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Effective-medium theory of a nonlinear composite medium using the T-matrix approach:
Exact results for spherical grains
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An effective-medium theory for nonlinear spherical particles embedded in a linear host medium is
developed. The formulation is based on a T-matrix approach. Introduction of a field-dependent T
matrix enables one to obtain an exact expression for effective dielectric constant of a medium with

spherical grains. In the special cases of low-field values, the results obtained previously for the
third- and fifth-order nonlinear susceptibilities of the medium are recovered. The resonance behav-
ior of the effective dielectric constant and intrinsic optical bistability are also discussed.

I. INTRODUCTION

The effective dielectric function for a linear composite
medium can be calculated using several different
methods. ' For a small volume fraction f of the inho-
mogeneities, the T-matrix formulation reproduces the
well-known Maxwell-Garnett result. This formulation
was also extended to include the effects due to the nonlo-
cal dielectric function for individual particles. Recently,
the attention has shifted to the nonlinear response of
these media owing to the possibilities of produci'ng
enhanced nonlinearities in metal colloids and semicon-
ductor crystallites. Surface-plasmon resonances of the
metal particles and excitonic behavior observable in

many semiconductors at low temperature are enhanced
by quantum size effects. Interesting experiments per-
formed by Flytzanis and co-workers ' indicate a huge
(six to eight orders of magnitude) enhancement of
effective nonlinearities by a colloidal medium.

Agarwal and Dutta Gupta" have recently calculated
the third- and fifth-order nonlinear susceptibilities of a
composite medium by generalizing the T-matrix formula-
tion. They assume each spherical particle to be a Kerr-
like medium and show that a third-order nonlinearity of
the particles can lead to all higher odd-order nonlineari-
ties in the macroscopic behavior of the composite medi-
um. Recently, Haus et al. ' ' have developed the
effective-medium theory for nonlinear ellipsoidal particles
embedded in a linear or nonlinear host dielectric. The
effective-medium dielectric constant in the linear regime
for ellipsoidal particles has already been calculated previ-
ously. '4

In the present work, we follow the T-matrix approach
and calculate the effective-medium dielectric constant
which includes the contributions from all higher odd-
order nonlinear susceptibilities. The nonlinear T matrix
involved is field dependent and its form cannot be ob-
tained explicitly. However, in the actual calculations the
averages of T matrices are involved and hence the expli-
cit forms of T matrices are irrelevant. We consider semi-
conductor microcrystallites in a vacuum and study the
resonance behavior of the effective dielectric constant for
this type of composite medium. The enhanced nonlinear-

ity due to resonances, combined with local-field effects in
particles arising from dielectric confinement, which is re-
sponsible for intrinsic feedback, are shown to produce the
bistable behavior of the local field with respect to the ap-
plied field and also with Maxwell field. Similar studies
have also been reported earlier for a single particle' '
and a colloidal medium. '

II. T-MATRIX FORMULATION

In this section, the T-matrix formulation is developed
for a nonlinear heterogeneous medium. Let the nonlinear
medium be characterized by a dielectric function

E =Ep+ 5e'M (2. l)

where eo is the spatially invariant (homogeneous) part
and 5EM is the inhomogeneous part. The inhomogeneous
part 5aM is made up of linear as well as field-dependent
nonlinear contributions

5aM =5e+ W/E/'

I+8 E
(2.2)

We treat 5aM as a perturbation to eo and solve Maxwell's
equation

V D=O, D=eE, (2.3)

where 0 is the displacement vector and E is the electric
field. If G(r, r'), is the Green's function satisfying the
equation

V eoG=5(r —r')I,

then the solution of Eq. (2.3) can be expressed as

E(r ) =Eo+ f d r'[5@sr ( r' )E( r' ) .V' ]G( r, r' ) .

