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A nonlinear one-dimensional theory is developed that describes some important aspects of intense

laser-plasma interactions. The self-consistent laser-plasma analysis includes nonlinear plasma
wake-field generation, relativistic optical guiding, coherent harmonic radiation production, as well

as other related phenomena. Relativistic optical guiding is found to be most effective for long laser

pulses having slow rise times. Short laser pulses are shown to be weakly guided. Coherent harmon-
ic generation using a linearly polarized laser is found to be most efficient for short laser pulses and
can be enhanced by the presence of large amplitude plasma wake fields. Aspects of particle ac-
celeration by laser pulses as well as possible methods for upshifting the frequency of laser pulses are
also discussed.

I. INTRODUCTION

The interaction of ultra-high-power laser beams' with
plasmas is rich in a variety of wave-particle phenomena.
These phenomena become particularly interesting and in-
volved when the laser power is high enough to cause the
electron oscillation (quiver) velocity to become highly rel-
ativistic. Some of the interesting laser-plasma processes
that are discussed include (a) relativistic optical guid-
ing ' of the laser beam, (b) the excitation of coherent
radiation at harmonics of the fundamental laser frequen-
cy, (c) the generation of large amplitude plasma
waves' ' (wake fields), (d) frequency shifts induced in
the laser pulse by plasma waves, ' ' (e) frequency
amplification using an ionization front, ' and (f) single-
particle acceleration in a laser pulse.

In the following, a fully nonlinear one-dimensional
(10) model is developed that describes the self-consistent
interaction of intense laser pulses with plasmas. By as-
suming a "quasistatic" cold fluid plasma response, a set
of coupled nonlinear equations is derived for the vector
potential of the radiation field and for the electrostatic
potential of the plasma. The quasistatic approximation
assumes that in a frame moving at the speed of light, the
plasma fluid experiences a nearly steady-state radiation
field (after the transients have decayed away). The result-
ing nonlinear equations are used to examine various
laser-plasma interaction phenomena. The important is-
sue of laser-plasma instabilities ' ' is not addressed in
this paper. Instabilities will certainly limit the laser prop-
agation distance and, therefore, will have a profound
effect on some of the potential applications discussed in
this paper.

Relativistic optical guiding ' is a result of the rela-
tivistic quiver motion of the electrons by the laser field.
Analysis has shown that as the laser power exceeds a
critical threshold, diffraction can be overcome, resulting
in optical guiding of the laser pulse. Previous analyses of
relativistic guiding have included, for the most part, only
the transverse electron motion in the plasma response
current. ' Relativistic guiding was believed to occur
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II. NONLINEAR FORMULATION

The 1D fields associated with the laser-plasma interac-
tion can be described by the transverse vector and scalar
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on a fast time scale (on order of the inverse laser frequen-
cy). However, the present analysis finds this not to be the
case. In the following nonlinear analysis of relativistic
optical guiding, the electron density response and longi-
tudinal electron motion are included self-consistently. It
is shown that for short laser pulses (pulse lengths less
than a plasma wavelength), the combined effects of the
plasma density response and the longitudinal motion
significantly reduce the relativistic guiding effect. It is
found that relativistic guiding occurs only for long pulses
with slow rise times (greater than an inverse plasma fre-
quency).

As the quiver motion of the electrons in a linearly po-
larized laser field becomes highly relativistic, the plasma
response current will develop harmonic components.
The harmonic content of the response current density can
lead to the excitation of coherent radiation at harmonics
of the fundamental laser frequency. It is shown that har-
monic generation is more effective for short laser pulses
(pulse lengths less than a plasma wavelength) than for
long pulses with slow rise times.

An intense, short-pulse laser (pulse lengths near the
plasma wavelength) interacting with a plasma can gen-
erate large amplitude plasma wave wake fields. The ex-
cited wake fields may be used to (i) accelerate a trailing
electron bunch (laser wake-field acceleration), ' ' (ii) op-
tically guide a trailing laser pulse, and (iii) enhance the
coherent harmonic radiation generated by a trailing laser
pulse.

