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Directional solidification cells at low velocities
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Profiles of deep solidification cells are computed numerically in the framework of the one-sided

model of directional solidification. Previous results obtained for a constant miscibility gap (K =1)
are confirmed and extended to arbitrary K values for small Peclet numbers (P ((1). Various ap-

proximate relations between experimentally measurable quantities are deduced from a viscous finger

analogy and tested numerically. %e point out an erat'ective parameter that should prove useful in

comparing the miscellaneous experimental results.

INTRODUCTION

In directional solidification experiments, a dilute
binary mixture is drawn at constant velocity U across a
linear temperature gradient. Above a critical pulling
speed U„ the interface between the liquid and solid parts
becomes cellular, with deep liquid grooves separating
periodically spaced fingers of solid. Aside from its in-

trinsic metallurgical importance, this phenomenon is a
prototype pattern-forming system, where a complex non-
linear structure is created out of a simple shape (here the
planar front) by an underlying instability: the Mullins
and Sekerka instability of crystal growth. It has thus at-
tracted much interest (for a review, see Ref. 3). In partic-
ular, the question of wavelength selection has been con-
sidered numerically both for finite-amplitude cells ' and
deep cells. We and others have concluded that no
preferred wavelength can be determined from a steady-
state analysis, but that a well-defined shape is always ob-
tained once the wavelength is fixed. Our previous results
were restricted to the case of a constant miscibility gap '

(partition coefficient equal to 1), and to the one-sided
model of solidification where impurity diffusion is entire-
ly neglected in the solid phase. The last restriction great-
ly simplifies the global analysis but does not seem to
modify the cell shape. In the present paper, the analysis
is detailed and generalized to a gap varying linearly with
the concentration of impurity. As previously, we focus
on the regime where the impurity diffusion length I„
(given by 2D/U, with D the diffusion coefficient in the
liquid) is much greater than the cell wavelength a, both
because it is an experimentally meaningful regime and be-
cause an analogy with the viscous fingering problem can
be pursued. '

Using this analogy, we have established approximate
relations pointing out a unique and relevant dimension-
less combination o.,~ of physical parameters and have
checked them numerically. We have tried to present the
different results, which a priori depend on several param-
eters, in a unified way. Some of the approximate derived
relations have been already obtained by Bilha and co-
workers" on more phenornenological grounds by an ex-
tended compilation of experimental data in the cellular
and dendritic regimes. We have summarized our main

results and given the expressions of the relevant dimen-
sionless quantities in the first part of this paper for the
convenience of the reader that is not interested in the de-
tails of our analytical and numerical techniques. Sections
II and III contain our derivations of these results. In Sec.
II, we show how the analogy with viscous fingering can
help to extract the relevant parameters. Section III is de-
voted to a detailed exposition of our numerical method,
based upon the Green's-function technique, a useful tool
to solve the free-boundary problem.

I. NUMERICAL RESULTS AND APPROXIMATE
RELATIONS

It is usual to gather the different parameters which de-
scribe a directional solidification experiment into the fol-
lowing four typical lengths.

(i) The spatial periodicity u.
(ii) The impurity diffusion length in the liquid phase

I~ =2D/U.
(iii) The thermal length I, as given by m ACO/6 with I

the absolute value of the slope of the liquidus, 6 the tem-
perature gradient, and ACD the miscibility gap at the
melting temperature of the planar interface. We consider
a phase diagram where the miscibility gap is either con-
stant or linearly dependent on the melting temperature.
The former case corresponds to a segregation coeScient
K (Ref. 11) equal to 1, the latter to a coefficient smaller
than 1.

(iv) The capillary length do arising from the Gibbs-
Thomson relation with do=Tfy/ImhCo, y being the
surface tension, Tf the melting temperature of the pure
material, and L the latent heat.

This choice is the minimal one and it supposes that
several simplifying hypotheses have been made. We have
neglected solutal diffusion in the solid phase and thermal
diffusion due to the released latent heat in both phases.
We have assumed equality of heat capacity for the liquid
and the solid phase. Finally we have hidden the anisotro-
py of surface tension e in do. The physical meaning of
these lengths come from the Mullins and Sekerka stabili-
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A. Selection of Anger shape

When one injects air in a linear Hele-Shaw cell filled
with oil, the planar interface between air and oil is unsta-
ble and after a transient period the interface takes the
form of a long finger of air moving at a constant speed
along the middle axis of the cell. ' The finger profile can
be entirely characterized by the ratio A, of the finger
width to the cell width. The relative width A, depends on
the experimental conditions but only as a function
F(as') of the dimensionless surface tension coefficient
crsr. as~ is given by the ratio b r/(48@ Ua ) where b is
the Hele-Shaw plates spacing, a their half-width, IM the
viscosity of the driven fluid, U the constant velocity of
the interface, and T the surface tension. Approximate
formulas can be obtained for the finger shape and the
function F in the two limits of small or large crsz.

