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Modified nonlocal heat-transport formula for steep temperature gradients
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A nonlocal heat-transport formula is derived by including the electrostatic potential and then

solving the reduced Fokker-Planck equation for strongly inhomogeneous laser-produced plasmas.

Our typical result shows a further reduction of the streaming heat-flow value which corresponds to

a flux-limiting factor /-0. 04.

I. INTRODUCTION

In the past few years attempts have been made to un-
derstand the heat-transport phenomena in strongly inho-
mogeneous laser-produced plasmas. It is now well under-
stood that the classical Spitzer-Harm theory' of heat con-
duction breaks down when the mean free path of high-
energy electrons becomes comparable with the tempera-
ture scale length. In fact, for steep gradients numerical
simulations have shown that the problem of heat trans-
port becomes nonlocal. ' A number of nonlocal models
have been proposed ' to reproduce the simulation re-
sults. Using such models, the effect of the electrostatic
potential on heat transport has been studied by Kishimo-
to et al. ' with a simple Krook-type collisional model
and by Luciani et al. with a Fokker-Planck collisional
term. The latter showed that the effect of an electric field
on heat transport is simply to multiply the heat flux by a
factor of 0.4, which is the usual Spitzer correction. Re-
cently, Albritton et a/. " included the electric field effect
and proposed a new nonlocal heat-transport formula by
solving the reduced Fokker-Planck equation, assuming
the kernels are not modified by the electric potential since
only the high-energy electrons take part in heat trans-
port. On the other hand, Bendib et a1. ' challenged this
assumption by suggesting that in the corona of a laser-
produced plasma a strong ambipolar field may exist that
would prevent the electrons from escaping toward the
vacuum. They instead proposed a simple phenomenolog-
ical nonlocal heat-transport model, showing good agree-
ment with numerical simulation and indicating that the
assumption of Albritton et al. "was not quite correct.

We, in this paper, attempt to solve the reduced
Fokker-Planck equation in the presence of steep gra-
dients as well as the electrostatic potential as Albritton
et al. did, but free from their assumption that only high-
energy electrons are responsible for heat transport. We
therefore retain the electrostatic potential and systemati-
cally investigate its effect on heat transport. We solve the
reduced Fokker-Planck equation without assuming e ) eP
and derive the expression for particle and heat fluxes by
considering the local Maxwellian distribution function of
the type considered by Cairns and Sanderson. ' The lim-
iting cases for steep and gentle gradients are also investi-
gated.

II. DERIVATION
OF THE HEAT-TRANSPORT FORMULA

We start with the Fokker-Planck equation for electrons
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Here, f(x, v, p, t) is the electron distribution function,
p=cos0, where 49 is the angle between the velocity and X
direction and F. represents the electric field. The term on
the right-hand side of Eq. (1) is taken as the Fokker-
Planck collision term, '
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where A,, is the energy loss mean-free-path and A,90 is 90'
scattering electron-ion mean free path. " We now assume
high-Z plasma and approximate fo in the parallel

where C, D~~, and D~ represent, respectively, the
coefficients for slowing down, and diffusion in velocity
space and angular space due to electron-electron and
electron-ion collisions. We shall use the high-velocity
asymptotic forms' of these coefficients because most of
the energy transport takes place at velocities of three to
four times the thermal speed.

Using the diffusion approximation in which

f =fo+pf, and taking the first two moments of Eq. (1)
with the collision terms expressed in Eq. (2), we get
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diffusion term by the local Maxwell-Boltzmann distribu-
tion fMB of the type considered by Cairns and Sander-
son' fMB=n(m/2n. T) ~ exp[ (—mv /2+eP)/T], so

that Eqs. (3) and (4) can be rewritten as
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Transforming the independent variables from (x, u, t) to
(x, st), w, here s=mu /2 —eg(x, t), the above two equa
tions become the usual reduced Fokker-Planck equations

where g=x/X„ it=A/4(s+eP), and X, =(—,'X9oX, )'~ .
Since the potential P is slowly varying, we can solve Eq.
(10) by using a WKB physical optics approximation' and
obtain

dyed Y~ exp[ (4 4') /( Y'" Y")l

[~( Y~4 Y4)]1/2

fMB(k' Y')X, , Y=e+eP .
T

Notice that the electrostatic potential P is implicit in the
distribution function fMB as well as in Y. The particle
and energy Auxes are defined as

1f we assume slow temporal variation for the distribution
function as well as for the potential' '"

P then the above
two equations give

I
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Substituting the value of fo in Eq. (12) we obtain
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where I(8 ), J(8), K (8), and L (8) are the same propa-
gators as described by Albritton et al. " with
8= f"„dx"/X, (x")T (x'). Notice that our J and Q ex-

pressions are more general than those of the previous
model, since E) eP or eP has not been made zero every-
where except under the differentiation. The extra ex-
ponential term exp( eP/T) plays a—critical role in the
limiting cases of steep and gentle temperature gradients.
First, it is convenient to split the electrostatic potential
into local and nonlocal parts, eg=ePL —ePNL, where
eg„=5T/2 as obtained by Spitzer and Harm' on ignor-
ing density gradient.

