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Universality of self-avoiding walks on critical percolation clusters
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By comparing some of the problems of self-avoiding walks (SAW's) on critical percolation clus-

ters (CPC s) to those of random walks, specific issues that need classification in order to under-

stand the critical behavior of SAW's on CPC's are considered. From these issues and the node-

link-blob picture of CPC's we discuss crossover scaling theory and the universality of SAW's on
CPC's. Recent simulation results are also considered.

Even though many studies have been done on self-
avoiding walks (SAW's) on diluted lattices' '5 during
the last decade, there is still much to do to understand the
critical properties of SAW's on the lattices at or near the
percolation threshold. ' The main quantity of interest is
the quenched average of mean-square end-to-end distance
(or radius of gyration) of N-step SAW's (R2)„where ()
denotes averages over configurations in which each bond
(site) is occupied with probability p. The results of the re-
cent studies ' on the exponent v' are quite contradic-
tory, where v' is defined through the relation

(AC averages) from averages over only those on the larg-
est clusters (LC averages) at given concentration p. To be
specific, we consider the mean-square end-to-end distance
(R 2), of RW's on the percolation clusters. At T~, or when
(R )«g~ near T~, the geometry of critical clusters is
a fractal geometry' and

with y ( 2 . There are two different exponents' 's for y,
y ~ for AC averages and y2 for LC averages. The exact re-
lation'7's between the two exponents is also known as

(R) =N"
y~ y2(l —Py/2v~) (y~ &y2), (3)

at the percolation threshold (T~, p p, ) or when the
correlation length of percolation gy2«(R2), near Ty. The
earlier real-space renormalization-group (RSRG) stud-
iess and the most recent RG study' have predicted a
new fixed point at Ty that governs the critical properties
of SAW's near T~ and is different from the pure fixed
point at p 1, while the RSRG study of Markovic,
Milosevic, and Stanley9 concluded something different.
The earlier Monte Carlo study2 concluded that v' near T~
should be larger than the v of SAW's on nonrandom lat-
tices, while a recent simulation study'4 concluded that v'

is much closer to v, which might suggest v' v. At
present the big question on the critical properties of
SAW's near Ty is whether the equality v' v is exact or
not. That is, whether the universality of SAW's at T~ is
the same as that on the nonrandom lattices. But by com-
paring with the case of successful crossover scaling theory
for random walks' 2o (RW's) on the diluted lattices
near Ty or at T~, the more exact forms of the questions on
SAW's near T~ and the answers to them are necessary for
understanding the universality-related problem. The ob-
jectives of this paper are (i) to suggest what kind of ques-
tions and answers are needed to understand the above-
mentioned problem, (ii) from those questions and answers
to discuss the crossover properties of SAW's near T~ as
well as to answer the universality-related questions, and
(iii) to reinterpret a recent simulation result. '

We first want to explain motivations and suggestions of
this paper clearly by a comparison with problems of
SAW's to corresponding ones of RW's. ' In studying
physical phenomena on percolating clusters near T~, one
should remember that there are two different averages
(ensembles). ' ' Studies on RW's (Refs. 17-19) clearly
distinguish the averages over RW's on clusters of all sizes

where py and v~ are the critical exponents of the percola-
tion transition. The relation in Eq. (3) has been explained
by using a scaling argument'7's and has been confirmed
by simulations. ' '9 In contrast, among the papers on
SAW's, onl Sahimi, Roy and Chakrabarti, " and Mar-
kovic et ttl. distinguish AC averages from LC averages.
Both simulations "4on SAW's do not specify which aver-
ages were taken. At p p, there should be two different
exponents for v' in Eq. (1), vI for AC averages and v2 for
LC averages The/. rst suggestion of this paper for both
numerical and analytical studies that relate to the univer-
sality of SAW's is as follows. There should be a clear dis-
tinction between LC averages and AC averages when one
calculates v'. Without this distinction the comparison of
one result to another is hardly meaningful.

The second suggestion deals with the relation between
vI and v2, which is very important to the universality-
related question. The suggestion by Sahimi7 was

V2% V~) V,

and that by Roy and Chakrabarti" was

vI -v2(l —Py/2v~),

(4)

(5)

which were based on a simple analogy to the RW case
[Eq. (3)]. However, the self-avoiding property on disor-
dered lattices' is quite different from that of RW's, thus
both Eqs. (4) and (5) must be wrong. In this paper I
show, from a qualitative argument,

which is the second suggestion. To show Eq. (6) qualita-
tively, we review' ' how one can show Eq. (3) for RW's.
For RW's on the cluster with s sites (s cluster) we expect

4554 @1990The American Physical Society



UNIVERSALITY OF SELF-AVOIDING WALKS ON GRITICAL. . . 4555

from Eq. (2) and from the definition of y2 that

N"' (N"'&R')

R,' (N,"'&R,2),

where R, is the square of the average radius of the s clus-
ter at p p, and

~'=S2/d (8)

Here df is the fractal dimension of the large clusters at T~
and df d —P~/v~.