Three other laser-plasma interaction phenomena are
briefly discussed. The first describes how frequency shifts
are induced in a laser pulse by a plasma wave, ' ' the
second discusses how an ionization front may be used to
amplify the frequency of a laser pulse, ' and the third de-
scribes how a single particle may be accelerated by the
passage of a laser pulse.
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potentials, A~(z, t) and 4(z, t), respectively (see Fig. 1).
In what follows, we use the Coulomb gauge, i.e., V' A =0
which implies A, =0. The transverse polarization of the
laser field is arbitrary. The normalized potentials satisfy
the following equations:

1 8 2n 2n aa=k Pt=k
Bz c Bt no no

(la)

tl2 =k —1 (lb)
2 P

where a(z, t) =
~e~ At/moc, P(z, t) = ~e~@lmoc,

k~ =co~/c, co~ =(4m ~e~ no!mo)' is the ambient plasma
frequency, n (z, t) is the plasma density, no is the ambient
plas'ma density, pt=v~/c =a/y is the normalized trans-
verse plasma fluid velocity and y =(1—P, —P~)
=(I+a )' /(1 —P, )' is the relativistic mass factor. In
obtaining the right-hand side of (la) we used the fact that
the transverse canonical momentum is invariant and pri-
or to the laser pulse interaction the plasma is assumed
stationary.

The fluid quantities n, p„and y are assumed to satisfy
the cold relativistic Quid equations that can be written in
the form

Bn +c (nP, )=0,
at az

(2a)

dP,
dt

1 8 +p 8 a + c(1 pz)BQ
y2 Bz Bt 2 y Bz

(2b)
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p

BP 1 Ba
(2c}

dt ' Bz 2y Bt

where d/dt =8IBt+cp, BIBz. The term containing a
in Eq. (2b) contains the ponderomotive force. Thermal
effects may be neglected provided (i) the electron quiver
velocity is much greater than the electron thermal veloci-
ty, and (ii) the thermal energy spread is sufficiently small
such that electron trapping in the plasma wave is avoid-
ed. Also, the ions are assumed to be stationary.

PLASMA
WAKE FIELD, 4(z,t)

i+ + ~+ + + + +
PLASMA FLOW

—$=z - ct

+ + + )i+ +

LASER

PULSE, A(z, t}

FIG. 1. Schematic showing the laser pulse in the speed of
light frame (g, r). The pulse extends from (= L to (=0, and-
the front of the pulse is at /=0. In this frame the plasma flows

from right to left and a quasistatic state exists.

It proves convenient to perform an algebraic transfor-
mation from the laboratory frame independent space and
time variables (z, t) to the independent variables (g, r},
where g=z c—p, t and r=t H. ere p, =u, /c= 1 is the
normalized transformation velocity. To transform Eqs.
(1) and (2) from z, t to g, r variables we note that
BIBz =BIB(' and Blat =8/Br —cp, BIB('. Using these
transformations, Eqs. (1) and (2) become

a' 2p a' 1 a' „, na=k 8
y rl( c Bgr c Qt ~ yno

l

(3a)

a2'i'=k' "
(3b)

n,

a ran
[n (p, —p, )]=- (3c)

ag
' ' c ar '

8 1 8
t}g

' ' cBr[r(1 p, p, }——0]=—— (rp, },
where y, = 1/(1 —p, ). Equations (3a)—(3d), together
with y=(1+a )' /(1 —P, )', form a complete set of
fully nonlinear, relativistic, cold Quid equations which de-
scribe the 1D laser-plasma interaction. The 1D model is
valid as long as the radiation spot size is large compared
to the plasma wavelength, i.e., r, &)A, =2m/k .

In the following analysis, we choose v, =c, since v, =c
lies between the group velocity and phase velocity of the
laser pulse. Furthermore, we take the laser pulse to prop-
agate in the positive z direction and to cross the z =0
plane at t =0. The (=0 plane defines the front of the
pulse which extends into the (~0 region. In the g, r
frame we are, therefore, interested only in the region
where (~0 since for (~0 we have a=0, n =no, P, =0,
and @=1.

