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Macroscopic quantum jumps from a two-atom system

1 JANUARY 1990

K. Yamada and P. R. Berman
Department ofPhysics, New York University, 4 Washington Place, ¹wYork, ¹wYork 10003

(Received 25 August 1989)

We analyze the macroscopic quantum jumps (sudden interruptions in the fluorescence on a mac-

roscopic time scale) that are produced when a pair of two-level atoms separated by a distance d is ir-
radiated by a strong laser having wavelength Q, with A,o »d. Included in the analysis is the dipole-
dipole coupling of the atoms, the ac Stark e6'ect, and the role played by a term that is present in the
atom-laser field interaction Hamiltonian when k d@0 (k is the wave vector of the laser field and d is
the vector connecting the two atoms}. Our treatment is based on frequency-resolved delay func-

tions, an extension of a concept developed by Reynaud, Dalibard, and Cohen-Tannoudji [IEEE J.
Quantum Electron. 24, 1395 (1988)],which is shown to be useful to study frequency-resolved photon
statistics. As examples, we study the statistics of the fluorescence produced by the two-atom system
as well as those in the components of the fluorescent triplet produced by a single two-level atom.

I. INTRODUCTION

When identical two-level atoms are separated by a dis-
tance d that is smaller than their resonant wavelength A.o,
cooperative decay phenomena can occur. Dicke' and
others ' found that the exchange of photons between the
two atoms produces new eigenstates with new decay
rates. Denoting the ground and excited states of atom i
by ~e, ) and ~g, ) (i =1,2), these states are a triplet of
symmetric states [~E ) = ~eie2), ~S) =( I/&2)(~eig2)
+~g, e2), ~G)=~g, g2)), and one antisymmetric state
(l & ) = (I/&2 )( I e,g2 ) —

~g, ez ) )]. These states are
shown in Fig. 1. When A,o »d, the system, initially excit-
ed by an incoherent or a weak coherent field to state ~E ),
can decay to state ~G ) via state ~S) with a rate I s =—2I
(I" is the decay rate of a single atom). As can be seen
from Fig. 1, a two-peaked fluorescence spectrum centered
at ~o+V is produced when the system undergoes the

~
E )~ ~S ) ~ ~

G ) cascade.
Cooperative effects in resonance fluorescence produced

by the two-atom system when it is continuously excited
by a strong coherent laser was studied by Senitzky and
others. They searched for the existence of extra side-
bands not present in the single-atom fluorescence spec-
trum (Mollow triplet). An interpretation of the spec-
trum was provided by Freedhoff. She calculated the
fluorescence as arising from transitions between dressed
states of the two-atom plus laser-field system and ob-
tained a spectrum containing seven peaks.

In most treatments of the problem, the atoms have
been considered to be so close as to render the antisym-
metric state optically inactive in the sense that the decay
rate I „ for the ~E )~ ~

3 ) and
~
3 )~ ~

6 ) transitions is
set identically equal to zero. The decay rate I ~ is ap-
proximately given by I z ——(2trd/Ao) I /5( « I ). As
will be seen below, this small but finite decay rate can
lead to macroscopic quantum jumps (MQJ). ' The ori-
gin of the MQJ is the metastability of the antisymmetric
state

~
A ); once the system is shelved in this state the
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IE&
\

,&A

R v

~ VA

IA&
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FIG. 1. Energy diagram for a two-atom composite system.
When the atomic separation d && A,o= 2~d /coo, I z

———21,
1 „-=(2nd/A, o} I /5, and V=(2md/ko} 3I /4, where I is the
decay rate and coo is the resonant frequency of a single atom.
Transitions between states ~E) and ~G) (at rate R) are pro-
duced by an incoherent pump field. State

~
A ) acts as a shelving

state in the problem of macroscopic quantum jumps.

fiuorescence produced by the ~E)~~S)~~G) cascade
is interrupted for a time interval on the order of I „.

In this paper, we analyze the MQJ produced by this
cooperative atomic effect. Recently, this effect was par-
tially incorporated into the problem "MQJ due to two
three-level atoms" by Javanainen and Lewenstein. ' We
extend their work by including effects relating to the en-

ergy shifts of states ~S) and
~
A ) resulting from the

atomic dipole-dipole interaction. Moreover, we allow for
an additional mixing of the symmetric and antisymmetric
states produced by a term in the laser-field-atom interac-
tion Hamiltonian that is present when k dAO (k is the
wave vector of the laser field and d is the vector connect-
ing the two atoms). The former effect is important be-
cause the ~E)~~S) and ~S)~~G) transitions are no
longer resonant with a laser tuned to coo, the energy shift
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—11,(t)= —11,(t) y r,, + y 11,(t)r, ,
l l

where II,.(t) is the population of state Ii ) at tiine t and

I;,. is the transition rate from state Ii ) to state Ij)
(i,j =E,S,6, A), which can be written in matrix form as

o r, R r,
o o rs o

R 0 0 0
o o r, o

(2)

V=(2nd/Ao) 3I /4 is much larger than I, in the same

limit where state IA ) becomes metastable. The latter
effect is also important because it drastically alters the
duration of the bright and dark periods. Our analysis is

based on so-called frequency-resolved delay functions (an

extension of a concept introduced by Reynaud, Dalibard,
Cohen-Tannoudji, and others), " ' which is shown to be

very convenient in analyzing quantities such as
frequency-resolved photon statistics (FRPS).