In the limit of steep gradients (which corresponds to
small e), the charge neutrality condition gives the fol-
lowing result:

eP /T=ln(T'~ )+C, ,

where the constant of integration C& may be obtained by
the condition that PNL becomes zero when the problem
becomes local so that

I

The heat-Aow expression becomes
1/2

Q,„=0.25
X90 T' '[(T /T )' —1]
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where Tc and TH are the temperatures of hot and cold
species of electrons, respectively.

On the other hand, for large e, the problem becomes
local and J =0 condition gives

epNL/T =
—,'ln( T)+ C2

where C2 is determined through the condition that pNL
becomes P„when T becomes Tc, i.e.,

ePNL/T =
—,
' —

—,
' ln(T/Tc) . (16)

Q = —25. 532n (T/M)' AM„P with AM„P= T A9o .

With this value of PN„, the classical value of heat flux is

recovered for T = Tc:

e PNL/T = ln( T /Tc )
' (14)
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TABLE I. Inhibition factor /as proposed by di6'erent nonlo-

cal models (for Z =5).

Model

0.12 Luciani, Mora, and Virmont (Ref. 6)
0.1 Luciani, Mora, and Pellat (Ref. 7), for TH=2T~
0.3 Albritton et al. {Ref. 11), for TH=2T&

and lnA, , =2lnA, ;
0.04 Our result for TH =2T& and lnA, , =2lnA, ,

III. RESULTS AND DISCUSSION

streaming heat flux. The values of/in previous nonlocal
models lie between 0.1 and 0.3, which is in agreement
with the result of Wyndham et al. ' On the other hand,
our model calculations suggest /-0. 04, resulting in sub-
stantial inhibition. This is in agreement with the experi-
ments of Mead et al. ,

' of Fabbro et al. ,
' and of Yaako-

bi et al. ' ' for which /-0. 03 was observed. We there-
fore claim that our modified expression of heat flow, as
given in Eq. (14) with eP=eP —ePNt, describes fairly
well the heat-transport phenomenon in steep temperature
gradient. It not only describes the inhibited heat flow but
also reproduces the classical expression of heat flow in
the local limits.

Our main result is the maximum heat-flow expression
in Eq. (15). The temperature dependence differs from the
result of Albritton et al. (TH~ TP )—. Table I compares
the values of Q,„/QFs for various models, choosing
Z =5 and TH =2Tc where Qz& =n ( TH /m)'~ is the free

ACKNOWLEDGMENTS

This work was partially supported by ICSI World I.a-
boratories, WL-CHEPCI Project (Islamabad), and Pakis-
tan Science Foundation, Project No. C-QU/Phys(50).

'L. Spitzer and R. Harm, Phys. Rev. 89, 977 (1953).
2D. R. Gray and D. J. Kilkenny, Plasma Phys. 22, 81 (1980).
A. R. Bell, R. G. Evans, and D. J. Nicholas, Phys. Rev. Lett.

46, 243 (1981).
4R. J. Mason, Phys. Rev. Lett. 47, 652 (1981).
SS. Skupsky, in Transport 8'orkshop (Laboratory for Laser Ener-

getics, Rochester, 1983).
J. F. Luciani, P. Mora, and J. Virmont, Phys. Rev. Lett. 51,

1664 (1983).
7J. F. Luciani, P. Mora, and R. Pellat, Phys. Fluids 28, 835

(1985).
J. F. Luciani and P. Mora, Phys. Lett. A 116, 237 (1986).

9J. F. Luciani and P. Mora, J. Stat. Phys. 43, 281 (1986).
' Y. Kishimoto, K. Mima, and M. G. Haines, J. Phys. Soc. Jpn.

57, 1972 (1988).
"J. R. Albritton, E. A. Williams, I. B. Bernstein, and K. P.

Swartz, Phys. Rev. Lett. 57, 1887 (1986).
A. Bendib, J. F. Luciani, and J. P. Matte, Phys. Fluids 31, 711
(1988).

' R. A. Cairns and J. J. Sanderson, Rutherford Laboratory An-
nual Report, 1981 (unpublished).

' I. P. Shkarofsky, T. W. Johnston, and M. P. Bachynski, The
Particle Kinetics of Plasmas (Addison-Wesley, Reading, MA,
1966).

' A. R. Bell, Phys. Fluids 28, 2007 (1985).
' E. S. Wyndham, J. D. Kilkenny, H. H. Chuaqui, and A. K. L.

Dymoke-Bradshaw, J. Phys. D 15, 1683 (1982).
' W. C. Mead et al. , Phys. Rev. Lett. 47, 1289 (1981).

R. Fabbro et al. , Phys. Rev. A 26, 2289 (1982).
' B.Yaakobi et al. , Phys. Fluids 27, 516 (1984).

B.Yaakobi et al. , J. Appl. Phys. Fluids 57, 4354 (1985).