(3d)

Quasistatic approximation

1 a
nd « no,c elf

(4a)

Equations (3) can be greatly simplified by noting that in
the speed of light frame (p, = 1) we expect that under cer-
tain conditions a quasistatic state will exist in the macro-
scopic plasma quantities, n, p„and y. That is, if the
laser pulse is sufficiently short, the fields a and P which
drive the plasma are expected to change little during a
transit time of the plasma through the laser pulse. From
(3a) we find that the envelope of a changes on a charac-
teristic time r, -2y ~no/n~(co/co )/co, where ru is the
laser frequency. Since we will henceforth assume that
co)&co, the radiation envelope changes on a time scale
which is long compared to a plasma period. If the laser
pulse duration ~L is sma11 compared to ~„ i.e., ~L &&v.„
then the quasistatic approximation is valid. In addition,
the validity of the 1D model requires that the laser
beam diffraction time (transverse spreading time),
rd =err, /(Ac), be long compared to r, . This condition is
satisfied as long as r, &&A, . More formally, the quasistat-
ic approximation [neglecting the right-hand side of (3c)
and (3d)] implies
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y, ' «1.0

c B1
(4b)

There are two cases that can be considered, depending on
the envelope scale length L compared to the plasma
wavelength A. .

In this case, Eqs. (3c) and (3d} can be integrated to give

n (1—g, }=no,

y(1 —P, ) —/=1 .

(Sa)

(5b)

Using (5a) and (5b) together with the expression for y,
the coupled field equations become

2 3 1 8 Ba k2 a
c Bg c' Br Br ~ I+(()

'

8 P kp~ (1+a )

2 ( I+y)'
where the plasma quantities in terms of the fields are

n /no = 1+—,
' [(1+a ) l(1+P) —1],

y=[1+a +(I+/) ]/[2(1+(t)],
r33, =[1+a —(I+/) ]/[1+a +(I+/) ] .

(6a)

(6b)

(7a)

(7b)

(7c}

III. LASER-PLASMA INTERACTION
PHENOMENA

A. Relativistic optical guiding

The nonlinear index of refraction of the laser beam
within the plasma determines, among other things, the
optical guiding properties of the plasma. For the purpose
of the present discussion, we assume that the laser field a
is given by

a=aL(g, r)e' '~/2+c. c. ,

where aL represents the complex amplitude and k is the
wave number. The characteristic spatial variation in the
laser envelope ~a~~ is assumed to be of order L and is
long compared to the laser wavelength k, i.e.,

8/al f/Bg'= faL I/L «k/aL1=2~/al ilk .

Using the representation in Eq. (8) we find from Eq.
(6a) that the refractive index g =ck/co is

g= 1 —
—,'(k /k) /(I+/, ), (9)

where P, is the slow part of the scalar potential and
k &(k. In obtaining Eq. (9), we replaced [I/(I+(())],
with I/(I+/, ), which is valid as long as k «k. This
implies that ~P& ~

&& ~P, ~, where P& is the rapidly varying
part of P. (The work of Ref. 22 also implies that P=tI), .)

The above expressions for the fields and plasma quantities
are fully nonlinear and hold for arbitrary polarization of
the laser pulse. [Equations similar to (6a) and (6b) have
been used by Akhiezer and Polovin ' to study nonlinear
plasma oscillations. Their equations were later used by
Noble to study beat wave excitation of plasma waves. ]
Consistent with the quasistatic assumption, a number of
important points can be made concerning intense laser
pulse propagation in plasmas.

r1=1—
—,'(~/~, )'/(I+ lag I'/2) ~' . (10)

Although the present analysis is 1D, we expect that for
a slowly varying transverse laser profile the index of re-
fraction will depend on the transverse coordinates
through the laser amplitude

~ ar ~. Since the actual
bounded laser beam amplitude falls off transversely, i.e.,
B~al ~

/Br &0, so will the refractive index, i.e., Bg/Br (0.
The negative transverse gradient of the refractive index
can lead to optical guiding. Since the refractive index is a
function of the laser amplitude, the condition for optical
guiding places a lower limit on ~aL ~. It is well known
that if the refractive index is of the form given by Eq.
(10), a critical laser power necessary for relativistic opti-
cal guiding exists and is given by P„;,=17.4(A&/A, )

GW.