When os& is small, the shape is only weakly modified

by capillary effects and is conveniently represented by the
analytical profile discovered by Saffman and Taylor:

y (x ) =—arccos exp[ nx /(1 —A, ) ] . — (1.2)

Here and in the following, the distances are measured in
units of the cell spacing a. As shown by several au-
thors, ' '

A, is related to o.sz, for small o.sz values, by

,' =F(a'sr) ,
—,'—=298a sV—.—. (1.3)

If the surface tension anisotropy e is neglected, A, is al-
ways greater than —,', and X tends to —,

' when os& tends to

ty analysis of the planar solidification front which

demonstrates the destabilizing role of the impurities
diffusion and the stabilizing effect of both the thermal
gradient and the surface tension. With these four
lengths, we can construct three independent parameters,
such as the Peclet number P, the dimensionless ratio v,
and the capillary constant o'

Ir
P =2a/ld, v= —,a =dol, /rr~ .

d

Above the instability threshold (v= —,
' with our conven-

tions if one neglects surface tension coriections), the in-
terface becomes cellular and we want to describe the
shape of the individual cells and the effective parameters
on which they depend.

The analogy between cells of directional solidification
and Saffman-Taylor (ST) fingers is now well known. '

For small Peclet numbers and on a length scale of the or-
der of the cell spacing, the cell tip is well represented by a
Saffman-Taylor finger, while for distances greater than
1/P, the asymptotic tail behavior is reached. In order to
describe the cell profile, one should understand which
viscous finger shape is to be chosen for given parameters
(P, v, a) of a solidification experiment. When such a
correspondence can be made, the cell shape is described
by a single effective parameter corresponding to the sin-

gle parameter o.sz determining the viscous finger profile.
Before explaining this, let us first recall some known re-
sults concerning viscous fingering.

x (8}=+2asr(1—&cos8}, (1.4a)

8
y(8)=+osr/2J dr&cosy with 0~8~m/2 . (1.4b)

0

As expected in this limit, capillary effects strongly
affect the shape of the tip and the predicted shape [Eq.
(1.4)] is very different from the Saffman-Taylor analytical
profile [Eq. (1.2}] in the A, ~ 1 limit. The former is rather
convex while the latter is completely fat. Since the y
coordinate of the finger is bounded by —,

' (the half-width

of the Hele-Shaw cell), Eq. (1.4b) implies that o'sr cannot
be greater than o,„=0.35 and at strong surface tension

the relative width A, reads
' 3/2(a,„—asr)

A, =F(as')=1—
2. 17

(1.5)

Between these two limits which can be handled analyti-

cally, i.e., for arbitrary o.sz values, a numerical investiga-

tion has to be performed. We have solved the free-
boundary problem by use of the Green's-function tech-
niques as described in Sec. III and we have computed the
F function plotted in Fig. 2 in complete agreement with
the results of Ref. 13.

B. Correspondence between a viscous Anger

and a solidi6cation cell

The above results on viscous fingering being recalled,
we can proceed and give the correspondence between a
cell defined by the three independent parameters v, P,
and a and a Saffman-Taylor finger defined either by A, or
osr. As explained above the relative width X of a
Saffman- Taylor finger is a known function of O.sz,
A, =F(as'). Our result is that, when the viscous finger

analogy holds, we have the corresponding relation in
directional solidification

A. =F(o,s), (1.6a)

where A. is the relative width of the Saffman-Taylor finger
fitting the tip of the solidification cell and o.,& is an
effective combination of the different experimental pa-
rameters whose expression is given by'

1 —(1—K)A, cr
O'ea'=

K 2v —1
(1.6b)

It is- important to stress that the function F which ap-
pears in (1.6a) is the same as the function F which ap-
pears in the Saffman-Taylor problem. Note that this ex-
pression has been obtained first' from a marginal stabili-
ty criterion. Before proceeding to testing numerically
Eqs. (1.6), we should explain how to measure A, since this

zero. Ordinary values of e ( ~0.1) modify the selection
function F only at very small surface tension' (our pre-
cise definition of anisotropy is to be found after Eq. 3.6).

The analytical results [(1.2) and (1.3}]are no more valid
as soon as o.s~ grows. In the strong surface tension lim-

it ' (equivalent to A, ~ 1), the viscous finger can be de-
scribed in two parts: the tip and the tail. The tip is given

in term of a pendulum function
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quantity does not have an obvious meaning for direction-
al solidification cells. The hidden A, parameter can be
measured either from the asymptotic behavior of the
profile in the groove or from the geometry of the cell tip.
Let us begin by examining the first possibility. The
profile in the groove depends on the partition coeScient
K. If K is less than 1, it obeys Scheil's law:"

1.00

0.90

0.80

I I l I

y(x)- —,
' —Ax ~ with @=1/(1 —K),

while the K=1 case gives

y(x)- —,
' —A exp( —px) with p=P/(2v 1) .—

(1.7a)

(1.7b)

0.70

050
Our choice of coordinates is illustrated in Fig. 1. The
value of A has been determined in the K=1 case by
matching the two representations —the Saffman-Taylor
finger tip and the asymptotic groove —in their common
domain of validity:

o.sot
0 0.04 0.08 0.12 016 0.20

A =(1—
A, )/2 (1.7c)

with A, the relative width of the Saffman-Taylor finger.
Therefore a determination of the profile in the groove
provides a way of measuring the hidden parameter A, in

the K=1 case. The same strategy can be followed for
K(1. A matching between the tip and the tail region
determines the arbitrary constant A in (1.7a) and gives
(see Sec. II)