' ' For the AC average at T~, &R2)„
satisfies

&R'), = D(p)N (AC averages), D(p) = (p —p, )",
,D(p)N (LC averages), D(p) = (p —p, )"

(13)

where D(p) is the diffusion constant"' on any cluster,
D(p) is the constant' ' on the infinite cluster, and p is
the conductivity exponent of the random-resistor net-
work'7' on percolation clusters. The crossover scaling
function' for &R2), near Tt, which satisfies Eqs. (2),
(12b), and (13) is known as

&R )„»g~,where there is the infinite cluster. RW in this
regime should have the normal Eucledian property'2
as

&R ) =N ' g&R )'n, s
S

&R ),' N 'F[N"(p —p, )], (14)

&c OO

ce gRs ' +gN s ', (9)
S S Sc

where n, s s' ' is the probability' 's that a RW starts
on an s cluster at Tt, and s, is the cluster mass for which
the crossover occurs in Eq. (7) with s, I=N ~'. From2/df 2) 2

2+Ptpl(Ptp+ y~) (Refs. 17 and 18) and Eq. (9) we can
see that Eq. (3) holds. But as far as SAW's are con-
cerned, there cannot be a corresponding term to the term
in large parentheses of Eq. (9) because an N-step SAW
cannot finish its walk on an s cluster with N & s. '3 So, for
SAW's on an s cluster

&R2)s, N "' (s & N)

,no possible SAW's (s & N) .

For AC averages at Tl„&R), satisfies

&R') =N'"'- g &R')'n s
s&N

gg+N2vs I T~/Pf 2

&R ), =R 2 (LC average) .

For AC averages' ' in this regime,

&R ')„=g n, sR,' = (p, —p) ' (k & 0) .

(12a)

(12b)

The final regime is the Eucledian regime at p & p, and

where/is a finite number, because g, n, 1 (Refs. 17
and 18) at p p, . From this we see that Eq. (6) holds.
The result of this argument for RW's has been confirmed

by simulations. ' ' The same level of qualitative argu-
ment for SAW's should also demonstrate validity, because
we think that at T~, v2 is not dependent on cluster size s if
s is reasonably large.

The third suggestion is related to the crossover proper-
ties of SAW's near T~. The crossover properties of RW's
are as follows. ' 2 There are three regimes. '7 '9 The
first one, which we will call the fractal regime, ' ' is the
regime at p p, or when &R ),«g~ near Tp, in which the
end-to-end distance of RW &R 2), behaves as Eq. (2). The
second regime is the regime at p & p, and in N
which we call the saturation regime. In this regime, "
on a cluster with s sites,

where x 2y~/(2', —p~). To establish the similar cross-
over scaling function for SAW's near T~ we should know
the critical behavior of SAW's in each of three regimes.
Until now the studies of SAW's near T~ are only on
SAW's in the Eucledian regime and in the fractal regime.
But it is also important for answering the universality-
related questions on SAW's to know the critical behavior
of SAW's for the regime in which N ~ and p &p, . In
the fractal regime SAW's behave as Eq. (1). In the Eu-
cledian regime, (R ), behaves as

&R2), (p»p, and N ~) A(p)N ", (15)

where A(p) depends only on p. In the regime p & p, and
N~ ~, we expect quite a different critical behavior of
SAW's from that of RW's. &R2), in this regime does not
depend upon the step number N [see Eqs. (12a) and
(12b)]. In contrast to a normal kind of SAW kinetics, '3

&R ), (p&p, and N oo) must have N dependences, '

as was shown exactly for a Cayley tree and qualitatively
for hypercubic lattices in a previous paper. '3 &R ), within
normal SAW's must satisfy

&R 2), (p &p, and N ~) =N2" (16)

and the exponent v" must be different from v' in Eq. (1).
In the regime p &p, and N ~, &R2), &&)~2 and the clus-
ters which can carry N-step SAW's cannot have the
memory of the percolation correlation. '2 In this regime
SAW's on such clusters are similar to that of SAW's on
lattice animals, ' because the clusters whose linear size is
larger than g~ are similar to lattice animals' and SAW's
on such clusters are analogous to the RW's problem stud-
ied by Wike et al. The third suggestion is that the ex-
ponent v" in Eq. (11) is equal to the exponent of SAW's
on the lattice animals, ' and we call this regime the an
imal regime of SAW's instead of the saturation regime.
(Approximate numerical values'6 for v" are given in
Table I.) With the information of v', v", and A (p) we can
establish the crossover scaling form for &R2), similar to
Eq. (9), and from that scaling form we can answer the
universality-related problem completely and clearly. Such
a scaling form is far from completion, because at present
we have no information on v" and A(p) and there is only
restrictive information on v'.