2. Short pulse

Consider the short laser pulse limit L &A, . When

~P~ && 1, Eq. (6b) can be solved for an arbitrary laser field

a(g},

k 0f a (g')sin[k (g' —g)]dg',

where the boundary conditions /=BE/B(=0 at (=0
have been used.

If the pulse envelope is given by aL =aI sin(erg/L) for

L&((0 and—ar =0 otherwise, we find that the scalar
potential within the laser pulse is given by

P = ( aL I8 ) I I —
( k 4nIL )—.

X [kzcos(2rrg/L) (4' /L )cos(k—z()]I,
(12)

where terms of order (A. /A, ) «1 have been neglected.
For L «A, , this gives P, =(aL k~/4) g(g), whereLo P

g(g)=g —2(L/2') [I—cos(2~$/L)]. Notice that for
L « A, , P, is maximum at g=L where P, =(aL k L l4) .Lo p

Also notice that even for ~aL ~
) 1, the assumption that

0

P, «1 is still valid as long as L «A, . The index of re-
fraction in the short-pulse limit is, therefore,

g=1 —
—,'(k/A. ) /[I+(rr/2) (aL /k~) g(g)], (13)

where L&(&0. —
In the short-pulse limit, the fact that P, «1 implies

that the optical guiding effect is reduced significantly, by
more than the factor (m /2)(L/A. ) «1. The critical

1. Long rise-time pulse

In this limit, L ))A, =2rrclco~, the first term on the
left-hand side of (6b) can be neglected and P, can be ap-
proximated by P, =(1+~aL

~

/2)' —1. The refractive
index becomes
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power, therefore, is increased by the inverse of this factor
and, in addition, the degree of guiding varies along the
pulse. Hence, it is unlikely that relativistic optical guid-

ing can be effectively utilized in short, L A, , laser
pulses.

Although it may appear that a long laser pulse may un-

dergo guiding, assuming the various laser-plasma insta-
bilities can be controlled, the front of the pulse will

diffract. Initially, that portion of the head of a long rise-
time pulse in which the local power is less than P„;, will

diffract. Once this portion has diffracted away, the pulse
will exhibit "short-pulse" diffractive behavior, i.e., the
front region (-A, ) will continue to diffract. The erosion
of the front of the pulse due to diffraction will propagate
back through the body of the pulse. The erosion velocity
back through the body of the pulse (in the g=z ct-
frame) may be estimated by Uz —-(A~ /z~ )c, where

zz = mr, /A. is the vacuum Rayleigh length.

B. Harmonic excitation

The nonlinearities associated with the plasma waves
can provide a source for the generation of coherent radia-
tion at harmonics of the laser frequency. To examine this
process we generalize Eq. (8) and represent the full radia-
tion field by

a= g a, (g, ~)e""~/2+c.c. ,
I

(14}

Pf = (k~ l4k) al (—1+/, ) cos(2k(), (15)

where we have taken the fundamental laser pulse to be
aL(g)coskg. The source term in Eq. (6a) becomes

S=k~ai (I+/, +Pf ) 'cos(kg)

=k aL ( I+/, ) 'cos(kg} g [a cos(2k()] (16)

where Pf is given by (15), a=[(k /4k)al ] (1+/, )

and m =0, 1,2, . . . .
As an illustration we consider the excitation of third

harmonic radiation (3'). Since ~Pfj &&iP, ~, the third
harmonic component of the source is

S3=(k /2)(k /4k) aL(1+/, ) cos(3k(), (17)

where we have used the m =1 term in Eq. (16). Substi-
tuting (17) into the right-hand side of Eq. (6a) and solving
for the third harmonic field we find that

~a3~
=

—,'(A. /4A. ) (1+/, ) aLco r, (18)

where ~ is the laser-plasma interaction time. The ratio of
the third harmonic power to the fundamental laser power
1S

where 1=1,2, 3, . . . and a, =aL ((}is the envelope of the
dominant fundamental laser pulse, ~aL i && ial i, for 1 & 2.