1.00

090

0.80

I I l I I

1 (1—
A, )y(x)- ——

2 2
1+(1 K)px—

1+(1—
K)faux„

(1.7d) 0.70

with P= 1/(1 K) and p=—P/(2v 1). Theref—ore, as in

the K=1 case, one can extract A numerically from the
asymptotics in the cusp and deduce the A, parameter asso-
ciated with a given cell. It is then possible to compute k
for the profiles obtained numerically (as explained in Sec.
III) for given values of (P, v, cr ) and test the validity of re-
lations (1.6). This is shown in Fig. 2 and the comparison
between Figs. 2(a) and 2(b) gives a numerical evidence in

favor of this relation, since the gap between curves of
different K values is significantly reduced. A slight
disagreement remains, probably due to our numerical
way of obtaining a precise value of A, when P is not equal
to zero. The possible different cell shapes are shown in

Fig. 3 as function of 0,&. At fixed K, Fig. 4 proves that
the selection function I' is rather weakly dependent on P,
for small P values. The small discrepancy linear in P is

J(y

Solidit'icat&on cell

ST
p5Q k I I I I I I I I

0 0.04 0.08 0.12 0.16 P.20
~ef f'

FIG. 2. (a) A, as a function of e for viscous fingering (ST) and
for directional solidification (P=0.1, v=1) at different values of
K. (b) A, as a function of o,q for the same cases.

not surprising, since relations (1.6) are established in the
vanishing Peclet number limit and are valid up to correc-
tions linear in P. The inhuence of the Peclet number is
also shown in Fig. 5, where it can be seen that the separa-
tion between the tail and tip regions tends to disappear as
P increases. Finally, in Fig. 6, we have plotted some
profiles with the same 0.,~ for different K values. The tips
are identical and the shapes differ only in the tails in
agreement with Eq. (1.7). This leads us to the second way

LIQUID 0.20 .20 0.10 0.04 0.01
~Corresponding

——— ST finger 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

FIG. 1. Sketch of a cell showing the coordinates system used.
FIG. 3. Half-cell profiles for I( =0.1, P=O. l, and v=1 at

different values of o,q.
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0.70
FIG. 6. Half-cell profiles for o,&=0.01, P=0.1, and v=1 at

different values of K.

0.60

0.50
0 0.04 0.08 Q.12 Q.16 Q. 20

ref'f'

FIG. 4. A, as a function of a,& for P=O (Saffman-Taylor
fingering) and P=0.1, 0.2, 0.3 (K=0.1, v=1).

(i) When cr~0, one can calculate the tip curvature
from Eq. (1.2)

a
Ap

m(1 —A, )
with A. =0.5 .

A.
2

(1.8a)

of determining A, . The idea is that when a Saffman-

Taylor finger and a cell tip are superimposable they have
the same tip radius of curvature. So if one wants to asso-
ciate a A, parameter to a given cell one can measure its tip
radius of curvature and take the relative width k of the
related viscous finger. In order to apply this alternative
strategy one needs the relation between A. and the tip ra-
dius of curvature for Saffman-Taylor fingers. Analytical
predictions are known at low and strong surface tensions.

All the curves nicely overlap. This strategy for obtaining
A, is probably the best one if one wants to test experimen-
tally relations (1.6). Unfortunately, since the value of the
tip radius is always confined between two limits
[2.39,6.28] in the cellular regime according to (1.7), the
deduced A, values may be difficult to obtain with high pre-
cision. A partial experimental test of relations (1.6) can
already be found in the work of Billia and co-workers. '

They have not really plotted o,s but instead cr/(2v 1)—
(with their notations 1/F'/ ) versus the dimensionless tip
radius, for different concentrations of the succinonitrile-
acetone alloy (with K=0.1). The plot (which includes the
results of different experiments done by various au-
thors's) covers different values of our typical lengths
dp lf ld but for the same alloy and therefore for the same
value of E. All the experimental results can be fitted to a
unique curve, as expected if cr,z is the good parameter
which selects the tip radius. The global shape of the
curve in the cellular regime also seems compatible with
our prediction. Nevertheless, additional data in the cellu-
lar regime is needed if one wants to test the E dependence
of relations (1.6). It has been noted' in some regime of
parameters that a modification of wavelength changes

a
8p ~max

3.2

(ii) When cr ~o,„,one obtains
1/2

0
6.0

&(0)
5.5-

0.0074 0,026
I

0.06 0.13
a»

0.35

if A, = 1, cr,„=0.35 . (1.8b)
5.0—

Between these two limits, the relation between the tip
curvature and A, (or cr,z) for Saffman-Taylor fingers must
be computed and is represented in Fig. 7. Also in this
figure are presented the tip curvature of our cells for
different values of the partition coefficient I( at fixed I'.

4.5—

4.0-

35—

3.0—

0.20

0.
0 0.2 0.4 0.6

i
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p p)' p~

l I I I I I

0.8 1.0 1.2 1A 1.6 1.8 20

2.5—

2.0
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I I

0.60
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0.70
I

0.80
]

0.90 10

FIG. 5. Half-cell profiles for o,&=0.007 at different Peclet
numbers. P=O is the Saffman-Taylor case; the three other
curves are at K=0.5 and v= 1.