(2.4)

(2.5)

V.eoE0=0 . (2.6)

The field Eo wi11 be assumed to be constant. Equation
(2.5) can be rewritten in a compact form as

In Eq. (2.5), Eo is the field inside the medium in the ab-
sence of inhomogeneities (5aM =0), and is the solution of
the homogeneous equation
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E=Ep+ G56'ME

Substituting Eq. (2.2) in Eq. (2.7), we obtain

(2.7) (E)=(1+(GTL ) )Ep+ (GTNL) IEpl Ep,

( D ) =Ep( E ) + ( TL )Ep+ ( TNL ) I Ep I Ep .

(2.13)

(2.14)

AE EE=E0+GS~E+G "I '

1+alEI
(2.8)

Introducing the effective dielectric function e,~ as given

by

E=Ep+ GTL Ep+ GTNL I Ep I Ep ~ (2.9)

The solution to the integral equation (2.8) is written as & & IEI'&

1+~& IEI'&
' (2.15)

where in Eq. (2.9) we have introduced linear and non-
linear T matrices TL and TNL. The explicit expressions
for TL and TNz are of no relevance in actual calculations.
Only the averages of T matrices are needed. Comparing
linear and nonlinear terms of Eq. (2.8) with that of Eq.
(2.9), we get

we can write the average effective displacement vector
&D& as

(D) =F(E)+ 3 (E&l (E)
1+Sl&E&l'

(2.16)

Substituting Eq. (2.13) into Eqs. (2.14) and (2.16), we ob-
tain two different forms for the mean displacement:

5eE= TLEO,

~IEI'E =T IE,I'E1+alEI'

(2. 10)

(2.11)

Equations (2.10) and (2.11) enable us to rewrite the
second equation of Eq. (2.3) as

(D) = [6 (1+(GT ))+(T )]E

+I:ep(GTNL &+ & TNL &]IEOI Ep

( D ) = e( 1 + ( GTL ) )Ep+ e'( GTNL ) I Ep I Ep

(2.17)

~OE+ TLEO+ TNL IEpl Ep . (2. 12)

Now, we perform an ensemble average (denoted by ( ) )

of Eqs. (2.9) and (2.12) to obtain the following relations: where

~~p IEp I Ep

1+BQ0 I Ep I'
(2.18)

&0 = (1+& GTL & ) I
1+ & GTL & I'+ & GTNL &'(1+ & GTL &)'IEpl'+2& GTNL & 1+ & GTL & I'IEpl'

+2(1+ ( GTL ) ) I ( GTNL ) I'I Ep I'+ ( ( GTN L ) )'(1+ ( GTL &
)"

I Ep '+ ( G TN L ) ( GTN L & 'I Ep I',

Qp
=

I
1+ ( 6TL ) '+ ( GTN L )"(1+ ( GTL ) ) I Ep I'+ ( G TN L ) ( 1+ ( GTL ) )

'
I Ep I

'+
I & GTNL & 'I Ep I' .

(2.19)

(2.20)

A comparison of Eqs. (2. 17) and (2.18) yields the follow-
ing:

alELI'
E =6]+

1+OIELI'
(3.1)

(T, )

1+&GT, )
'

'o
& TNL & (~ ~0)& GTNL &

1+BQ0 IE0 I

(2.21)

(2.22)

where the first term e] gives the linear part and the
second term gives the nonlinear contribution to e with u
and p constants. The field EL is the local field inside the
particle. For a sphere the local field EL is related to the
applied field Ep by a relation

The quantities A and 8 are to be determined for an
effective medium. This will be done in the next section
for spherical grains embedded in a linear homogeneous
medium.