It is clear from the right-hand side of (6a) that harmon-
ic excitation is solely due to the excitation of the fast part
of P. In particular, since the fundamental component of
the radiation field dominates, the fast part of the scalar
potential is

P3/P, =[(A, /4X ) (1+/, ) alee r] (19)

where P& =2. 15 X 10' (r, ai IA, ) W (for a Gaussian trans-

verse laser profile).
Equation (16) shows that the generation of harmonics

is a strong function of the plasma wake field, described by

P„ in the region of the fundamental laser pulse. For a
single long-pulse, large amplitude laser, iaL i)&1, the
slow part of the scalar potential is P, —iaL i/&2. In this

case, the harmonic content of the source term in Eq. (16)
is exceedingly small, and for the third harmonic, we have

P3/Pi =[4(A, /4A, ~) coprliai i ]

Taking ~ to be a diffraction time, ~d=m. r, /A, c, and

r, ~ k, the third harmonic power becomes

P /P, =(m/2) (~/~, )'l(41|z I') ~

In the case of a short, L «A, , large amplitude laser

pulse, P, & ial ~
(nL/2Ap ), the third harmonic power is

P3/Pi =[~aL i (A. /4A, p) roar]

=
~ a, ~'(~/4)'(X/X, )'/4

for r = rd and r, & A,z. For
~ aL i

)& 1, a short pulse is

more efficient than a long pulse for harmonic generation.
Harmonic generation can be enhanced in regions of a

plasma wave where P, &0. This can be achieved by posi-

tioning a short laser pulse at the appropriate location in a
large amplitude plasma wave having a phase velocity
close to the speed of light. The large amplitude plasma
wave can be the wake field generated by a laser pulse'
or by an electron beam pulse.

C. Wake-field generation

The self-consistent evolution of the nonlinear plasma
wave can be studied by numerically solving Eqs. (6a) and
(6b). Figures 2 and 3 show the plasma density variation
fin lno=n/no 1 and —the corresponding axial electric
field E, for a laser pulse envelope given by
aL =aL sin(ng/L) for L& g 0. In—these figures,

0

L =k =0.03 cm, %,= 10 IMm, and aL =0.5 in Fig. 2 and
0

aL =2 in Fig. 3. The steepening of the electric field and
0

the increase in the period of the wake field ' ' ' are
apparent for the highly nonlinear situation shown in Fig.
3 (iai ~

=2) as compared to the slightly nonlinear case

shown in Fig. 2 (~ai i=0.5). Figure 4 shows that the
0

electrostatic potential P is predominantly slowly varying
within the laser pulse even though finlno has rapidly
varying components. In addition, the figure shows that P
can be negative behind the laser pulse.

Qualitative aspects of nonlinear wake-field generation
may be examined by considering a circularly polarized
laser pulse with a square pulse profile, i.e., al =aL for

0

L&(&0 and aI =0 other—wise (also, see Ref. 26). For
this case, Eq. (6b} may be solved analytically in terms
of elliptic integrals. In particular, one can show that
the optimal pulse length L =L, (which corresponds
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FIG. 2. Density variation 5n/no=n/no l and axial elec-
tric field E, in GeV/m for a laser pulse located within the re-
gion L& /&0—, where L =A, =0.03 cm and aL =0.5.

0

FIG. 4. Electrostatic potential (II for a laser pulse located
within the region L&( —0, where L =A, =0.03 cm and

aL =2.0.
0

to the maximum wake-field amplitude) is given by
L, =2y~oE(p)/k ~2yto/k for y~o))1, where E(p)
is the complete elliptic integral of the second kind,

p =(y2~o —I)/@to, and y,o= 1+at . This gives a wake

field behind the pulse for which yfo~ I+(t, ~ 1/y~o and
the maximum axial electric field of this wake field is given
by P~,„=(y~o—I)/y~o, where E= ~e~E, /(moc k ) The.
nonlinear wavelength of the wake field is given by