The paper is organized as follows. In Sec. II, we as-
sume an incoherent pumping of the

I
E )~I6 ) transition

and analyze the statistics of the bright and dark periods
of the fluorescence. The FRPS in a bright period is cal-
culated in Sec. III utilizing the method developed in Sec.
II. In Sec. IV, we analyze the statistics of bright and
dark periods for the case of strong coherent pumping
when k.d=o. In Sec. V, we consider the application of
the method developed in Sec. IV to two problems in
FRPS in a dressed-atom picture: fluorescence photons
produced by a single two-level atom and by the two-atom
system considered in this paper. Finally, in Sec. VI, we
consider a coupling of the antisymmetric state to the
symmetric states by the laser field when k dAO and show
how this alters the statistics of the bright and dark
periods considered in Sec. IV.

II. INCOHERENT PUMP

We first consider the two-atom system irradiated by a
strong incoherent pump which couples states IE) and

IG) directly with rate R (see Fig. 1). It can be shown

that this is a good model when a reasonably strong broad-
band laser whose center is tuned to the transition fre-

quency of each atom is used [see the argument below Eq.
(28) in Sec. IV]. When I's,R ))I „,this system exhibits
two phases in its fluorescence: a bright period (BP), in

which repeated cycling through the channel
IE)~IS)~IG) produces many fiuorescence photons,
and a dark period (DP), in which the system is shelved in

the metastable state
I
A ). A bright period begins (ends)

when the system jumps from state
I
A ) to state I 6 ) (state

I
E ) to state I A ) ). Therefore, to determine the probabil-

ity distributions PB (w) or PD(~) of the duration r of a sin-

gle BP or DP, respectively, we must find the time delay
between successiue transitions. The distribution Ptt(r} is
determined by the delay between an

I
A )~ I

6 ) transi-
tion and the next IE)~I A ) transition, while PD(r) is

determined by the delay between an IE )~ I
A ) transi-

tion and the next
I
A )~ IG) transition. The calculation

starts with rate equations

The solution for II, (t) includes contributions from any
number of possible pathways leading to a final state pop-
ulation II; at time t. For example, suppose that the sys-
tem decays from state

I
A ) to state I 6 ) at time t =0 (a

BP begins at time t =0). The population II„(t) obtained
by solving Eqs. (1) and (2) with the initial condition
IIG(0)=1 includes contributions from pathways such as

fl t2 f4

15 fl~ IA ), etc. (0&t, &ti &t). In the IG) ~ IE)

~
I
A ) pathway, the first BP ends and the first DP be-

gins at time tz, with no further transition between times
t) f3 l4

t2 and t In . the IG & ~ IE & ~
I
A & ~

I
6 & ~ IE &

f~~
I
A ) pathway, the second BP ends and the second DP

begins at time t = t5, with no further transition between
times t5 and t. Note that in both pathways, any number
of transitions

I
E )~ S )~ I

6 )~ I
E ) is allowed before

each transition to state
I
A ). In order to calculate the

duration of a single BP we need to separate out the con-
tribution of the first decay to II„(t). To do this, we pre-
tend that the system will never escape from state I A )
after the first IE )~ I A ) decay. This corresponds to set-
ting I „G=0 in Eq (2), a. nd solving Eq. (1) for II„(t)with
the initial condition IIG(0}=0. We designate this popu-
lation with a prime, II'„(t), to distinguish from the true
population of state IA ). The crucial point in setting
I „G=0 in Eq. (2) is that it in no way influences the dy-
namics of the system for times before the first IE )~ I

A )
decay. A quantity W(E~A/G;t) defined as the proba-
bility per unit time that, starting from state I G ), the sys-
tem decays to state I

A ) for the first time at t, can be
found through

W(E~A/6;t)= II'„(t) . (3)

When I s, R ))I „, a simple calculation using Eqs. (1),
(3},and (2) with I „G=0 yields

I „R(R B)—
W(E~ A/6;t) = exp[ (R +I s —B)tJ-

2B(R +I —B)
I gR(R+B)

2B (R + I +B)
Xexp[ —(R +I's+B)t]

Rl „+ exp[ —R I „t/(3R +I s)],
(4)

where

B=(R'—Rr, }'"
From Eq. (4), it follows that W(E~ A /G;t}-=0 in the
transient regime t ((R, reflecting the fact that it takes
a time -R ' for the system to be pumped from state
I 6 ) to state IE ), from which it can then decay to state
I
A ) . In the third term of Eq. (4), the factor

R /(3R + I s) can be interpreted as the quasi-steady-state
population (Ilg) that state IE ) would have if a decay to
state I

A ) were forbidden. The appearance of this factor
is related to the fact that fast transitions among states
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P~ ( r ) =exp( —~/r~ ),
3R +I s

~E), ~S), and ~6) drive their populations to the quasi-
steady-state values long before any ~E)~~A ) decay
occurs.