FIG. 7. The curvature at the tip as a function of A, for
Saffman-Taylor fingers and for directional solidification (P=0.1,
v= 1) at different values of K.
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cell profiles only by a global rescaling. This seems to
occur far from the planar threshold but within the cellu-
lar regime. This similarity of profiles at different drawing
velocities could also result from relations (1.6). The
wavelength a is not an adjustable parameter and it varies
empirically with the pulling speed U as a= U ' . The
cell similarities can be explained as follows. Two experi-
ments achieved at different velocities are characterized by
the same o /2v (equal to doD/Ua ) As. a consequence,
they have the same o,s (if one can neglect 1 compared to
2v) and thus the same dimensionless tip radius Ro/a. So
R p scales as the wavelength a. This explanation and its
conclusion are no more valid near the planar threshold
and at the cell-dendrite transition. '

The comparison between computed and experimental
cell shape that we have envisaged until now requires a
rather sophisticated experiment with camera equipment.
Most of the experiments achieved in the past are not so
sophisticated but give a lot of available data. The useful
compilation of Ref. 10 points out two important mea-
sured quantities, the aforementioned dimensionless tip ra-
dius (the cell spacing is used as length unit) and the tip
shift x„relative to the planar front position in the tem-
perature gradient G. These two quantities are strongly
dependent on the global shape of the cell and before con-
cluding this section, we would like to summarize our re-
sults for the second quantity.

C. The tip shift

where 0 is the curvature of the interface and the average
( ) is taken over one period of the pattern. This equa-
tion gives a way to calculate x„ if the shape of the inter-
face is known. From an experimental point of view, x„p
can be measured either directly or estimated by the mea-
sure of the tip temperature, especially in alloys. Our re-
sult for x„„is well represented by the formula

tip 2v —I 1 —
A, 2v —1+ gP 1+(E—1)A, v

(1.10)

So, the cell tip raises in the thermal gradient as the ve-
locity is increased from its threshold value. This result
depends on the Saffman-Taylor parameter A, . The first
term on the right-hand side of (1.10) is mainly due to the
cusp tail, and thus does not depend on the details of the
tip shape. This term is the dominant one in the small
Peclet limit and its expression is derived in Sec. II. This
is not the case for the correction of order o [the second
term on the right-hand side of (1.10)], which is subdom-
inant in this limit and out of reach for our analysis valid
to leading order in P. In fact, from the analysis of Sec. II,
we would expect this correction to depend on the shape
of the cell. Our numerical results are nonetheless con-

When U increases above its threshold value, the tip
moves in the temperature gradient in order to ensure the
impurities conservation relation. Let us note this dis-
placement x„. If one chooses the x axis along the pul-
ling speed U and oriented toward the cold part of the cell,
one has the mean relation [see Eq. (2.7) below]

(1.9)

0.9—
(t(~ tip(

0.8—

07—

0.6—

0.5—

0.3—

0.2—

0.1

0
0.50 G60 0.70 0.80 0.90 1.0

FIG. 8. p~x„~~ as a function of A, for X=0.1, 0.5, and 0.8
(P=0.1, v=1). The curves indicated by "th." (theoretical
value) are those given by (1.10). The case E=0.1 also shows the
curves corresponding to P=0.2 and P=0.3.

sistent with a correction equal to (2v —1)o /v as shown in
Fig. 8. The correction term has been fitted with highest
accuracy in the range of small (1—

A, ) since it is negligible
as soon as P is small compared to (1—

A, ) (o being re-
stricted to the interval [0,(2v —1)crm,„]). tux„~ has no
Peclet dependence as shown in Fig. 8, so its measure
gives precise k values in the cellular regime as mentioned
in Refs. 1 and 10. If the surface tension is known, the
selection function F can then be directly measured. Hav-
ing summarized our results, let us present the analytical
approaches which have been used for their derivation.

II. ANALYTICAL APPROACH IN THE SMALL
PECLET NUMBER LIMIT

In this section, we want to generalize to any K values
(less than 1) the results of Refs. 5, 6 and 9 which are re-
stricted to the case of a constant miscibility gap (E= 1).
We want to show that in the small Peclet number limit
(P «1), the tip region of the cell takes the form of a
viscous finger whose effective surface tension parameter
o,s is given by Eq. (1.6) above. We will use the same
theoretical approach as in Refs. 7 and 15 so our analysis
is valid in the strong surface tension limit. In fact, our
numerical results prove the approximate validity of our
findings in the whole surface tension range. An alterna-
tive theoretical approach has been proposed in the limit
of vanishing K values but for an arbitrary Peclet number.
Our results show that the cell shapes do not depend sepa-
rately on the various experimental and material parame-
ters, but only on the combination cr,~, which is therefore
the important one for the comparison of different experi-
mental results. This has also been emphasized in Ref. 10
on more phenomenological grounds.