From these suggestions we now want to discuss the
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TABLE I. Fractal dimensions of percolation clusters and critical exponents of SAW's on percolation
clusters.

d 2 d 3

1.62 +' 0.02 ' 1.83
1.74 +' 0.04'

1.94
1 9+02'

1.93 + 0.02 '

dmin 1.15 W 0.03 '
1 ~ 13'

1 .38 +' 0.02 '
1 47

1.61 ~ 0.05 '
1.69 + 0.02 '

2.62 +' 0.04 '
2.57 ~0.03 '

3.14

2.84 +' 0.24 '
3.53 '
3.44 +' 0.20 '

3.78 +' 0.16 '

0.58

0.75-0.76 0.64-0.66 0.57-0.59 0.55-0.57

0.84 0.75 0.68 (d &8)

'Dat from Ref. 18 and references therein.
Data from Ref. 16 and references therein.

'From dg dBf+(( g —d+2), and numerical data from Ref. 18.
From dB dnf+ g and numerical data from Ref. 16.

'From Ref. 16.
'The range of values for v' is from Eq. (18) [see the text below Eq. (18)].

universality-related questions. The recent simulation of
Lee and Nakanishi'4 has shown that v' is very close to 4,
the value of v on two-dimensional (2D) nonrandom lat-
tices, and v' for d 3 is 0.61, which is close to 0.59, the
value of v on 3D nonrandom lattices. Lee and co-
workers' also reanalyzed the Kremer's simulation2 in 3D
to deduce v'=0.62, which is much closer to 0.59 than
Kremer's original value of —', . These analyses' suggest
that v' v and SAW's on the diluted lattices even at
p p, (SAW's at T~) belong to the same universality
class of those on the nonrandom lattice (normal SAW's).
Since in both 2D and 3D v' is numerically close to v in 2D
and 3D, one should analyze the situation rigorously before
jumping to conclusions. What we want to show is that
even though the numerical data may lead one to conclude
that v' v, the universality class of SAW's at T~ cannot
belong to that of the normal SAW's. If one believes
v' v, v'

2 for the dimensions with d~4, because
v(d ~ 4) —,'. When N nn SAW's move only on the
backbone of the percolation clusters, ' ' ' ' 3 because oth-
erwise they would eventually be trapped on a dangling
end, even though these ends would be quite long. We then
know, from the node-link-blob picture23 of that incipient
infinite cluster (IIC), at p p, the inequality

dmin —dSA W I/V —dBf

always holds, where d;„is the chemical dimension' of
the cluster, dBf is the fractal dimension of the backbone,
and dsAw 1/v' is the fractal dimension of SAW's on IIC.
The equality in Eq. (17) holds for d ~ 6, where d 6 is
the upper critical dimension of percolation. ' v'

& for
d 4 and 5 breaks down the inequality (17), because dBf

where

2+a
dBf+adBw

'

dmin/(dBw dmin)

(IS)

(i9)

and dB„is the fractal dimension of RW's on the backbone
of IIC. 's Qriginal values' for the AH formula are given
in Table I. The published data' ' for dB, dBf, and
d;„,however, are spread over a range (see Table I). We,
therefore, calculate the range of values of v' from the
range of data of dB„,dBf, and d;„.From the AH formu-
la the calculated range for v' in 2D is -0.75-0.77, which
is very close to the results of the simulation. ' For v' in
3D the range is -0.64-0.66 and has a deviation of only
3% from 0.62. Considering the fact that the AH formula
predicts 3% larger values to the exact known results for
SA%'s on the family of gaskets, the AH formula's results
are in quite good agreement with the simulation results.
Therefore, the numerical evidence that v'= v in 2D and

for d 4 and 5 is less than two. SAW's at T~ therefore
cannot belong to the same universality class of normal
SAW's. Furthermore, we want to emphasize that one
need not only the results for d 2 and 3, but those on
d 4, 5, and 6 to resolve the universality-related prob-
lems, because the upper critical dimension of percolation
is 6.

I now want to show numerically that the closeness of v'

to v in 2D and 3D is coincidental. Until now the best
Flory approximant on nonrandom media is the formula by
Aharony and Harris' (AH formula). The AH formula'6
for v'is
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3D is coincidental and it should not be interpreted as
proof that v' v. This means, from the viewpoint of RG
theory, that the fixed point governing the SAW's near PT
should be different from that for SAW's on nonrandom
lattices, but an eigenvalue of the linearized RG transfor-
mation around the former is different, but close to, an ei-
genvalue around the latter. The exponent for SAW's with
lattice animals has also been calculated from Eq. (17) by
Aharony and Harris, ' and this is thought to be the same
value as that of v" in Eq. (16). These numerical values
for v" have also been redisplayed in Table I.

When one checks the suggestions in this paper by simu-
lations or other means, the important point concerns the
number of steps of SAW's, N. Both simulations2's have

studied SAW's up to 80 steps or so, which we think are
too small to confirm the theoretical results. For these
small SAW's it might seem that v2 & vI. But for physical-
ly meaningful steps (=10 ) we believe the proof for
Eq. (6) should hold. For the small step numbers it might
also seem that the end-to-end distance exponent of SAW's
on the backbone of IIC is larger than that on IIC, which
includes quite long dangling ends. However, I think these
two exponents also coincide when the number of steps is
on the order of 105.
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