III. SPHERICAL PARTICLES IN THE HOST
MEDIUM

3EO
E = E

Ep + 2E'p

Using Eq. (3.1) in Eq. (3.2), we obtain

EL=E
1+nlE, I' '

where we have defined

(3.2)

(3.3)

Let the nonlinear heterogeneous medium consist of
nonlinear spherical particles embedded in a linear dielec-
tric with dielectric constant ep. The particles will be as-
sumed to have sharp size distribution with sizes much
smaller than the wavelength of light. Let the particles be
characterized by the nonlinear dielectric function
given by

3~o aX= a=
6 i + 26'p 6 i +2&p

Equation (3.3) has the solution given by

E„=E()Xs,

(3.4)

(3.5)

where s is a function of the applied field Ep, and satisfies
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the following transcendental equation:

alE I IXI lsl

1+(a+p)IE, I IXI Isl'
(3.6)

( T„)=f (ei —eo)X,

1+( +p&IE, I'Ixl'I I'

(3.18)

(3.19)

For a single particle in the host medium, the local field

EL is the propagating Maxwell field. Comparison of Eq.
(3.5) with Eq. (2.13), after using Eq. (3.6), gives

1+(GTL) =X,

( )
aXIXI'lsl'

1+( +p&IE, I'Ixl'I I'
'

(3.7)

(3.8)

axlxl I.I'IE, I'E,
1+«+p) IEOI'IXI'lsl'

(3.9)

Comparison of Eq. (3.9) with Eq. (2.17}, and using Eqs.
(3.7) and (3.8) gives

~~+&T, )=~,x,
e,axlxl'lsl'

1+«+p}IE,I'IXI'lsl'

(3.10)

Now, we calculate the local displacement vector
DL(=e E„) inside the particle. Using Eqs. (3.1), (3.5),
and (3.6), we obtain

eiX
DL=e, EOX+ 1—

3E'p

Now, we apply the results obtained in this section to find
the effective-medium parameters derived in Sec. II.
Equation (2.21) can be written, using Eqs. (3.16) and
(3.18},as

f (e, —eo)x
1+f (X —1)

(3.20)

X 1 ——(1—s) 1 ——(1—s)
P P

(3.22)

Qo=ll+f(X —1}l' 1 ——(1—s} (3.23)

Equation (3.20) is a standard Maxwell-Garnett result for
a linear composite. From Eq. (2.22) we obtain, after us-

ing Eqs. (3.17) and (3.19),

APQ [fax'IXI'+f (~—~0)aXIXI') lsl'

I+BQo IEDI' I+«+p) IEol'IXI'lsl'

(3.21)

The quantities Po and Qo given by Eqs. (2.19) and (2.20)
can be simplified after some algebraic manipulations into
the following forms by using the results of this section:

P = [1+f(x—1)]ll+f(X—l)l
2

e]X1—
3'

aXIXI Isl
(3I+«+p) IEol'IXI'lsl' where s is given by Eq. (3.6), and we have defined P as

From Eqs. (3.7), (3.8), (3.10), and (3.11),we have P =—[1+f (X —1)] .
1

L (3.24)

&GT, ) =X 1, —

axlxl'Is '
1+«+p&IE,I'IXI'lsl' '

(3.12)

(3.13)

Equation (3.21) is a single equation for two unknown pa-
rameters A and B. We make the following choices for A

and B.

(Tt ) =(e,—eo)X,

I+«+p& IEQ I'IXI'ls I'
&T )=

(3.14)

(3.15)

(GT„)=f (X —1), (3.16)

)
faxlxl'lsl'

1+( +p&IEoI'Ixl'I I' ' (3.17)

Equations (3.12)—(3.15) hold good for a single nonlinear
sphere inside the host medium. Equations (3.13) and
(3.15) show that the averages of the nonlinear T matrix
and its product with Green's function G are field-
dependent quantities. The above results can be general-
ized to the case of a colloidal medium if we neglect such
features as size dispersion, correlation effects arising due
to multiple scattering, etc. Thus, for a small volume frac-
tion f of the particles in the composite medium, the T
matrix can be written as the sum of the T matrices of the
individual particles. Thus, for a composite medium, we
have

faX IXI +f (e eo)aXIXI2-A=
[1+j(x —1)]I

I +f(x —1)I'

IE,I'