Let us first recall the basic equations of directional
solidification in the framework of the one-sided model,
where the chemical diffusion in the solid is neglected.
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In the bulk, the relative impurity excess u (x,y) =
[C(x,y) —C„]/AC obeys the stationary diffusion equa-
tion:

Impurity conservation can therefore be written as

O=K dy 1 —u;„, = — dy x;„,+O.Q—1/2 V 0
aU au
~U Pa (2.1a) (2.7)

while on the interface, one must apply both the .Stefan
and the Gibbs-Thomson laws:

[K+(1—K)u;„,)Pcos8= —(n Vu);„, ,

u, „,=1+ (x;„,+crQ),P
2v

(2.1b)

(2.1c)

where u;„, means the u quantity evaluated at the inter-
face, 8 the angle between the normal at the interface and
the growth direction, and Q=y" /(1+y' )

r the curva-
ture of the interface. Due to our choice of coordinates,
some signs in (2.1} may be different in comparison from
more standard formulations.

In order to show the analogy with viscous fingering, it
is convenient to introduce a new diffusion field P related
to uby

I, =—x„+O(1) .

In the groove, the matching with the Saffman-Taylor cor-
responding finger proves that the asymptotic Sheil's law
can be written as (see Appendix A)

f3
1 (1 —

A, )y(x)- ——
2 2

1+(1—K)px
1+(1—K)px„p

We have taken into account the symmetry of the cells
and recovered Eq. (1.9). At dominant order in P, the in-
tegral is evaluated by breaking it into two parts, a first
one I~ corresponding to the tip region (x from zero to
A, /2), and a second one I2 corresponding to the groove (x
from A./2 to + ap ). In the first integral, x can be approxi-
mated by x„with the result

(u —1)—x .
2v
P (2.2) with P= 1

(2.8)

The previous set (2.1) becomes

bP P=P, —ddt

Bx
(2.3a)

The matching procedure can be justified rigorously
only when (1—

A, ) is small. The estimate (2.8) can be used
to evaluate I2 and this gives

[(2v—1)+(1—K)P(P+x);„,]cos8= —(n VP);„, , (2.3b)

P;„,=crQ . (2.3c)

On length scales of order 1 around the cell tip, the
terms linear in P are negligible compared to the Lapla-
cian in the diffusion equation (2.3a). Therefore, Eqs. (2.3)
are identical to the Saffman- Taylor equations with
[p=P/(2v 1)]—

I2 = [[1+(1—K)px„]/K —1) +0(1) .
2p(1 —K) tIP

Therefore, we finally obtain the tip position as given be-
fore in Eq. (1.10):

1—
pxt~p +0 (P)

(2v —1)[1+(1 K)px„)— (2.4)
If we use this estimation of the tip position, we obtain the
desired expression (1.6) for cr,ff

playing the role of the parameter crsz in viscous fingering.
Note that according to (2.2) x„„is expected to be of order
1/P.

To proceed further, we estimate the position x„ofthe
cell tip at dominant order in P; this is most easily done by
using the impurity conservation law. Let us establish it
by integrating Eq. (2.1a) in the melt domain X in front of
the cell. This gives

0= dx dy hu —P

=f f dx dy hu P f dy u [x,„,(—y)], (2.5}

where we have used the fact that u goes to zero as
x ~—~. The integral of the Laplacian can be evaluated
using the Gauss theorem:

f f dxdyb, u= f dsn. Vu
X ar

=P f dy [K+(1—K)u;„, ] . (2.6)—1/2

1 —(1 —K }A, cr
0ea K 2v —1

We have therefore justified at small Peclet numbers and
strong surface tension (cr,fr~cr, „) the approximate rela-
tions used in Sec. I. Our numerical results explained in
Sec. I show that the last limitation is not a real one, since
all the approximate relations are numerically satisfied for
arbitrary o- values.

III. GREEN'S-FUNCTION FORMULATION
AND NUMERICAL SCHEME

This part is devoted to the numerical determination of
the cell profile. In order to solve the diffusion equation
with its nonlinear boundary conditions on the unknown
interface, we use the Green's-function technique. As for
the needle-crystal growth, ' this gives a convenient way
to handle the free-boundary problem. Contrary to Refs.
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1 —(P/2)(x —xo+)x —xo )

where

( P /2 )( x0
—x )

e '
ln/(. +c.c.

4a (3.1a}

5 and 22, we do not restrict ourselves to the K=1 case.
So, let us recall the integral equation to solve, within the
one-sided model framework, for an arbitrary partition
coefficient K. The symmetric Green's function can be
found in Ref. 22. Hereafter, we use an approximate ex-
pression valid when (P/4m) « 1, which makes the com-
putation faster:

)(.+ =1—exp22r[i (yo+y) —(xo —x~ ] . (3.1b)

The Green's function obeys the usual differentia equa-
tion

BG
EG(qo, q)+P (qo, q)= —5(xo —x)5(yo —y) . (3.2)

Here q and q0 mean arbitrary points of the liquid phase
q =(x,y) and qo=(xo, yo). In order to find an equation
valid for the interface, one integrates the quantity
[u(q)bG(qo, q) —G(qo, q)bu(q)] over the liquid phase
domain X, fixing the point q0 on the interface defined by
y (x). Using Green's second theorem (10.714 of Ref. 23)
and the diffusion equation, one derives

u q0
—1 = —J dx G(qo, q)n V u —f dx [u (q) —1][y'PG(qo, q) nV G—(qo, q)(1+y' )'/2] . (3.3)