=4ytoE(po)/kz ~4y~o/k for y~o &) 1, where

po =(&io 1)/r io-
The large amplitude axial electric fields associated with

the plasma waves can be utilized to accelerate an injected
beam of electrons to high energies (LWFA). ' ' In the

region where 5n /no & 0, the transverse profile of the plas-
ma wake field can lead to a negative transverse gradient
of the refractive index, arI/ar &0. Equation (9) indi-
cates that a properly phased trailing laser pulse (located
at a maximum in (II, ) may, therefore, be optically guided.
From Eq. (16), it is seen that harmonic generation can be
substantially enhanced in a properly phased (located at a
minimum of P, ) short trailing laser pulse propagating in
the wake field generated by a leading laser pulse when
—1&/&0. In addition, the sharp axial gradient in
5n /no for a highly nonlinear plasma wake field could in-

duce large frequency shifts in a short trailing laser
pulse 17, 1 8

D. Laser pulse frequency variations
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ck
f(g, r)= — I [1—Pl(1+/))d~' .

The laser frequency is

~, (g, r) = —a(kg+ q)/ar

(20)

=ck + (ca/ag —a/ar)y

=ck[1+(k /k) /2]+bee,

where hen is the frequency shift due to the plasma wave,

As the laser pulse propagates in the plasma, the excited
plasma wave can modify the laser frequency. ' ' To ana-
lyze this effect we use the representation in Eq. (8) and set
al (g, r) = ~aL(g)~exp[if(g', r)], where ~aL (g')

~
denotes the

laser pulse envelope, and g(g, r) is real and denotes the
slowly varying phase shift. Substituting (8) into (6a) we
find that

FIG. 3. Density variation bn/no=n/no —l and axial elec-
tric field E, in GeV/m for a laser pulse located within the re-
gion L~ /~0, where L =A~—=0.03 cm and aL =2.0.

0

ck

2k
a

1+(t 'ag Io 1+((
(21)
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ck

2k Bg o I+/ (22)

and the refractive index g=ckL/coL is given by Eq. (9).
The validity of (21) is based on the assumption that P is

slowly varying; this breaks down when the frequency
shift approaches the laser frequency, i.e., ~

b,co
~

-ck.
For ~P~ &&1, P is given by Eq. (11) and the laser fre-

quency shift for c~/L &&1 is given by

boo= —ck(k /k) (ai~r/8)k~

X j ~aL(g')~ cosk (g' —g)dg'. (23)

For a short-pulse laser (L « A, ), assuming an interaction
time ~=~&, and spot size r, & I, , the frequency variation
within the pulse is given by Leo/co =(n /2) (A, /
A. )aL Bg/Bg«1. Frequency variations induced on a

0

short-pulse laser propagating in a plasma wave generated
by a leading laser pulse can also be analyzed. ' '

E. Frequency ampli6cation using an ionization front

A laser-induced ionization front may also be used to
upshift the frequency of a laser pulse. ' An intense pump
laser with a short rise tiine (& 1.0 psec) may be used to
ionize a gas as it propagates. This creates a moving ion-
ization front in which the plasma density goes from zero
to large values (-10 ' cm ) within a very short distance
(&0.01 cm). This sharp plasma density gradient propa-
gates at the group velocity of the pump laser, which may
be approximated by U 0/c =(1—co2/coo)'~, where coo is

the frequency of the pump (ionizing) laser and co& is the
plasma frequency of the ionized gas. One possible
method for upshifting the frequency of a laser pulse is the
following. A secondary short (&1.0 psec) laser pulse
propagates nearly parallel with the pump laser. By phas-
ing the secondary pulse such that it "rides" the large den-

sity gradient of the ionization front, the frequency of the
secondary pulse may be upshifted in much the same
manner in which a plasma wave may be used' ' to up-
shift the frequency of a laser pulse. For a linear gradient
in the ionization front moving at velocity c, it can be
shown that the frequency of the secondary laser pulse is
given by

2

co(z) =co(0) 1 —z
~p 8 n(g)