The probability distribution function Pz ( r ) for the
duration ~ of a single BP is equal to the probability that,
starting from state ~6 ), the system will not decay to state

~
A ) until time w. Thus we can write Pz(r) in terms of
W(E~ A/6;t) as

P~(r)=l —f W(E~A/6;r)dr . (5)

By using Eqs. (4) and (5), one sees immediately that both
the first and the second terms in Eq. (4) do not contribute
in the limit I &,R &)I „;in this limit, we find

with state ~2) metastable, exhibits BP and DP in its
fluorescence: the BP involves transitions between states
~1) and ~3), and the DP is triggered by the rare excita-
tion

~
3 )~ ~2 ). When the system is in a DP, the next BP

will start following by the transition
~
2 )~ ~

3 ) . A simple
calculation yields the quasi-steady-state population of
state ~3) in a BP as II'P=(Rt+I, )/(2R&+I &). Since
the next DP is triggered by the transition ~3 ) —+ ~2) with
a rate I 32=R2, one finds

=(II'PI' ) '=[(R, +I, )R /(2R, +I, )]

which is equal to (R2/2) ' when R, ))I &. A similar ar-
gument produces that ~D =(R2+I 2) ', which reduces to
R2 ' when R2»I 2. These results agree with those that
have been obtained previously. '

where ~~ is the average duration of a single BP. The in-
verse of the average duration of a single BP, ~~, is sim-

ply equal to the quasi-steady-state population of state
E ) [given by Ilg=R /(3R + I s)] multiplied by the rate

I „ for the
~
E )~

~

A ) decay. As R /I's increases, r~ de-

creases, and eventually saturates at a value equal to
3I

—
1

In order to find the analogous probability function
PD(r), we apply a similar method [setting I Gz =0 in Eq.
(2) and solving Eq. (1) for IIG(t) with the initial condition
II&(0)=1]to find

and

W(A ~6/A;t)=I'„exp( —I'„t)

PD(r) = 1 —f W( A ~6/A;t)dt =exp( r/rD ), —
0

1
(8)

where ~D is the average duration of a single dark period.
Note that the ratio rzlrD=(3R+I s)/R 3 when
R» I ~. This result is larger than that obtained in a sin-
gle three-level atom (MQJ) ' because of the additional
active level S ) which is present in our problem.

In this section, we found W(E~A/G;t) and
W(A ~G/A;t) in order to calculate P~(r) or PD(r)
The beginning or ending of a BP or DP corresponds to a
distinctive decay ~E )~

~
A ) or

~
A ) —+

~
G ), respectively.

Depending on the 8' function to be evaluated, we alter
Eq. (2) by setting some of the I"s equal to zero. It is a
generalization of a method developed by others. " ' As
is shown in Sec. III, this approach is useful for calculat-
ing the frequency-resolved photon statistics.

In this problem and related problems, the quasi-
steady-state populations in each period determine the
probability distributions for the durations of a single BP
and DP. Specifically, it has the form P;(r) =exp( r/r;), —
where r; is the average duration of the period i (i =8 or
D). As a simple application of this, we consider the
three-level system depicted in Fig. 2 which has been stud-
ied extensively. ' In Fig. 2, R& and R2 represent in-
coherent pumps and I

&
and I 2 represent spontaneous de-

cay rates. When R „I,»R2, I 2, this three-level system,

III. PHOTON STATISTICS IN A BRIGHT PERIOD

I
Ii

R, ~2

Ii

12&

l3&

FIG. 2. Energy-level scheme for a single three-level atom
producing macroscopic quantum jumps. The transition be-
tween states

~
1 ) and ~3) is strongly driven at rate R, , while that

between states ~2) and
~
3) is weakly driven at rate Rz. The de-

cay rate from state
~
1) to state

~
3 ) is I, and the decay rate from

state ~2) to state ~3) is I 2. These rates satisfy the condition
R, , I, )&R2, I 2. State ~2) is the shelving state.

In this section, we study the FRPS in a BP by using the
method developed in the previous section. We calculate
the delay function D(coFs, r), the probability distribution
describing the delay time ~ between successive emissions
of coEs photons (produced by the ~E)~ S) decays) in a
BP. As is seen in Fig. 1, these photons contribute to the
peak in the spectrum centered at co0—V and can be dis-
tinguished from cosG photons (produced by the
~S ) —+

~
G ) transitions). In this section, we ignore the ex-

istence of state
~
A ) [all I „'s in Eq. (2) are set equal

to zero] because of the time scale involved(r,R -' «r „-').
We assume that an emission of a coEz photon takes

place at time t =0 leaving the system in state ~S ). In or-
der to emit the next photon at time ~, the system decays
from state ~S ) to state 6 ) at any instant t, is excited to
state ~E ) at any instant after t, t', and then undergoes an
~E)~~S) decay at time r (O~t ~t'~r) Therefore . the
delay function for the coE~ photon should be written in
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terms of two types of W functions [W(S~G/S;r) and
W(E~S/G;t}] as