In (3.3) qo and q represent interface points and y'
represents the first derivative of the interface profile with
respect to x. Here, we have chosen the origin of coordi-
nates at the cell tip and taken into account the cell sym-
metry about the x axis (the half-cell profile has been sup-
posed monotonic in order to integrate over the x vari-
able). We have put

2 (P/2)(x —xo+ x —xo) )

( P /2 )(xO —x)
e ' (Ink, ++ink, )+c.c. (3.4)

Taking into account the Gibbs-Thomson (2.16) and the
Stefan (2.1c) laws one finally obtains

=2vf dxy'G(qo, q) —J dx w(q)[y'PG(qo, q) —n V G(qo, q)(l+y' )' ']+(1—K)f dx w(q)y'PG(qo, q),

J dxy'w =f dxy'(x+x, ; +cTQ)=0, (3.6)

with w(q) =(2v/P)(u —1)=x +x„+crQ Here, .x„ex-
plicitly appears since we have chosen the origin of coordi-
nates at the cell tip. It represents the shift of the tip posi-
tion relative to the planar front interface in the tempera-
ture gradient. x„ is implicitly given by the impurity
conservation relation (2.7):

(3.5)
I

shape. This is why a careful treatment is necessary when
x~~, as developed below. In particular, to suppress
the gradient term mentioned above, we have established
an exact identity valid for any function describing a sym-
metric cell:

(xo+x„)/2= f dx y'G

—J dx (x +x„)[y'PG
and depends thus on the profile function solution to Eq.
(3.3). In 0, we can include anisotropy of surface tension.
Here, we choose a four-fold anisotropy which is not un-
realistic for polymer materials used in solidification ex-
periments, ' so hereafter 0 means

+Pf f dxdyG.

This is obtained by integrating

—(1+y' }' n VG]

(3.8)

0~Q( 1 —e cos48),

where 0 is the angle between the normal at the interface
and the x axis, and (3.6) gives

r

x„=2 o (1+e/15)+ f dx [y (x)—
—,'] . (3.7)

0

The major difficulty in numerically solving integro-
differential equations like (3.3) comes from the integrand
singularities when q =q0. In Eq. (3.3) the most severe
one is given by the gradient term (x +x„)V G, in the
asymptotic part of the cell (x ~ oo ). It is only in this re-
gion, as shown in Sec. II and Appendix A, that we can
extract the A. value, important to characterize the cell

V.[(x +x„p )VG]
over the domain X, using Gauss's divergence theorem.
Note that if we set P=O (viscous fingering), we recover
the identity [Eq. (4) of Ref. 22] established by Karma for
the same purpose. Subtracting (3.5) from (3.8) we get

,'crQ(xo)=—(1—2v) f dxy'G

+ cr f dx [y'PG —n. VG(1+y' )' ]Q(x)

+P dxdy G

+(K —1)f dx y'PG(x +x„+oII) .
0 (3.9)



4428 MAURICE MASHAAL, MARTINE BEN AMAR, AND VINCENT HAKIM 41

The last equation can be written in terms of "elementary"
integrals already introduced in Ref. 6 for the X=1 case.
Let us recall their definitions for convenience:

oo d 0 P (P/2)(xp —x)
Y+ =io dx e(x —x) ——Q e ' in&

0 dx 2 +

(P/2)(xo —x)
Z+ — dx g e lnA+

0
(P/2)(xp —x)

Z+ =o dx y'Oe ink+,
0

QQ ( P/2)(xp —x)
Yg =i dx E(xo x)e 1I1A,+

0
(3.10)

(P/2)(xp —x)
dx xy'e ' ln~~ .

0

[e(x) is the sign of x. ] With these notations, the integral
equation (3.9) becomes

o Q(xo)[1 —2y (xo)]+2(I, 2vI2 ——o J, )

+ Re (2v+1)(Z++Z ) ——(Z+ +Z ) —2( Y+ —Y ) —( Y+ —Y )

+(I(.' —1) 2[I, I2+P—I&+o (J2 —Ji }]— Re(X+ +X +Z+ +Z' )+Px„~ 2Iz — Re(Z+ +Z )
P 1 =0,

(3.11)

with

I, = f "dx
xo

I2= X
xp

I3 = dx
xo

J,=f "dx
xp

J)= dx
xo

[y —y(~ }l,

[y —y(~ }]e

P(xp —x)
x [y —y ( oo ) ]e

P(xp —x)
y'Qe

(3.12)

= —(1+E/15)+ 1

( 1+y
&2 )1/2

X 1 —e+ —'p 1 1

1+yo ' (1+yo )

Some new integrals had to be defined because the parti-
tion coefficient is different from 1. To recover the in-
tegral equation for the Saffman-Taylor case, one has to
specify the following values:

P =0, v=1, K =1, y(~)=A/2 .