1/2

(24)

where co(0) is the initial frequency of the secondary laser
pulse, B(n /no) IB(=—1/d, d is the spatial gradient
length of the ionization front, and z is the interaction
length. As an example, consider a KrF laser [A,(0)=0.26
pm], an ionization density of no=10 ' cm (A. =1.0
mm) with d =0.01 cm and z =1.0 m. This gives
co(z =1 m)=26co(0) or A, =0.01 pm. Notice that it may

For completeness, we note that the wave number is given

by

k (g, r)=B(kg+/}/Bg=k+bk,

where

be possible to tune the upshifted frequency by varying the
interaction length. However, due to the difference be-
tween the laser pulse velocity and the ionization front ve-

locity, the laser pulse will eventually slip out of the region
of the ionization front, thus limiting the interaction dis-
tance.

Alternatively, more dramatic "amplifications" in the
frequency' may be achieved by considering a secondary
laser pulse propagating nearly collinear to the pump
laser, but in the opposite direction. In this case the ion-
ization front of the pump laser appears as a relativistic
plasma mirror moving towards the secondary pulse.
Hence, part of the incident secondary pulse will reflect
off this ionization front. The frequency of the reflected
radiation, co„wi11 be relativistically Doppler shifted,
co, =4(coo/co~) co;, where ai, is the frequency of the in-

cident radiation. This frequency amplification may be
quite large, and one can envision co, to be in the x-ray re-

gime. The power of the reflected radiation, however, will
most likely be small for two reasons: (i) The power of the
incident radiation needs to be suf5ciently low so as not to
appreciably ionize the gas, and (ii) the ionization front
may be a "poor" mirror, the reflectivity of which is
dependent on the profile of the plasma density as well as
on the ratio ru, /co . It should be noted that an electron
beam may also be used in place of the pump laser to
create an ionization front.

F. Single-particle acceleration

As a final point we note that electrons, initially at rest,
can be accelerated axially by experiencing only the trans-
verse laser fields. The axial acceleration is due to the
v X B force on the electrons. In the absence of a plasma,
the scalar potential vanishes, /=0. Equation (7b) shows
that after experiencing the fields of a laser pulse, an elec-
tron, initially at rest, will acquire a final energy given by

Ef =(af /2)moc, where af is the final value of the laser's
vector potential. This is reasonable since af is propor-
tional to the area under the electric field. From Eqs. (7b)
and (7c) we find that the final ratio of the magnitude of
the axial to transverse velocity is

~ p, /pilaf
= ~af ~

/2.

IV. DISCUSSION AND CONCLUSIONS

Based on a 1D nonlinear quasistatic model, a number
of different laser-plasma interaction phenomena have
been discussed. Relativistic optical guiding is shown to
depend strongly on the laser pulse duration. In the long-
pulse regime, optical guiding requires a minimum level of
total laser power, i.e., the critical power. However, the
leading portion of the pulse wi11 experience diffraction.
In the short-pulse regime, relativistic guiding effects are
greatly diminished by the density response and the longi-
tudinal motion of the electrons. As the electron quiver
motion becomes highly relativistic, the plasma response
current develops harmonics. This process is analyzed
and it is shown that coherent harmonic generation is
more effective for short pulses than it is for long pulses
with slow rise times. The generation of nonlinear plasma
wake fields by intense, short pulses was examined, and
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wave steepening is observed for very intense laser pulses.
Various applications of the plasma wake fields may be
possible, including (i) the acceleration of a trailing elec-
tron bunch (laser wake-field acceleration), (ii) optical
guiding of a trailing laser pulse, and (iii) enhancing the
coherent harmonic radiation generated by a trailing laser
pulse. In addition, the 1D nonlinear model has been used
to calculate the frequency shifts induced in a laser pulse

by a plasma wave, as well as single-particle acceleration
by a laser pulse. The possibility of frequency
amplification by using a relativistic ionization front may
lead to a source of coherent x rays. The viability of this

process requires further investigation. The above results
are based on the 1D model, which requires that the laser
pulse be wide (r, )A~). For the case of a narrow laser
pulse (r, (A. ), the plasma response may be quite different
than predicted by the 1D model. Generalization of the
above results to include 3D e6'ects will be the subject of
future research.
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