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Kinetic equation of a plasma and the kinetic shielding potential
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The kinetic equation of a quantum plasma is given in the spatially quasihomogeneous case. The
equation includes the quantum effect and the many-body effect. The kinetic shielding potential pro-
duced by the many-body effect is discussed.

I. INTRODUCTION

The Boltzmann integro-differential equation and the
Landau equation each have been applied in general to
study the nonequilibrium properties for a plasma. ' Al-
though the form of the collision terms of these two equa-
tions are different, both use three fundamental hy-
potheses: two-body collision, elastic scattering, and the
molecular chaos hypothesis. These equations can be used
only in a diluted gas. Since there is a long-range
Coulomb interaction in plasmas, the collision integral is
divergent. In order to overcome this difficulty the Debye
truncation or the Debye shielding potential is applied.

In order to consider the many-body effect the Liouville
equation is used as a starting point. The correctional
binary collision with many-body effects is considered.
The Lenard-Balescu equation is obtained from the Liou-
ville equation, which uses several assumptions. Since one
assumption is that the plasma is spatially homogeneous,
the Lenard-Balescu equation can only be applied to the
test-particle problem. On the other hand, the Lenard-
Balescu equation is a classical equation that does not con-
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sider the quantum effect. In some cases the quantum
effect is important. For example, a plasma may be com-
posed by the electron and the hole in a semiconductor.

In this paper the kinetic equation of a quantum plasma
is obtained in a spatially quasihomogeneous case. The
equation includes the quantum effect and the many-body
effect. In Sec. II the kinetic equation is given. The kinet-
ic shielding potential will be discussed in Sec. III.

II. KINETIC EQUATION

Recently a kinetic equation for nuclear gas was derived

by means of the %'igner distribution function and a Bogo-
liubov approach from the Liouville-Von Neumann equa-
tion of quantum statistics. Actually, this equation can
be applied to all fermion gases. Of course, the equation
can also be applied to a plasma composed of electrons
and ions. Only the Coulomb interaction is employed.

Let us suppose there are M components in the plasma.
The number of particles is N. The number of the parti-
cles is N, for a component a. In this case the kinetic
equation is
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Here f, =f, (qpt) is the Wigner distribution function of
component a, and m, is the mass. F,„, is an external ac-
tion which is the electromagnetic interaction. F;„ is an
internal self-consistent field action in the plasma. Its
form is
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Equations (1) and (2) are the new kinetic equation
which is an improved Boltzmann-Uehling-Uhlenbeck
equation. The three improvements in comparison to the
general Boltzmann integro-differential equation are as
follows.

(i) The effect of Pauli blocking is included in collision
terms. The function f~f (1 f )—is taken. This is im-
portant for collision processes of low-temperature plasma
and solid plasma.

(ii) The modified mean-field interaction is introduced
into interaction terms. That has a great inhuence on far
nonequilibrium states.

(iii) The equation considers a correctional binary col-
lision with a many-body effect wherein the many-body
shielding effect can be obtained spontaneously. In the
next section we shall discuss the third improvement fur-
ther.

III. KINETIC SHIELDING POTENTIAL

Define the function

1V,=1+—g '
Vb(k) J dp,

1V
"' '

p

mb

PC
k —ie

m,

X [f+(x, ) —f (x, )] . (5)

p2/ 2

f(x, )=
3/2 3

e ' ', a, =2m, kpT

1 —[p, +(1))k/2)] /a2

3/2 3a,

(6)

When the system is nearly in the equilibrium state, the
distribution function can be taken to be the equilibrium
one in Eq. (5). The reason is that this term is a modified
one. For convenience, the distribution function is taken
from the Maxwell distribution
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(4) where ki) is the Boltzmann constant.
In Eq. (5), when we orient the k axis in the z direction,

the integration about x and y has been evaluated as
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where P denotes the principal value of the integral. We calculate two integral in Eq. (7) as follows.
For the imaginary term, we define p„=m, u„and p, =a, /m, . The integral is coinpleted by means of a fi function to
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Assuming haik/2m « ub, we expand the exponents in Eq. (8), using a first-order approximation, to obtain
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For the real term, because the integral is not divergent, the principal value operator P may be ignored. We find
—[u +(ek/2m )]Z/pZ 2[v»+(Rk/2m )]/p (pZu&)/4 —[u (Sk/2m )]2/p& 2[u» —(Rk/2m )]/p (p&v&)/4Ref'= —e '* ' ' e ' du —e " ' ' e ' duk 0 0

(8)

(10)

TABLE I. Shielding effects for the incident electron.

v„/P,

0.1

1

u„/P,

4.291
42.91

&e-e

0.9939
0.5389

b, ,
8.829X10 '
0.6053

&e-i

2.229 X 10
6.287 x 10-"'

b, ,

1.649 x 10-'
1.648 x 10-'
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TABLE II. Shielding effects for the incident ion.

a, , b, ,

0.1

1

10

2.33 X 10
2.33 X 10
0.233

1

0.9996
0.9676

2.065 x 10-'
2.065 x 10-'
2.065 X 10

0.9939
0.5387
4.624 X 10

8.839 x 10-'
0.6055
0.7071 x 10-'

Using irtk/2m, &(vb, we expand the exponent in Eq. (10)
to obtain
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Inserting Eqs. (9) and (11) into Eq. (7) we find
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Next we insert Eq. (12) into Eq. (4) and then take an in-
verse Fourier transformation for P(k). The kinetic
shielding potential is obtained as follows:

P(q)= f P(k)e'"qdk1

8m

It is shown from Eq. (13) that the kinetic shielding po-
tential is similar to the Debye potential. What is different
is that the kinetic shielding potential is relative to the ve-
locity of a test particle and the state of field particles.
For example, let us calculate for a hydrogen plasma.
Suppose the ion and the electron have the same density
and temperature, i.e., n, =n, and T; = T, . The test parti-
cle selects an ion or electron, respectively. We calculate
some a and b values in some special velocities. The re-
sults are given in Tables I and II.

In the tables, the following effects are shown: (1) the
many-body shielding effect of a binary interaction is rela-
tive to the velocity of a test particle. When the velocity is
increased the effect is reduced.

(ii) In the plasma, the shielding effects around a elec-
tron depend on electrons, and the inhuence of ions can be
neglected. The shielding effects around a ion depend on
electrons and ions. Though the shielding effects by ions
are incomplete, the total shielding effects are stronger
than the Debye shielding. Thus when the kinetic shield-
ing potential is applied to the electrical conductivity and
thermal conductivity, the modification may be very
small. However, in the diffused process, since ions take
part in this processes, the modification may be larger.
(iii) Since there is a complex number in the shielding ex-
ponent, the interaction potential can be negative some
distance between both particles of the same charge. The
attraction interaction of particles of the same charge ap-
pears in some regions.
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