D(coEs, r)= J W(S~G/S;t)W(E S/G;r t—)dt,
0

where the function W(S~G/S;r) is the probability per
unit time that, starting from state ~S ), the system under-
goes the erst ~S )~

~
G ) transition at time t and the func-

tion W(E~S/G;t) is the probability per unit time that,
starting from state

~
G ), the system is pumped up to state

~E) at any time r'(O~t'~t) and makes the erst
~E) ~~S) transition at time t The. way of finding these
W functions from Eq. (1) and a modified form of Eq. (2) is
the same as in Sec. I, and is not repeated here. A

straightforward calculation yields

W(S~G/S; t) = I @exp(
—I &t),

r

RIs
W(E ~S/G; t) = exp

C
rs C—R — +—t
2 2

RIs
C

exp —R—

where

C =(4R 2+ I 2
)

~ ~&

Substitution of Eq. (10) into Eq. (9) yields

(10)

I &R exp( —I &r) —exp[( —R —I &/2 —C/2)r]
D (coEs, r ) = +(C~ —C),—R +I s/2 —C/2

D (cozs, r) = I +[exp( —I sr/2) —exp( —I sr)], (12)

which still exhibits antibunching. This can be expected
from the cascade structure of the system. ' In other
words, the system still takes a time I s

' to decay out of
state ~S ) even though the pumping R is so strong that
the system can be rapidly pumped to state ~E ) from state

A knowledge of the delay function D (cozs, r) is enough
to determine the complete photon statistics. The quanti-
ties mz and hmz, defined as the average number and the
dispersion of coEs photons emitted during a time period
T, can be determined from'

mr = T/F, bmr =mrhd/r (13)

where r and b,r (the average and the dispersion of the
delay time r between successive photon emissions) can be
calculated from Eq. (11}to be

3R+I 5R +2RI +I
R'I',

It follows from Eqs. (13) and (14) that

R r, , 5R'+2R r, +r,'
m&=T, hm&=m&

I s+3R (I's+3R}

(14)

(15)

where the factor R /( I s+ 3R ) can again be interpreted as
the quasi-steady-state population of state ~E). Here, we
find that Am & (m z- and the photon statistics are sub-
Poissonian. This reduced fiuctuation (as compared to a

where (C~ —C} represents a term substituting —C for
C. This function clearly manifests an antibunching
effect' [D(co@ s0)=0]. (It is impossible to emit the
second cozs photon right after the first emission of a coEs
photon. ) In the limit of strong pumping R ))I s Eq. (11}
reduces to a form

coherent state where b,mr=mr) can be explained by
noting that D(co@ s, r) is a more sharply peaked function
of ~ than the corresponding D function for a coherent
state [D(r)=1 exp( —I r)] so that the time delay be-
tween successive photon emissions is approximately con-
stant. Thus we should detect roughly the same number
of photons in each time interval T. -Sub-Poissonian, Pois-
sonian, or super-Poissonian statistics are usually charac-
terized by Mandel's Q factor, ' which is defined in terms
of m& and

Amer

as

Q =hmr/mr 1

where

(16)

(0, sub-Poissonian

Q =0, Poissonian

& 0, super-Poissonian .
(17}

IV. COHERENT PUMP

The incoherent pump field is now replaced by a strong
coherent pump (laser) field. The laser field is assumed to
be resonant with the transition frequency of each atom
and is strong enough to saturate the two-photon

~
G )~ ~

E ) transition. We use a dressed-atom ap-
proach, ' not only because it can account for quantum-
mechanical coherence effects such as the ac Stark split-
ting, but also because it can permit us to interpret the re-
sults in a relatively simple manner. In this picture, we
first neglect the coupling of the two-atom system to the
vacuum which is responsible for spontaneous emission.
After the laser field is quantized, the dynamics of the to-

In our problem, we find, by using Eqs. (15) and (16), that

4R (1 s+R) 4
(when R ))I &) . (18)(r, +3R)'
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i'(e i—k d/. 2a++ eik d/2a+)a+H (19)

tal system (two-atom plus the laser field) is governed by
the time-independent Hamiltonian

H=ficoo(o,+o, +'rr2+o2 +a a)+fiV(rr ~+a i +cr2+a i )

11,n&

12, n &

l3 n& 14,n &

where o;+ (o, ) is the atomic raising (lowering) operator
of the ith atom (i =1,2) and a (a) is the creation (annihi-
lation) operator of the laser photons. The first line in Eq.
(19) represents the free energy of the atoms and the laser
field. The second line represents the atom-atom interac-
tion which is responsible for the energy shifts V shown in
Fig. 1. The third line represents the atom-field dipole in-
teraction, with coupling constant g exp( Ti k d/2. ), where
kd/2 are the positions of the atoms and k is the wave
vector of the laser field. The eigenstates for the Hamil-
tonian (19), called dressed states, are superpositions of
products of atomic states and field states. In this section,
we assume that k d=O, so that the atom-field coupling is
identical for both atoms. %hen k.d=O, the coupling in

Eq. (19) involves only the symmetrical atomic states [i.e.,
only iirtg(o &++a 2+)a +H. c. appears]. In this case, the
dressed states are found to be

~
1,n ) = — ( ~ E,n —2 ) —

~
G, n ) ) i si nO

~

—
S, n—I ),

r,4

\

n-1 &

12,n-1&
I 3,n-1&

1 4, n-1&

FIG. 3. Energy levels of the dressed states ~a, n) for the
two-atom plus laser field system. Adjacent multiplets are
separated by the laser frequency coo. Decay rates I

&
from state

~
l, n ) to the lower lying states ~a, n —1) (a=1,2, 3,4) are indi-

cated in the figure. When d &&A,o, the decay rate I 14 to state
~4, n —1 ) (represented by a dashed arrow) is much smaller than
the decay rates to the other states (represented by solid arrows).

