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Ulam model for the sine-Gordon soliton system
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The Ulam model analog of the Fermi acceleration for the sine-Gordon solitons is investigated.
The motion of soliton between two potential walls, one of which is periodically oscillating, is stud-
ied. With the help of the Melnikov method the expression for the threshold of stochasticity in soli-
ton motion is found.

The investigation of stochastic dynamics of various au-
tostructures in nonlinear media (solitons, bions, au-
towaves, etc.) represents one of the most interesting prob-
lems in modern theory of nonlinear waves. A great num-
ber of papers deals with the numerical and analytical
studies of chaotic soliton behavior under the action of the
external periodic fields. ' In this case there is an analo-
gy between solitons and particles moving under the ac-
tion of forces.

Ulam's model describing the particle motion between
two walls, one of which is oscillating, represents one of
the main models for the investigation of particle chaotic
motion. It has been applied to the description of the Fer-
mi mechanism of stochastic acceleration of particles. In
Refs. 4 and 5 it was shown that at some conditions the
particle motion becomes stochastic, and stochastic ac-
celeration of the particle up to some boundary velocity vo
takes place. In Ref. 4 it was considered the particle
motion on the oscillating plate in gravitational field, i.e.,
the unmoving wall is changed by gravitational field. As
shown, the acceleration is boundless in this case.

In this paper we study the analog of the Ulam model
for solitons. We make use of the sine-Gordon (SG) mod-
el. This generalization of the solitonic case can be very

useful for the investigation of the stochastic behavior of
solitons in oscillating potential.

Let us consider the problem of the SG soliton motion
between two potential barriers, one of which is periodi-
cally oscillating. The wave equation takes the form

P«
—(b„„+sing

= —@[5(x L)+o(x—+L +a sin(cot))]sing, (1)

where e((1 and a ((1. This perturbed sine-Gordon
equation arises, for example, in the problem of the mag-
netic soliton motion between two impurities, one of
which is oscillating. Another example can be presented
by the problem of kink motion in the long Josephson
junction with the nonstationary micro-short-circuit.

Let us investigate the dynamics of a single soliton

t(1', t)=4tan ' exp o
x —g(t)

(1 u2)1/2

cr =+1 corresponds to kink(+) or antikink( —).
Using the perturbation theory for the SG solitons, one

obtains the equation system for the velocity v(t) and
coordinate g(t) of the soliton center
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Then we consider the case of small soliton velocities u « 1. Equations (3) and (4) take the form

dv E'0=—[sech (g L)t nha(g —L)+sec—h (f+L)ta h(gn+L)]+ [1—2sinh (g+L)]sech (g+L)sin(tot),

dt
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This system is analogous to the equations system
describing the motion of particles with the unit mass in
the anharmonic potential U(g),

U =—[sech (g+L)+sech (g —L)] .
4

Analyzing the behavior of the system (5) and (6) at a=0,
we obtain

find that at co, »1,

M(to)=arcs~ exp( —~a), /2)sin(coro+a), L} .

The chaotic motion arises if M(to) changes sign at arbi-
trary to. It is obvious that this condition is performed
and the width of chaotic layer is defined by the value b,

' 1/2
dg + H (ay+1)

(y +a)' (7) A=aero| exp( n.co—&/2) . (12)

E' Q
H, =—

4 (a —1}
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where H, is the value of total Hamiltonian on the separa-
trix. From (7) we obtain

(2H, )' (t to)—
a+yo yo

—1+(yo —1)'~ tanhg

2(y2o —1)'~~ yo
—1 —(yo —1)' tanhg

where H is unperturbed Hamiltonian (a=O), y =cosh2(,
and a =cosh2L.

Let us further investigate the behavior of the solutions
near the separatrix. The separatrix is defined by the con-
dition

In this part we consider the soliton motion between
two potential walls with regard to the damping. The ac-
count of the damping leads to the addition into Eq. (1) of
the perturbation of type I P„where I && I is the darnp-

ing constant. Performing the calculation analogous to
the one given above, we define for Mt (to) the following
expression:

M„(t )=M(t )
—I L&2e. (13)

Let us consider the case when the soliton moves between
two walls

It is shown from (13) the random motion may exist at the
conditions

r &a/Lv'2e.

yo=a —2/c . (9) p« —p» +sing

It is convenient to make use of the Melnikov method in
order to investigate the threshold of appearance chaosti-
city and characteristics of the SG soliton random dynam-
ics. For this purpose we calculate the Melnikov function
M(to) characterizing the width of stochastic layer being
formed near the separatrix

M(to) = f U (t)sin(cot) [1—2sinh [g(t)+L]I
00

= —@[5(x L —a sin(cot) )—

+5(x +L +a sin(cot +g)))sing, (14)

where P is the difference of the phases of the oscillating
walls. The calculation shows that the Melnikov function

Xsech [g(t)+L]dt . (10)

Introducing the new variable of integration g we obtain

ea
M(to) = f sin[rot (g))sech (g+L)

2 —
&o

X[1—2sinh (g+L)]dg,
t(g)=f (()+to, go= —,'arccoshyo .

Here f (g) is defined by the right-hand side of (9) multi-
plied by 1/(2H, )'~ . Considering L )) 1 and applying (8)
and (11), we obtain the following expression for the Mel-
nikov function:

Q ECO]
M(to) = —Im[exp(icy&L +into)4&~

X I (ice, /2)I ( ,' ice, /2)—]—,

where co, =co/(2H, )' =co&2/e and I (z) is the y func-
tion. Using the formula for the asymptotic I function we

oooo

FIG. 1. Dependence 1nD(t), where D(t) is the distance be-
tween two trajectories versus time: (a) cu =0.6, a =0.1,
uol =0.2115193,vo2=0. 211 5194; (b) co=1, a=0.1, vol =0.151,
u02 =0. 1 5 1 000 1.
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FIG. 2. Fourier transform of v in chaotic region. A„are
the coeScients of Fourier series, co„=2m.n /N, and

n =1. . .N, N=512.

is equal to

M(to)=2eaap, ~ exp( neo&—I2)

X sin(co&L +g/2)sin(toto —P/2) .

As followed, the chaos arises at the next condition

co,L+QI2%nrr, (n =0, 1,2, . . . ) .

Below we briefly discuss the numerical modeling re-
sults. We perform numerical integration of the (3) and (4)
system at co=0.6, a=0.1, and a=0.1. We have used the
usual methods finding of the stochastical motion: a cal-
culation of the local instabilities of the orbits and spectral
power density for v .

Begin with the time evolution of distance between
closed trajectories

The results for the initial distance D(0)=10 and the
times —10 are presented in Fig. 1. It is shown that
lnD(t) grows; this corresponds to the exponential diver-
gence of trajectories.

We find the Fourier spectrum for v, which is shown in
Fig. 2, is continuum. All the above-mentioned numerical
results lead us to the conclusion that the regions of chaot-
ic motion of solitons exist. We also observed the growth
of the stochastic layer width at co decreasing.
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