[I+(a +p) IELI']
1

Isl'

X 1 ——(1—s) I
1 ——(1—s)lf f

P P

(3.25)

(3.26)

In Eq. (3.26), Eq. (3.5) is used. It should be mentioned
here that the final result for the effective-medium dielec-
tric constant e,ff does not depend upon any arbitrary
choices of A and B. Thus the procedure of determining
e,s is consistent. The parameters A and B in Eqs. (3.25)
and (3.26) are chosen such that the comparison of results
with Ref. 11 for small-field values can be made directly in
terms of A. In fact, we shall see that A is nothing but the
third-order susceptibility 4m'' ' in the expansion of e,ff
into a power series of

I
E

I
.

Equation (3.25) can be put into the following form after



EFFECTIVE-MEDIUM THEORY OF A NONLINEAR COMPOSITE. . . 4489

08 "

04

Qa 0.8

0.4

Xp =0

Xp=2o

f = 0.025

f 50.025

(o)

(b)

10 1=0OS
f = 01

08 ~ —Chemla artcj Mill

06

04
CL

0.2

0)
0

-0.2

-04

-0.6

10

0.8

0.6

0.4

0 I

-20 -16 -12

0.2

0
-4

using Eqs. (3.20) and (3.24):

aA=
p'lpl'

'

From Eq. (3.26), the quantity 8 I EL I
can be found as

(3.27)

FIG. 1. (a) Plots of the real part of e,& vs 5 for x~=0, and
f=0.025 and 0.1. Composite medium consists of CdS particles
dispersed in space. (b) Same as in (a) except x~ =20.

FIG. 3. (a) Plots of the real part of e~ vs 6 for f=0.05 and
0.1, and x =20. A curve from Fig. 2 of Ref. 16 for y= 20 is also
included for comparison. (b) Plots of the imaginary part of e~
vs 5 for the same values of parameters as in (a).

particle is embedded into the host medium, the local 6eld
EL of a single particle is not the same as the propagating
Maxwell field ( E ) . The relation between ( E ) and Et
can be obtained by using Eqs. (2.13), (3.5), (3.16), and
(3.17), and is given by

~IE,I'=

where we have introduced a0, given by

(3.28)

(E)=PEL
1+ap I EL

I'
1+nlE, I'

(3.30)

a
a =a+P f—0 p (3.29)

1.0

0.8- Xp %0

In a composite medium, when more than one spherical

For a single particle in the host medium f~ 1, and from
Eq. (3.30), we see that (E)—+EL. For f~0, (E)—+En,
given by Eq. (3.2). Now, we calculate the effective-
tnedium dielectric constant e,tr using Eq. (2.15). Writing
1+BIEI as 1+BIELI IEI /IELI and using relations

0,4

&0- Y = 36.54322

w 0

E
08-

8-

0.4

0
-16 -12

FIG. 2. (a) Plots of the imaginary part of e,& vs 5 for x~ =0,
and f=0.025 and 0.1. Composite medium same as in Fig. 1. (b)
Same as in (a) except x~ =20.

0.2
I I

0.4 0.6

Yjv,„

l

0.8

FIG. 4. Plots of x, vs y for 5= —1, —2, and —3. Composite
medium same as in Fig. l.
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(3.28) and (3.30) into Eq. (2.15), we obtain

7lpl'IE„I'
1+a, lELI'

' (3.31}

Xp(max) =36.&25

025

where again EL is related to (E) by Eq. (3.30). It can be
easily verified that for f~0, e,a~co (linear host medi-
um), and for f~1, E s~Ei+aIEI /I+PIEI (single par-
ticle). For small-field values, Eq. (3.31) can be expanded
into a power series of IEI . The result for P=O is

E if= F+4n j ' ' El +4~g "'IEI

6-

where

+4&i"'"IEI'+4~i "'IEI'+ (3.32)
0.2 0 & 0.6

Xp/Xp (mox)
0.8

4~y"'= W,

4&y"'= —W q, ,

4'' '= A(rii+go),

4ny' '= —A(ri2+2rlirio+rio),

(3.33)

