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A family of the exact and analytical solutions of the equilibrium shape equation of vesicle mem-
branes is found. They are anchor rings with generating circles of radii in the ratio 1/V2. It is
shown that these ring vesicles are stable for some negative values of their spontaneous curvatures,
such that experimental construction of such vesicles seems possible. A discussion shows that a posi-
tive Gauss-curvature elastic modulus favors the formation of these special vesicles.

Certain amphiphilic molecules, such as phospholipids,
assemble in water to build bilayers which, at low concen-
tration, close to form single shells called vesicles.! These
structures are simple models for biological membranes
and cells.”? Other amphiphiles form surfactant films
separating oil and water, thus giving rise to microemul-
sion.* The equilibrium shape of a vesicle is determined as
that shape which minimizes the Helfrich curvature free
energy,” % namely, shape energy

F=1k Plci+c;—co?dA +bop [dV+rbda . (1)

Here d A and dV are the surface area and the volume ele-
ments, respectively, k, is an elastic modulus, ¢, and c,
are the two principal curvatures, and ¢, the spontaneous
curvature, is a constant tending to bias the principal cur-
vatures and serves to describe the effect of an asymmetry
of the membrane or its environment.”® The Lagrange
multipliers Ap and A take account of the constraints of
constant volume and area, Ap =p,—p; is the osmotic
pressure difference between outer and inner media, and A
a tensile stress.

Applying standard techniques of the calculus of varia-
tions the author and Helfrich have derived from Eq. (1)
the general equation of mechanical equilibrium of vesicle
membranes® !°

Ap —2\H +4k (H +1coWH?—K — 1coH)
+2k,VZH=0, (2)

where V2, before H, denotes the Laplacian, H the mean
curvature, and K Gauss curvature. So far, various solu-
tions of Eq. (2) are calculated numerically by assuming
azimuthal symmetry and topological spheres.>®!1"1? In
these cases Eq. (2) reduces to an ordinary differential
equation of the second order for the principal curvatures
or fourth order for the contours. However, since the
equation is highly nonlinear, finding exact and analytic
solutions is quite a task. Up to now, besides the case of a
sphere, no analytical solutions are known yet. It is in-
teresting to ask the question: Do there exist closed sur-
faces of the vesicle which topologically are not spheres?
As a step towards solution of the problem, we report
here on a theoretical finding of the vesicle surfaces of one
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genus, which are the special standard tori called anchor
rings whose generating circles have radii in ratio 1/V/2.
To show that these ring vesicles correspond to the stable
infinitesimal extremum values of the shape energy shown
in Eq. (1) and may be found in future experiment an in-
vestigation of the second variation of the shape energy of
the shapes has been done. Applying the general formula-
tion'® we have shown that the ring vesicles are stable for
some negative values of the spontaneous curvature by

coro < —(mV2)VA3+V2/4)= —3.9 (3)

where 4 =4mr} is the area of the ring vesicles. The con-
ditions of (3) are not very far from what are believed to be
normal conditions for the red blood cells (cyry=~ —3)?% so
that the torus vesicles may be constructed by biological
membranes. In the following, we give an outline of our
calculation.

With ring functions or toroidal functions,'® the family
of tori generated by the revolution around the z axis of
the circles may be described in E* by

¢ sinhncos¢ ¢ sinhnsing ¢ sin@
coshn—cos6’ coshn—cos®’ coshn—cosf |’

4)

where ¢ varies from O to 27, 6 from — to 7, and ¢ and
m are parameters specifying the different rings. In detail,
as shown in Fig. 1, 4 and B are points on a straight line
through the origin O, AB =2c, perpendicular to the z
axis, and making an angle ¢ with the x axis, we take as
coordinates of a point P in the plane ¢=const,
n=In( AP /BP), and 0 is the angle APB. The surfaces
for 7=const will be the family of tori generated by the
revolution around the z axis of the circles of the family of
coaxial circles of which 4 and B are the limiting points.
Equation (2) is an invariant under similarity transforma-
tions of scale. It is only necessary to consider the case of
c=1. With the same notation used in Ref. 9, a straight-
forward calculation yields