(2, n ) = —((E,n —2)+~G, n )),
2

~3, n ) = — (~E, n —2) —~G, n ) }+icosO~S, n —I ),
4, n )=~A, n —I),

with the corresponding eigenenergies

=g[ n ado+ ' [( V +fli ) + V]),
Ei „=Pi(neon),

Es „=A[nroo —
—,'[( V +Qz )'/ —V]j,

E4 „=Pi(neon —V),

(20)

(21)

(E, „Eti„)/A' ))2I—( —= I z» 1 „) for all a,P . (24)

Coupling the states to the vacuum produces states hav-
ing bandwidths on the order of I & or I „,and results in
the system's cascade down the quantum ladder in which
the decays between adjacent multiplets occur with rates
I z or I „. Each of these decays corresponds to the
creation of a fluorescence photon whose frequency is
determined by the energy separation between the dressed
states, within the uncertainty given by the bandwidths. It
is assumed that the states in a given multiplet do not
overlap (secular approximation), ' i.e.,

0 =4gn ' (22)

Note that we exploited the quasiclassical character of the
laser field by evaluating Qz at n. ' The factors cosO and
sinO are functions of Q~ and V

(V'+n', )'"—V
""

cosO=
2( V2+ II2 )1/2

L

(V'+n'„}'"+V '"
sinO=

2( V2+II2 )1/2

(23)

Energy levels of these states are shown in Fig. 3 and form
an infinite ladder of nearly degenerate four-state multi-
plets. Adjacent rnultiplets are separated by the laser fre-
quency ~o.

where n (n =1,2, . . . } is the occupation number for the
laser field state and 0„ is the usual Rabi frequency which
can be written in terms of g and n (the average number of
laser photons) as

4

+ y 11,„„(t)r,'".+",
P=1

(25)

where II „(t) is the time-dependent population of the
state

~ a, n ) and I'
tI is the decay rate for the

na) ~ ~P, n —I ) (a,@=1,2, 3,4) transition calculated
from

rsI'"tI= )( na~(o,++o.,+)~P, n —1) ('

+ 1&a, nl(o'~+ o'2+}IP,n —1))„„. (26)

Using Eqs. (20) and (26), we find I'"tI in matrix form as

Under this condition, general relaxation theory dictates
that the cascade of the system can be described as a rate
process among the dressed states

d 4—„11.„(t)=—11.„(t) y r'.",'
P=1
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I (n)
aP

where

1 —D
2

rs

1 —D
4

rs

D
S

1+D
4 A

1 —D
4

rs

1+D
4 S

D2

2
Is

1+D
S

1 —D
2

rs

1 —D
4

1+D
A

—,'r A

1 —D
4

r,

(27)

Suppose that at time t =0 the system decays from state
~4, n +1) to state ~a, n ) and the state ~a, n ) is populated
with a probability p (a=1,2, 3) (the beginning of a BP).
The probability p is the branching ratio

I4
3 7

g 14
a'=1

(29)

where the I"s are given in Eq. (27). In order to obtain the
probability describing the duration ~ of a single BP,
Ptt ( r), we need to know when the next
~P, n')~~4, n' —1) (P=1, 2, or 3; n' n) transition
occurs. Analogous to Eq. (5), we can write Ptt(r) as

D =cos 8—sin 8= —V/( V —Qti )'

and cos8 and sin8 are given in Eq. (23). The rows and
columns in matrix (27) are labeled according to Eq. (26).
Again, we evaluated I '

& at n =n, so that I'& is the same
for any pair of adjacent multiplets. The first term in Eq.
(26) represents decays among the atomic symmetrical
states and constitutes the 3 X 3 subblock in matrix (27),
while the second term represents decays between the
atomic symmetrical and antisymmetrical states and con-
stitutes the 1 X 3 and 3 X 1 subblocks in matrix (27).

As is seen from Eq. (27), there are 14 possible transi-
tions corresponding to the creation of photons with at
most 13 different frequencies (the

~ l, n ) ~ ~1, n —1) and

~
3, n )~ ~3, n —1) transitions create photons which have

the same frequency too). However, when the two atoms
are very close (d « A,o), six of the decays (those involving
decays to or from states ~4, n )) are relatively improbable.
Consequently, one expects bright and dark periods in the
fiuorescence owing to the metastable states ~4, n ). A BP
corresponds to a fast cascade of the system among the
short-lived states ~a, n ) (a=1,2, 3). When a transition
~a, n)~~4, n —1) (a=1, 2, or 3) occurs, this fast cas-
cade is interrupted and the BP ends; once a
~4, n ) ~~a, n —1)(a= 1, 2, or 3) decay occurs, the next
BP starts.