(3.34)

(3.35)

(3.36)
1

I,(1+5 )
(4.4)

FIG. 5. Plots of x, vs x~ for 5= —1, —2, and —3, and

f=0.025 and 0.1.

with

1

2 (2ao+ao ),
p 2

[ao+(ao ) +Iaol ],p 4

[ao+aoao +ao(ao ) +(ao ) ] .
p 6

(3.37)

(3.38)

(3.39)

Equations (3.33)—(3.39) are consistent with the perturba-
tion approach to the T-matrix formulation given by
Agarwal and Dutta Gupta. " It should be noted here
that if we replace e'~ by e~ in Eq. (3.20), e becomes Beg

given by Eq. (3.31).

IV. RESONANCE BEHAVIOR OF e,ff
AND INTRINSIC OPTICAL BISTABILITY

@+i
Ep =6~ +

1+fi'+(IELI'/I, )
' (4.1)

where e„ is the dielectric constant of the background,
5 = ( fl —co) /I" is the normalized detuning, co is the optical
frequency, 0 is the resonance frequency, I is the width of
resonance, P' is the resonance contribution to the dielec-
tric constant, and I, is the saturation intensity. From Eq.
(4.1) we can write

In this section we study the resonance behavior of the
effective-medium dielectric constant e,z and optical bista-
bility of local field E„with respect to the applied field Eo
and Maxwell field E in the absence of external feedback.
We consider the nonlinear composite medium made up of
spherical particles of CdS dispersed in space. For this
medium e is given by'

1.0-

0.8—
X
O
~ 0.6—

x 04-

1=01
XP (mgx) = 32 5

Yr ~x = 36 54322

C.-

r

0.2

For CdS particles, we take' e„=6, I =0.4 meV,
0=2.555 eV, and P'=40. In Figs. 1 and 2, we have plot-
ted the frequency dependence of real and imaginary parts
of E,fr for f=0.1 and 0.025, and x =I(E)l /I, =O and
20 using Eqs. (3.30) and (3.31). It can be noticed that for
x =20 the peaks of the curves have red-shifted com-
pared with the curves for xz =0. This feature is similar
to that observed in a nonlinear oscillator model. ' Also,
increasing the values of the volume fraction f increases
effective absorption of the medium. The peak values of
the real parts of e,tr also increase with increasing f. In
Fig. 3, we have plotted the frequency dependence of real
and imaginary parts of e for f=0.1 and 0.05, and
x =20 using Eqs. (4.1) and (3.30). The kinks represent-
ing the bistable behaviors of real and imaginary parts of

with respect to 5 are clearly seen. Similar results were
also obtained by Chemla and Miller' for a single spheri-
cal particle in vacuum. Their plots are also included for
comparison.

Next, we shall discuss intrinsic optical bistability. To

, 6+i
Ei =E~ +P 1+5 (4.2}

0.2
I

0.4
I

0.6
I

0.8
I

l.p

P'( fr+i )

I,(1+5 )
(4.3)

V/ v max

FIG. 6. Plots ofx vsy for 5= —1, —2, and —3, and f=0 1. .
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FIG. 7. (a) Plots of the imaginary part of e,& vs y for 5= —1,
—2, and —3, and f=0.025 and 0.1.

observe optical bistability one generally requires the com-
bination of strong optical nonlinearity and a feedback
mechanism. Most optical bistable devices use an external
cavity to provide the necessary feedback. However,
internal feedback in some cases without mirrors can also
be possible. The generation of internal feedback is possi-
ble if the intrinsic properties of the nonlinear medium are
strongly modified by incident fields. In the composite
media, the local-field effects in the particles arising from
dielectric confinement gives rise to an internal feedback.
Together with enhanced nonlinearity due to the excitonic
(surface plasmon) resonances in semiconductor (metal)
particles, this internal feedback mechanism produces the
bistable behavior for the local field EL with respect to the
applied field Eo and also with the propagating Maxwell
field E. Correspondingly, one also has the bistable behav-
ior in real and imaginary parts of e and e,z. In Fig. 4,
we have shown x, = ~EL~ /I, versusy =