1. coshncosf—1
H=— + R
2 sinhr sinhn

K =coshncosf—1 , (5)
V2H = — lcos6(coshn —cosf)’cothy .
Substitution of Eq. (5) into Eq. (2) gives
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Ap —2k,cq(coshn cosf—1)—(k.c3+2A)

1
2

sinm + cosh7 cosf—1
n sinh7

T R—— :isg:n— D, Zf::jg 288 leosg | =0 (6
Observing the coefficients of cos™0 for different m (m=0,1,2,3), one finds that Eq. (6) is satisfied only when

sinhp=1, i.e., coshp=v2, M
and

Ap =—2k.co, A=—2k (co+1icd). (8)

Equations (4) and (7) imply that Eq. (2) is satisfied by the standard torus if and only if its generating circles have radii in
the ratio of 1/V'2. For example, with ¢=17/2, one has (y —V'2)2+z2=1, i.e., generating circle on the yz plane.

The shape equation, Eq. (2), comes from the first variation'? of the shape energy and Egs. (7) and (8) are the necessary
conditions for the shape energy to attain a stationary value. To show that they correspond to the infimum value of the
energy it is necessary to consider the second variation of shape energy. The second variation of the shape energy for
such an arbitrary shape is given in Ref. 10. Now, let us consider the distorted rings

Y=Y+ny, 9)
where n is the normal of the ring surface described by Egs. (4) and (7), and

Y= [a,,(0)sinm¢+b, (0)cosme] . (10)

From Egs. (4), (5), (7), (8), (10), and Eq. (39) of Ref. 10, after a lengthy calculation,'* we have the second variations of
the shape energy as follows:

8F=7rfj”d02 l(a,f,,ee +b2 9o)(V2—cos8)’+ (a2 g +b2 o) [mAV2—cos8)*+V2(1+cy)cosd—Lcos?—2—2¢, ]

+(al+b2)|m?

2 j— —
%—-( V'2—c0s0)*+3V2 cosf— Lcos’0

+(V2—co0s8) 4 cos*0+1V2(cy —9)cos0+ (12 —4dcy )cos0

—V2(2+4¢q)cosf+2¢y1 | |, (11)

where the subscript 6 of a,,, g, b,, ¢, @y, g9 and b,, oo means
derivatives with respect to 0, e.g., a, o=(d/d6)a,(0),
a,, go=(d*/d6%a,, (). The stability analysis requires 8F
to be positive definite for any 0. From Eq. (11) we see
that the necessary condition for the coefficients of a,f,,(,
and b2 4in Eq. (11) to be positive is

co<—(3+V2/4), (12)

which also ensures the positivity for the coefficients of
a’ +b2 in Eq. (11). Moreover, considering that the spe-
cial torus has the area

A=4nri=4rV2 (13)

y4 the result of (3) follows immediately.
Similarly, with Eq. (13) the conditions of Eq. (8) may
change into the following general forms:

kC
3

Ap=—27V2 Co’o »

(14)

c

A=-=2

Y (VT 2eorg+icdrd] .
0

These last two conditions indicate that both the pressure

FIG. 1. The family of tori generated by the revolution
around the z axis of coaxial circles of which 4 and B are the
limited points.

difference Ap and tensile stress A are fixed by the cy7¢ and
the sizes of the ring vesicles, while one of them can be
freely chosen in the case of spheres.’ Obviously, the situa-
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tions which satisfy simultaneously conditions (3) and (14)
are quite rare. In a sense, that is why so far ring vesicles
have not been observed. For this fact an additional
reason may relate to the sign of Gauss-curvature elastic
modulus k. In its complete form the shape energy of Eq.
(1)5s6ti11 needs to be supplemented by another elastic ener-
gy”

Fo=1k$c,c,d4a . (15)