The steady-state and quasi-steady-state populations
[obtained by setting I „=0 in Eq. (27)] of the dressed
states are found from Eq. (25) to be

P~(r)=1 —f dt

=1 f—'dt
0

3

p 8'(p~4/a;t)
a, /=1

3 00

y p. y. W'f'(p 4/a;t)
aP=1 f=0

(30)

l 4, n+1&

)a n)

where the function W'f'(p~4/a;t) is the probability per
unit time that, starting from state

~ a, n ), the system
makes f successive decays excluding those of type
~p, n')~~4, n' —1) (@=1,2, 3; n &n'&n f +1) be-—
tween times 0 and t, and then decays from state

~ p, n f ) to st—ate
~ 4, n f —1 ) (p—= 1, 2, or 3) for the

first time at t (see Fig. 4). It is tempting to try to calcu-
late the function W'/'(p~4/ct; t) by setting I „'4

'

II".= y 11.„
n=0

qs

IIq'= y 11
n=0

(a=1,2, 3,4),

(a=1,2, 3) in a BP . (28)

lpnf&

In this limit, we also see from Eq. (20) that in a BP the
quasi-steady-state populations of the bare atom states are
equal [II, '=(g„" oII, „)q'= —,

' (i =E,S, G, )]. The only ap-
proximation made leading to Eq. (28) is the secular ap-
proximation (24), which can be written in terms of Qz
and V using Eq. (21) as v'Vl «Qti when V»Qti.
Therefore &VI «Qz « V is the condition under which
the pumping scheme considered in Sec. II is valid. Note
that when Qt, « V, the ~S)~~G) transition is not ap-
preciably driven by the laser field.

We now study the duration of a single BP and DP.

14,n-f-l &

FIG. 4. The diagram shows a particular cascade which is
characterized by the function W' '(P~4/a;t), defined as a
probability per unit time that, starting from state

~
a, n ), the sys-

tem makes f successive decays excluding those of type
~p, n') ~~4, n' —1) (p=1,2, 3; n &n'&n f +1)between times—
0 and t, then decays from state ~P, n f ) to state ~4, n f —1)— —
(p=1, 2, or 3). The initial and final transitions in the cascade
correspond to those out of and into metastable states.
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(Ju=1, 2, 3; n ~n'~ n f—+1) equal to zero in Eqs. (25)
and (27). Tempting as it may be, this procedure leads to
incorrect results since it modifies the dynamics of the sys-
tem at times before the transition to the shelving level of
interest. For this purpose, we introduce a more elemen-
tary branching function w„„(t), which is defined as the
probability per unit time that, starting from state ~p, n'),
the system decays to state ~v, n' —I ) (p, v=1,2, 3,4) at a
time t. Since the branching function above involves only
transitions between adjacent multiplets, it can be calcu-
lated by the same method used in Sec. II. Terms in Eqs.
(25) and (27) corresponding to decays to states in the
(n' —2) multiplet are set equal to zero. Note that we still

I

have a right to set these I"s equal to zero because this
does not alter the dynamics of the system until the system
decays to states ~v, n' —I). The branching function is
found to be

4

w„„(t) =—II„'„, , (t) =r„„exp —Q I„ t . (31)

In Eq. (31), the prime of the population denotes the
modified population of state

~ v, n —1 ) as before. We now
write W' '(P~4/a;t) using Eq. (31) by considering all
possible paths during f successive decays as

4 t2
W' '(p~4/a;t)= g f dtI f dtI ~ dt~[w, (t& )w,&(t2 t~ ) w—&p(tf tf f)wp4(t tf )]

0 0 0
(32)

where the summation g excludes paths involving transi-
tions ~p, n')~~4, n' —I) (p=1,2, 3; n ~n'~n f +1).—
In order to proceed further, we first take the Laplace
transform of Eq. (32). This yields a simple product of f
functions of the form w„„(s)=I„„/(s++4,1„„);each
being the Laplace transform of Eq. (31). Now, the sum-
mation over all possible intermediate states can be done
easily by treating the w„„(s)function as the component of
a matrix W(s). We see from Eqs. (27) and (31) that these
matrices are identical so that the final result is the matrix
W(s) raised to the fth power. However, the matrix must
be modified to account for the fact that some of the paths
are excluded from the summation. Thus we introduce a
modified matrix, WB(s) as

w„„(s), when (p, v)A(p', 4), (p'=1, 2, 3)

0, when (p, v)=(p', 4), (p'=1, 2, 3) .