~EO~ /I, plots for
5= —1, —2, and —3. For 5= —3 the detuning is too
large and the cure shows only kink. In Fig. 5, x

&
versus

x plots are shown for 5= —1, —2, and —3, and f=0.1

and 0.025. It may be noticed that for larger values of f,
the bistability threshold reduces. In Fig. 6, x versus y
plots for f=0.1 and 5= —1, —2, and —3 are shown.
Figure 7 shows plots of imaginary parts of e,& versus y for
5= —1, —2, and —3, and f=0.1 and 0.025. In all the
figures 1 —7, the scales are normalized to unity.

V. CONCLUSIONS

In conclusion, we have developed an effective-medium
theory for nonlinear spherical particles embedded in a
linear host medium by using T-matrix approach. Our re-
sults are exact in the sense that for small volume fractions
f, the effective-medium dielectric constant includes the
contributions from all higher odd-order nonlinear suscep-
tibilities. For small field values, our results reproduce
previously obtained results by Agarwal and Dutta Gup-
ta" for third- and fifth-order nonlinear susceptibilities of
the composite medium. The averaged nonlinear T matrix
involved in our calculations is field dependent. The re-
sults were applied to a model composite medium made up
of CdS particles dispersed in space. The resonance peak
of the imaginary part of effective dielectric constant is

found to be red-shifted. The amount of red shift in-
creases with increasing the values of x . This feature is
similar to that observed in a nonlinear oscillator model. '

Increasing the value of the volume fraction f increases
the absorption inside the medium.

We have also discussed the intrinsic optical bistability.
The local-field effects in particles arising from dielectric
confinement gives rise to an internal feedback. Together
with enhanced nonlinearity due to resonances, this inter-
nal feedback mechanism produces bistability for local
field inside the particle with respect to the applied field
and also the propagating Maxwell field. This leads to a
bistable behavior in effective dielectric constant also.

The propagation of intense light beams through a com-
posite medium was addressed earlier under certain sim-
plifying assumptions in both the stationary and nonsta-
tionary regimes. ' Recently, Haus et al. ' solved the
wave propagation equation numerically in a composite
medium. They found that there exists a boundary
separating a low-absorbing regime from a high-absorbing
regime in the material. This also shows the similarity of
this problem to the nonlinear oscillator model. ' Similar
results have also been obtained by Li et al. These au-
thors take into account the saturation of the two-level
system in their expression for the dielectric constant of
the particle which is also taken into account in this work
[see Eq. (4.1)], whereas in Ref. 17 this saturation of the
two-level system of the particle was ignored. Further-
more, they use the self-consistent field approximation and
take the effective dielectric function based on this approx-
imation, which is better than the approximate form of the
Maxwell-Garnett effective dielectric function used in Ref.
17. Moreover, in Ref. 17 the wave-propagation equation
was solved under the slowly varying envelope approxima-
tion (SVEA), whereas besides obtaining the results with
the SVEA, Li et al. also solve the wave-propagation
equation exactly as well as under the mean-field approxi-
mation. In all these cases the qualitative results are the
same as those obtained in Ref. 17. The results obtained
in Refs. 17 and 23 are based on numerical solution of the
wave equation. In the present work, the exact analytical
expression for the nonlinear effective dielectric constant
e,z has been obtained within the framework of Maxwell-
Garnett formulation.