According to the Gauss-Bonnet theorem in differential
geometry, this term gives a contribution to the total ener-
gy only by a constant 27k (1—g), where g is the genus of
the vesicle and is, obviously, independent of the shape
equation of (2). For a vesicle of topological spheres,
Fg; =27k, but in the case of the ring vesicles it is zero.
Hence if k <0 the construction of the latter needs an ex-
tra curvature energy. For example, let us consider a spe-
cial case in which the sphere and the anchor ring can
coexist. From the conditions of Eq. (14) and the sphere
equation [which comes from Eq. (2)]

Apri+2Ard —k coro(2—cqry)=0, (16)
one can show that two types of vesicles may coexist only
when ¢, =0. With this and Egs. (1), (5), (14), and (15) one
finds the total shape energies of the sphere and the ring
vesicle are, respectively,

Fg=8wk +2mk , a7
and

Fr=4mk, . (18)
If one assumes the membranes of both vesicles are the

same, the case is advantageous to the ring vesicle only
when Fy <Fg, that is,

k>2m—2)k, . (19)

In other words, a positive k favors the formation of a ring
vesicle. This is an intrinsic limit for building these spe-
cial vesicle membranes. However, as we mentioned at

the beginning, the construction of them with biological
J

Ap —2k,c ~2cy(coshncosf—1)—(k.c} +2M51; siny
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membranes under the normal physiological conditions
remains possible and will be an interesting subject for the
experiments.

On the theoretical side, the existence of the ring vesi-
cles and spherical ones, whose genus is equal to one and
zero, respectively, raises a mathematical question wheth-
er there exist vesicle solutions of other genus. The gen-
eral equation (2) can be extended to give a positive
answer to this question. It is not difficult to see that if
co=Ap=0 there exist the vesicle surfaces whose mean
curvature at every point on the surfaces is equal to zero,
namely, the minimal surfaces. Following Lawson’s'
theorem: there exist closed minimal surfaces of arbitrary
genus, we then have immediately the above answer.
However, for H#0 the question remains open. The
shape equation of (2) is new. A special case of Eq. (2) is
the Plateau problem of soap films (H=0 and
H = —cy/2=const), which is known for its richness,
complexity, and beauty. The investigation of this equa-
tion in connection with biological cells, artificial vesicle
membranes, and microemulsions will probably develop
into a new broad field in mathematical physics.

Finally we would like to clarify an important case: In
Ref. 10 it was shown that straight cylinders are in a large
parameter range stable solutions. One then thinks that
closing such a cylinder to a large torus with small radius
ratio should lead to stable solutions. Does this cast doubt
on the claim that the radius ratio 1/V2 is singled out? In
fact, such a limiting torus is included in our above calcu-
lations. If we return to normal unit of scale, then Egs. (5)
and (6) change into the following:

1 . coshn cosf—1
_ + ,
H 2c sinhy sinhy
K =c *(coshncosf—1) , (20)
V2H = — 1c ~2cosf(coshn —cosf)’cothyy

and

+ cosh:q. cosf—1 ]
sinhn

- 2
+1k.c ~3(coshn—cosf)

From the last equation, especially from the coefficient of
cos’0, one again finds that under limited scale, i.e., ¢ is
definite, the radius ratio 1/V'2 is singled out. However, if
we let 7— o, ¢ — — o (the negative sign is to adjust the
unit normal vector of the torus surface in agreement with
that in Ref. 10), and ¢ /sinh7, ¢ /coshny— —p,. We then
have, from the mentioned equations,

H= _L, K =0, VZH =0, (22)

2po

cosh?y(sinh?>p—1) 4 cosh®y - C?Sh?l cosf | =0 . (1)
sinh®y sinh’y sinhy
-
and
Appd+rpd+ Lk (cfpd—1)=0. (23)

Obviously, Egs. (22) and (23) are the same as Eqgs. (64)
and (58) of Ref. 10, respectively. These just serve to de-
scribe an equilibrium cylinder with radius p, as shown in
Ref. 10. In other words, the limiting torus is nothing but
a true straight cylinder.
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