Note that we did not set I „~ (p'=1, 2, 3) equal to zero,
which would alter matrix elements of W(s) correspond-
ing to allowed transitions. Thus we write Eq. (32) as

W'/'(P~4/a;t)=X, 't([WB(s)]/) pwp4(s)], (34)

where the symbol X ' represents the inverse Laplace
transform. Then, substitution of Eqs. (29) and (34) into
Eq. (30) yields

I 4
PB(r)=l-

a, p= 1

r

f

dt's,

' g ([WB(s)]I) pw&(s)
0 I o

(35)

This formula is exact. However, in the limit I ~ &&I z,
this reduces to

3 T
QO

PD(r)=1 —g f dt's, ' g ([WD(s)]I)«w4p(s)
P=1 f =0

3

PB(r) exp $ —I p r =exp( r/r )—
P=1

=exp( —rlrD) .

g 14p =I ' . (37)

This time, matrix WD(s) is defined as

(36)

The factor of —,
' in the exponential can be interpreted as

the quasi-steady-state populations (28). The reason for
the appearance of this factor is the same as before [see
the argument below Eq. (4) in Sec. II].

A similar calculation yields

w„„(s),
when (p, v)W(4, v') (v'= 1,2, 3)

[ WD(s)]„= '0

when (p, v)=(4, v') (v'=1, 2, 3) .

(38)

We find that PB(r) and PD(r) are completely indepen-
dent of the Rabi frequency Q„and the energy shift V.
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This results in part from the secular approximation (24},
and, in part, owing to the fact that state ~4, n ) is com-
pletely decoupled from the laser due to our choice of
geometry (k d=0). Coupling of state

~
A ) to the symme-

trical states occurs via spontaneous decay only and does
not involve the Rabi frequency Oz.

time that from this initial state ~p, n ), the system makes
any number (f) of successive decays while creating many
types of photons exclusive of m & photons, and eventually
reaches a state ~a, n f )—, from which the system makes
the final decay ~a, n f )—~~P, n f ——1) at time
Analogous to Eq. (34), we thus write D (~ &, r) as

V. PHOTON STATISTICS
IN A DRESSED-ATOM PICTURE D(co &,r)=X, ' g ([W1 &1(s)]I)& u1 &(s)

1=0
(39)

We have formulated the probability distributions of
durations of a single BP and DP based on an elementary
branching function w„,(t). However, the real power of
this method will become apparent when frequency-
resolved photon statistics are considered in a dressed-
atom picture.

In this section, we consider a delay function D (m &, r)
defined as the probability distribution for the time delay r
between successive emissions of co & photons. For simpli-

city, let us suppose that the transition ~a, n +1)~ ~P, n )
for fixed pairs of (u, P) and any n creates a photon with a
definite frequency co &. This assumption corresponds to
the secular approximation, such as Eq. (24), and the
quasiclassical character of the laser field. The first emis-
sion of a co

& photon leaves the system in state ~P, n ) (n

can be any integer} at time t =0. Therefore the function
D(co &, r) can be interpreted as a probability per unit

where matrix W1 &1(s) is defined as

u1„„(s), when (1u, v)%(a,P)

0, when (p, v)=(a, P) .

As a first example of an application of Eqs. (39) and
(40), we consider the FRPS of the fluorescence photons
produced by a single two-level atom irradiated by a
strong coherent laser with Rabi frequency Qz and detun-
ing 5. ' The frequency spectrum of the fluorescence
photons is the well-known Mollow triplet. These pho-
tons are produced when the system cascades down the
ladder consisting of states ~a, n ), executing the four types
of transitions ~a, n )~ ~P, n —1) (a,P=1,2; n =1,2, . . . ).
The decay rates I & between the adjacent multiplets were
calculated to be

2Q~

4(n2, +5') [(&~+5')'"+5]'
[(0 +5 )' —5]

n'„ (41)

Let us calculate the delay function of the co2, photons.
The W1 &1(s) matrix in Eq. (40) takes the form

&1211($)=
s+r„+r„

r&2

s+I, i+I,2

rz2

s +F2]+F22

(42)

Substitution of Eqs. (42) and w21(s) = I 2, /(s + I 21+ I 22)
into Eq. (39) with the use of the formula

same type of transition ~2, n )~ I l, n —1) without any
time delay. From Eq. (43), we find the average and the
dispersion of the delay time w to be

r„+r„r'„+r'„
(44)r,',r'„

Substitution of Eq. (44) into Eq. (13) yields

r„r„
Ply =Tr„+r„

'f
a b

0 c

aI—cIa~ b
a —c

0 cI
rr n4~

g (n'+5')(n'+25') ' (4&)

yields

ri2r2i
D (co21 &)= [exp( r21&) xp( I 12&)]

12 21

(43)

Am~=
1/2+r

Ply 2(I, +I, )

2(021+25 ) —0
2(Q +25 )

(46)

This function clearly manifests the antibunching e6'ect
D (co2, ,0)=0, simply explained by the fact that the emis-
sion of a m2& photon at time t =0 projects the wave func-
tion of the system to one of the dressed states

~ 1,n ) so
that the system is unable to emit a photon created by the

where we used Eq. (41) to write I"s in terms of Qz and 5.
As can be seen from Eq. (46), the photon statistics are
sub-Poissonian. Mandel's Q factor can be calculated
from Eqs. (16), (45) and (46) to be
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Ag

2(Q +25 )
(47)

where

A=( V'+Q'„)'" .