The numerical procedure for solving the integral equa-
tion consists in writing a discretized version at every
point x0 of an adequate mesh. The resulting nonlinear
system for the unknowns y, =y(x, } is then solved by
Newton's method. This method requires a zeroth-order
profile to initialize the numerical procedure, before itera-
tions. Although rather powerful, it needs good estimates
for some limiting values of the parameter (v=0.5 or
cr =0.35). So we take advantage of the analytical results
made explicit in Sec. II. We recall that, for small P num-
bers, the neighborhood of the tip can be fitted by a
Saffman-Taylor finger. Moreover, the trial function must
behave correctly in the grooves. In Appendix B, we
prove that the solution of the integral equation (3.11) ex-
hibits the same asymptotic behavior as the one predicted
by Eq. (1.7). Nevertheless, we must consider two cases

I

according to the value of the partition coefficient.
(i} If K= 1, we choose a parametrized zeroth-order

profile given by

yi (x)= —[1+(A, —1)e ""]arccos exp
7T 1 —

A,

(3.13)

for small or vanishing surface tension. One can check
that y P'(x) looks like the Saffman-Taylor finger for x ( 1,
and verifies (1.7b) at large x. When cr is equal to zero, the
numerical solutions are very close to (3.13) when P is not
too large (P & 1.5), for any value of the A, parameter be-
tween zero and 1. With a different choice of the trial
function yP'(x), after some iterates, our code converges
to a solution close to (3.13). From the computed solution
k is extracted at large distances from the tip by use of re-
lation (1.7c). Note that we never obtain X parameters less
than zero, although k is not physically restricted to the
interval [0,1] in directional solidification (contrary to the
Saffman- Taylor case), if one ignores the theoretical
analysis explained above. For large surface tension, as
for the viscous fingering case, a more appropriate tip
profile in terms of the pendulum function has been
chosen in agreement with (1.4). This choice improves the
trial function and makes the iteration procedure quicker
and more efficient.

(ii) If K (1, the trial function for small surface tension
is built in the same way as for the E= 1 case, taking into
account (1.7d):

yP'(x) =—[1+(A,—1)(1+aox) ~]

7TxXarccos exp
1 —

A,

with

I3= 1

1 E' P+px Io'—
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x I„' being computed either by Eq. (3.7) applied to y &,
'(x),

or given by (1.9). Both ways give almost the same value.

As for the previous case, this function set has to be
modified for large surface tension.

To implement Newton's method, the infinite x interval

[0,+ oo [ is first mapped into the finite u interval [0,1], on

which a uniform mesh is defined. The mapping x(u) is

chosen such that x —u when u ~0, so at the origin y
behaves like x' and represents a suitable physical cell
profile. The integrals containing Ink, ~ present logarith-
mic singularities at x-xo (or u —uo) which have to be

subtracted before numerical computation. For example,
we write 1, (P/2, )(xo —x)
Z+ = f du [y'e Ink+ —yolnA. +]

0

+y,' f 'du Inf*,
0

1
p

( P / 2 ) ( x 0
—x ) g

Y+ =i du e(uo —u)[x'(u)e ' Ink+ —xolnA, '. ]
0

]
+ix„' du e(uo —u)Ink+

0

with
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APPENDIX A: MATCHING EQUATION BETWEEN
THE TIP AND THE GROOVE REGIONS

An equation is needed for interpolating between the
Saffman-Taylor-like tip region and the Scheil asymptotic
deep in the groove. This has been done in Ref. 7 for a
partition coeScient K equal to 1 along the lines of Lan-
dau and Levich's classical analysis of the coating film

problem. The easy generalization to the K&1 case is
given here for the convenience of the reader. It has also
been found in Ref. 20 independently of us.

Let us denote the small quantity —,
' —

y (x) by h (x). In
the region considered, the curvature is approximately
given by —d h ldx . Equation (2.3c) reads, therefore,

In A, +, we have developed to first order the exponent
around uo:

X+ =1 exp2n—[2iyo —i (uo —u)yo —uo —ulxo]

X* =1—exp2m[i(uo —u)y 0
—

duo
—uixo] .

d h
P(x, h (x))= —o.

dx

or by differentiation

BP dh BP d'h

dx
(Ala)

This allows us to calculate analytically the substracted in-
tegrals in terms of the dilog function as shown in Ref. 6.
Similar treatments have been applied to the other in-
tegrals and are necessary to extract the A, parameter from
the tail. Since we cannot define precisely where the
asymptotic laws begin to be valid outside of the P=O lim-
it, our A, parameters are defined up to corrections linear
in P. This may explain the linear dispersion in P ap-
parent in Fig. 4.

On the other hand, (2.3b) can be written approximately
as

B~ dh Bd
(2v —1) P(1 —K) o— , —xd h

Bx dx By dx dx

(A lb)

The derivative of the field P on the interface can then be
expressed in terms of the interface profile by solving Eqs.
(Al). This gives, with the same approximation,

CONCLUSION
BP d'h

dx' ' (A2a)

We have presented the results of a numerical computa-
tion of the steady-state cells seen in directional
solidification, in the low-velocity regime. We have shown
that the numerical results can be described using a single
effective parameter. This has been explained by an analo-

gy with viscous fingering. This use of an effective param-
eter should help to compare different experimental results
in a meaningful way and may provide a basis for relations
which have been discovered empirically. ' Two main un-

settled issues in directional solidification are the under-
standing of wavelength selection and the cell-to-dendrite
transition. An extension of the present work to Peclet
numbers of order 1 is needed to address the second one
and see if the transition corresponds to a critical value of
the effective parameter. This remains a task for future
studies.

