a particle in a CTRW
without bias:$

2 0’
(r (t))-“—aFP(k,t) (1)

k=0
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We now utilize Eq. (10) and, for strong biasing fields,
restrict ourselves to evaluating the current in the direction
of the field. This corresponds to a one-dimensional pic-
ture, in which all steps are taken in the same direction:
formally one considers only y(r,z) with r > 0. (See Refs.
2 and 12 for a detailed justification of the procedure.)

Let us start our evaluation of the current from decou-
pled memories, Eq. (3). Here the calculation of the
current is straightforward and one obtains:

[) =¥ (12)
1—y(u)

with L = —iA'(k =0), where L is the mean distance trav-
eled per step in the direction of the bias.>!%!4

For coupled memories the procedure is more subtle.
We have to compute the large-z (i.e., small u) behavior of
I(u) from Eq. (10). Note, however, that the limit k— 0
is to be taken in Eq. (10) for all u. Hence the analysis of
the asymptotic behavior of () requires the evaluation of
w(k,u) in the limit of small k and u, where k <u. The
situation is somewhat analogous to the calculation of
{r2(¢)) in the absence of external fields.?

Let us focus first on the space-averaged waiting-time
distribution w(z), whose Laplace transform is

w(u)-J; dtj; v(r,t)e "“dr
-AJ;N j::r “H8(r—t")e "“drdt (13)

-]
et
02 ‘

In Eq. (13) we indicated the lower-bound cutoffs by 6;.
From the normalization condition yw(u =0) =1, one has as
a condition on the product vu of the exponents vu > 1.
Moreover, for vu > 2 a finite mean waiting time 7, is ob-
tained. Hence, for the asymptotic expansion of w(u) it
follows that

1 —y(u)~u?, where y=min(uv—1,1). (14)

In order to evaluate 7(u) according to Egs. (9) and (10),
we still need to establish the asymptotic behavior of
w(k,u) —y(u). The procedure is as follows:® one com-
putes

v(k,u) —y(u) -_I;mdt J;m (e* —1)y(r,t)e ~“dr

-Aj;me '“'dtfsl rH(e* —1)
x8(r—1t¥)dr

=Af, ey ek — 1)y
15)

For kt"<ut the term in parenthesis changes little during
the decay of exp(—u¢) and may be expanded in powers of
k. Thus for k <u one has

wcw) =y ~ik f, 17 Ve ug . (16)

Now, for v(u—1) > 1, the integral Eq. (16) is finite for
all u, even for u =0. On the other hand, for v(u—1) <1
the integral diverges for u =0; only u > 0 values give a



RAPID COMMUNICATIONS

4560

finite integral, whose leading " ~*~! dependence can be
established by a variable transformation. Both cases can
be summarized through

v(k,u) —y(u)~iku’, where §=min(uv—v—1,0).
a7

Inserting Eqs. (14) and (17) into Eq. (10) we find for the
current

I(u)~u’7. (18)

Now, due to the combination of the two exponents § and
7, Egs. (14) and (17), four different cases arise. Revert-
ing Eq. (18) to the time domain we obtain the final forms

I@)~t""! for 1 < vu <min(2,1+v), (19a)
I@)~t" 2 forl+v<vu<2, (19b)
1)~ = w1 for2<vp<1+v, (19¢)
I(t)~const for vu > max(2,1+v). (19d)

Equations (19) now provide a unified description for the
current, whose interpretation is as follows: In the disper-
sive regime (v<1) we find for small g values that the
current decreases with time, I(t) ~t¢, € <0, and that € is
independent of u, Eq. (19a); this is the dispersive Scher-
Montroll behavior.! For large u values the current shows
regular diffusive behavior, Eq. (19d). For intermediate u
values the current is dispersive with € being linearly
dependent on u, Eq. (19b).

In the enhanced anomalous regime (v>1) and for
small u values the current is enhanced, Eq. (19a). For
large u the current is again regular, Eq. (19d). For inter-
mediate u values one finds enhanced current with the ex-
ponent depending linearly on u, Eq. (19¢). Both for the
dispersive and for the enhanced current regimes the (u,v)
dependence of ¢ shows two marginal crossovers: pv=1
+vand pv=2.

Now, one may object that our analytical results are,
after all, only asymptotically valid. Thus, in order to es-
tablish the validity range of Egs. (19), we also performed
Monte Carlo simulations. The procedure used is as fol-
lows:” For each step of a CTRW the distance r and the
time ¢ to reach the next location are determined according
to the distribution given by Eq. (5). The total displace-
ment r(¢) of the walker is then evaluated as a cumulated
distance and the average is taken over typically 10° reali-
zations. Then the current flow, I(¢) =(d/dt){r(t)), is
determined using a standard procedure for the numerical
calculation of the time derivative. Finally, from a linear
least-squares fit to the logZ (¢)-logt representation, the ex-
ponents € are obtained for the time interval 103 <t < 10%.

In Fig. 1 we show the typical behavior for 7(¢) as a
function of time. We use log-log scales and present the
findings for several u values. The upper part of the figure
gives the current for an enhanced situation, v=2. The
lower part of the figure depicts the current under a disper-
sive condition, v= 3. We note that at long times the nu-
merical results follow straight lines satisfactorily close, a
fact which validates our asymptotic analysis; deviations
from linear behavior are only visible for short times.
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FIG. 1. The current flow I(z) plotted as a function of time on
log-log scales. In the upper part of the figure an enhanced situa-
tion, v=2, is shown; in the lower part a dispersive situation,
v= 3, is depicted. The values of u are given parametrically, as
indicated. The dots are simulation results, the solid lines denote
linear least-squares fits, and the dashed lines are guides to the
eye.

The numerical results for v=%, 3, and 2 are summa-
rized in Fig. 2. The fitted slopes agree reasonably well
with the analytical results, Eqs. (19), which are also given
in the figure as solid lines. Here the transition regimes
3<u<4 for v=it, $<u<% for v=3%, and 1<y
< % for v=2 are clearly visible. In all three cases, for

1.0 b
€

0.5

0 © N

a
A~ _y=05
-0.5 =
10 . . . .
0 1 2 3 4 5

FIG. 2. Asymptotic behavior of the current; the symbols
denote the numerically determined exponents for v= 1%, 3, and
2. The solid lines give the analytically expected behavior, Egs.
(19).



RAPID COMMUNICATIONS

41 CURRENT FLOW UNDER ANOMALOUS-DIFFUSION . .. 4561

small u, the limiting ¢ values, e=— 5 for dispersive
current and ¢= 1, e =1 for enhanced current, are reached
within the time of the numerical experiment. Whereas in
general the numerical results follow the theoretical pre-
dictions, the crossover behavior is considerably smoother
than expected theoretically. We attribute this finding to
logarithmic corrections to scaling and to the very long
time which is required to reach the asymptotic regime of
I(¢) for u close to the marginal u values.

Concluding this study, we have evaluated the currents
under anomalous diffusion conditions, both for dispersive
and for enhanced motion. For this we had to use the full
CTRW formalism, with coupled space-time memories.
Our task was rendered easier by using a very convenient
waiting-time distribution form and by an analytically

compact expression for the current in the Fourier-Laplace
domain. The determined asymptotic forms agree well
with the simulations and show a very rich behavior. We
hope that our findings will further enhance the interest in
experimentally investigating currents in turbulent motion.
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