D (co,z, ~)=X, '[wz)(—s)w, z($)]

(3—D)rs
4

1 exp
(3—D)I s

(48)

where D(co, ,z)ris renormalized as fo D(co,z, r)dr=i.
Using Eqs. (13) and (48), we find that mz = Tl s(3 —D)/8
and hm =(mr/2)' (sub-Poissonian).

VI. COHERENT PUMPING WITH ARBITRARY
GEOMETRY (k.d%0)

In Sec. IV, we considered the special case when
k d=O. We found that only the transitions 1E)~1S)
and 1S)~16) involving the symmetrical atomic states
were excited by the laser field. This result is also implied
by Eq. (20) where the state 14, n ) is the direct product
1A )ln —1). However, when k.dAO, the situation is
modified because the interatomic separation d now re-
sults in an atom-laser-field interaction Hamilton-
ian that varies as i fig [cos(k d/2)](cr &++0 z+ )a
+kg[sin(k d/2)](cr,+ —oz+)a+H. c. It is seen that the
coupling now contains antisymmetric as well as sym-
metric components. When k d &&1, we find the approxi-
mate dressed states to be

0 Ak. d

12, n )'=12, n ),
Aq Ak. d

13,n )'=13,n )+ 14, n ),
2(A —3 V)

Qq Ak. d

(49)

Q„Ak.d
3, n

2(A —3V)

which is in complete agreement with previously obtained
result.

As a second example, we consider the FRPS in a BP of
the fluorescence of two-atom system considered in Sec.
IV, but now in a dressed-atom picture. This is more com-
plicated owing to the level structure of the dressed states.
For simplicity, we completely ignore the existence of
state 14, n ). In order to study the FRPS, we again need
to know the delay function D(co &,r) for a fixed pair of
(a,P) (a,P= 1,2, 3). We must evaluate the fth power of a
3X3 8'[ &] matrix, whose analytical expression is some-
times impossible to find. However, we can still find an
approximate expression for D(co &,~) by truncating the
sum in Eq. (39), corresponding to the minimum delay
time or minimum number of successive decays between
the dressed states required for the emission of the next
co & photon. As an example, let us consider co,2 photons.
Since the first nonvanishing ([LV~,z~(s)] )z, occurs when

f= 1 in Eq. (39), we predict that (k.d)z Qz(Q++8V )=I ~+ r,4 (Qz 8 Vz)z

5(k.d)z Q„(Qzt+8V )=—r, 1+
(Qz —8Vz)z

(50)

where approximate values for I „and I & appropriate to
the limit d &&A,c were used (see Sec. I). Analogous to
Eqs. (36) and (37), we find

p4

p ] 3
=3(I"„)

(51)

The reason for these shortened periods (rD, rz ) is under-
stood as follows: the laser excites not only the transitions
1E )~ 1

S ) and 1S )~1G ) but also the transitions
1E)~12 ) and 1A )~1G). Consequently, transitions to
or from the shelving state 1A ) can be caused by stimulat-
ed emission and absorption (of the laser photons) to the
short-lived states 1E), 1S), or 1G) as well as by spon-
taneous emission.

VII. CONCLUSION

We have shown that it is possible to observe MQJ in
the fluorescence through a cooperative atomic interac-
tion. The jumps or discontinuous changes of the fluores-
cent intensity occurs on a time scale I „'-I '(Ao/d) .
A restriction is imposed on the interatomic separation
needed to observe MQJ by the finite response time of the
detector. In order to make I ~' larger than the response
time of the detector, d must be -A.o/100. Current tech-
nology has yet to surmount this difficulty. Ion traps can-
not be used because the Coulomb repulsion is too strong.
Using neutral atom traps or confining atoms in a solid
host may be the best hope of observing the two-atom
MQJ described in this paper.

The formalism developed in this paper can be applied

The shift of eigenenergies b,E „(a=1,2, 3,4) from the
energies given in Eq. (21) are expected to be small and on
the order of Q„(k d) .

Modified decay rates between adjacent multiplets can
be found from Eqs. (26) and (49). It is easy to see that the
decay rates r,'& (a,p=1,2, 3) involving the short-lived
states la, n )' (a=1,2, 3) are not changed significantly
from the values given in the 3 X 3 subblock in matrix (27),
leading to the same quasi-steady-state populations (28).
The rates I"

4 or I 4 involving decays to or from the
metastable states 14, n )', are different from the values
given in the 1X3 and 3X1 subblocks in matrix (27). In
particular, we find the modified total decay rate I 4 to or
from state 14, n ) to be

3 3

I 4
——g I 4p= g I ~

P=& P=&
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to any four-level or more complicated scheme in which
one or more states is metastable. Additionally, our for-
malism can be used to study the FRPS of any multilevel

atom in a simple way.
Note added in proof A.fter submitting this article, we

learned of a recent calculation of the dynamics of a two-
atom composite system interacting with a weak incident
field. In that work, the time evolution of the symmetric

states was studied, including the level shift of the inter-
mediate symmetric state, but neglecting the transitions
between symmetric and the antisymmetric states.
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