Finally, it should be mentioned in concluding that the
results of Chemla and Miller, ' and Leung' are for a sin-

gle particle embedded in a linear host medium, whereas
the results presented in Figs. 1 —7 in this paper are for
multiple particles in the host medium. The results of this
paper are accurate in all the orders of electric field while
assuming the volume fraction f to be small. The results
of Ref. 11 are accurate up to the fifth-order in the electric
field while assuming f small, whereas the results of Refs.
15 and 16 are good for all field values, but only for a sin-
gle particle in the linear host medium.

ACKNOWLEDGMENTS

The author would like to thank G. S. Agarwal and J.
W. Haus for many useful discussions on effective-medium
theories. He also acknowledges the financial support
from Department of Science and Technology, Govern-
ment of India.



4492 N. C. KOTHARI 41

See, for example, R. Landauer, in Electrical Transport and Op-
tical Properties of Inhomogeneous Media (Ohio State Universi

ty, 1977), Proceedings of the First Conference on the Electri-
cal Transport and Optical Properties of Inhomogeneous
Media, AIP Conf. Proc. No. 40, edited by J. C. Garland and
D. B.Tanner (AIP, New York, 1978), p. 2.

2E. Gubernatis, in Electrical Transport and Optical Properties of
Inhomogeneous Media (Ohio State University, 1977) (Ref. 1),
p. 84.

I. Webman, J. Jortner, and M. H. Cohen, Phys. Rev. B 15,
5712 (1977).

4W. Lamb, D. M. Wood, and N. W. Ashcroft, Phys. Rev. B 21,
2248 (1980).

5G. S. Agarwal and R. Inguva, Phys. Rev. B 30, 6108 (1984).
K. C. Rustagi and C. Flytzanis, Opt. Lett. 9, 344 (1984).

7D. Ricard, P. Roussignol, and C. Flytzanis, Opt. Lett. 10, 511
(1985).

F. Hache, D. Ricard, and C. Flytzanis, J. Opt. Soc. Am. B 3,
1647 (1986).

P. Roussignol, D. Ricard, J. Lukasik, and C. Flytzanis, J. Opt.
Soc. Am. B 4, 5 (1987).

' D. Ricard, in Nonlinear Optics: Materials and Devices, edited
by C. Flytzanis and J. L. Oudar (Springer, Berlin, 1986).

"G. S. Agarwal and S. Dutta Gupta, Phys. Rev. A 11, 5678

(1988).
'2J. W. Haus, R. Inguva, and C. M. Bowden, Phys. Rev. A 40,

5729 (1989).
' J. W. Haus, N. Kalyaniwalla, R. Inguva, M. Bloemer, and C.

M. Bowden, J. Opt. Soc. Am. B 6, 797 (1989).
L. K. H. Van Beck, Progress in Dielectrics, edited by J. B.
Birks (CRC, Cleveland, 1967), Vol. 7, p. 69.
K. M. Leung, Phys. Rev. A 33, 2461 (1986).
D. S. Chemla and D. A. B.Miller, Opt. Lett. 11, 522 (1986).
J. W. Haus, N. Kalyaniwalla, R. Inguva, and C. M. Bowden,
J. Appl. Phys. 65, 1420 (1989).

' J. W. Haus, L. Wang, M. Scalora, and C. M. Bowden, Phys.
Rev. A 38, 4043 (1988).

' G. B.Al'tshuler, V. S. Ermolaev, K. I. Krylov, and A. M. Pro-
khorov, J. Opt. Soc. Am. B 3, 660 (1986).
N. C. Kothari and C. Flytzanis, Opt. Lett. 11, 806 (1986). In
all the figures of this paper the values of z' should be twice
the values mentioned.

'N. C. Kothari and C. Flytzanis, Opt. Lett. 12, 492 (1987).
N. C. Kothari, J. Opt. Soc. Am. B 5, 2348 (1988). In Fig. 4 of
this paper the values of z' should be twice the values men-
tioned.

23Y. Q. Li, C. C. Sung, R. Inguva, and C. M. Bowden, J. Opt.
Soc. Am. B 6, 814 (1989).