BP dh d h
(2v —1)—P(1 —K) o —x

By dx dx

dhdh
(A2b)

dx dx3

These boundary conditions can now be used to solve per-
turbatively the diffusion equation (2.3a), taking into ac-
count the slow variation of P along the x axis (the axis of
the groove).

Let us write

4=0 +& +
At zeroth order, the diffusion equation reduces to

Q2p =0 or Po=yA (x)+B(x) .
By
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The reAection symmetry about the middle of the groove
and the boundary condition (A2a) on the interface give
A (x)=0, 8(x)= —crd h/dx .

The first-order correction to P can now be computed.
The diffusion equation reads at this order

'4o ~No

Qy Qx Bx

or

~'0o ~No

(3y (ix Bx
=y P —— +P

The compatibility of this last equation with the boundary
condition (A2b) on the interface gives the equation for
the proNe of the groove that can be matched with the tip
region:

d d'h dho' h = [1 2v P(1—K)x—]——Ph
dx2

P hdh dhdh
dx dx2

In the asymptotic region, the linear terms are dominant
and one recovers Scheil's asymptotic result Eq. (1.1). In
the tip region (Px «1) one recovers the inner equation
of the Saffman-Taylor problem. Matching between those
two domains determines the constant of Scheil's power
law to be (1—

A, )/2 in the tip region [Eq. (2.8)] as dis-
cussed in Ref. 7.

APPENDIX B: ASYMPTOTICS FROM THE
INTEGRAL EQUATION

In this appendix, we show how to obtain the asymptot-
ic behavior of the cell profile y(x} directly from the
integro-differential equation (3.11). Again we must dis-
tinguish two cases, according to the K value. The K= 1

is somewhat tedious since almost all the integrals of Eq.
(3.11} contribute to the asymptotic behavior. At the
same time, we examine the Sa8'man-Taylor case and re-
cover McLean and Saffrnan's results. ' The K(1 case is
straightforward.

I. %=1

In this case we, look for an asymptotic behavior of the
form

y (x ) -y ( ()0 ) —A e (Bl)

The integrals containing ink, + are somewhat more in-

volved, and we choose Z as an example. To obtain its
asymptotic behavior, we expand the logarithm and split
the integration domain at x0 to write

as x~ Do, where A and p, are constants, and y((x) )=—,
'

(A. /2 in the Saffman-Taylor case). Taking this forin, the
asymptotic behaviors of the integrals I„and J„appearing
in (3.12) are elementary to find. For example,

I, (xo)= f dx[y —y(00)]- ——e
0

Z 1 ~ i 'PI2 2«)(xo —» 2«i(yo —y) "o, (PI2 2nn)(x —x—) 2nni(y —y)+ dx y'e ' e
&

n 0

In the first integral on [xo, 0() [, we can take yo —y =0, so we get easily

f (P/2+2~nNxp x) 2mni (yp —y) p Q expdxp e e
xp 2mn +(p+P/2)

The second integral on [O,xo] can be written

f (PI2 2nn)(xox—) 2'nni(yo —y) '(PI2 —2nn)xo 2nniyo'e ' (xo)

where

xo
) dX yie (PI2 2nn)—xe —2nni—y

0

To obtain the behavior of f (xo), we differentiate it with
respect to x0:

and therefore

f (P/2 —2mn)(xo —x) 2nni (yo —y)dxp e 8
0

p g —pxo

2mn (p, +P/2)—
Thus, we have, with p, P

=p, + P /2,
—(PI2 —2«)xo —2nniy(xo)' xo)=y'(xo)e 'e

For x large, y (x) is nearly constant, so that by integrat-
ing back we find, using y'-pA exp( —tux),

Z (x())- —
4m)M Ae

n=1 4~ ll PP
This series has a closed-form expression (see Sec. 1.44S of
Ref. 23), and we finally get

pA —( p+ P/2 —2n'n)xo(x())- e
2 em (p+P /2)—,

—2n niy
X e '+const,

ReZ (xo)-Z (xo)

~A I2/pP [2/pP cot( p P l2)]e—
(B2)
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The same treatment can be applied to Z+, leading to the
series

&4nny( oo )

2 2 2 7„—) 4mn —Pp

whose real part has also a closed-form expression (Sec.
1.445 of Ref. 23), giving thus

ReZ+(xo)

of the Green's function G) that

Re(Z++Z )=Re(Y+ —Y ) .

The asymptotic expressions of ReZ+ are still given by
(B2) and (B3), but Re Y+ is no longer subdominant and
we find

Re Y+ (xo) —pro p A (2A. —1)

——mA p 2

Pp Pp

cosI [1—4y ( ac )]pp/2 I

sin(p p /2)
opx

+ sin[(2A, —1)p, /2] —ux,
e

sin(p, /2)

(B3)

The dominant behavior of Y~ can be obtained in an
analogous manner, except that exp2srni(yo+y) needs to
be expanded one order beyond the constant term. For
directional solidification [y ( ac ) = —,

' ], we get

Using these asymptotic behaviors in the integral equa-
tion, one gets for the Saffman-Taylor problem [if we dis-
card the spurious solutions p=(2n + 1)sr/a, ]

op =cot[(1—
A, )p/2],

PXO P
Re Y+(xo ) — 2' Ae-

4tr n —(P/2)

2pp

4' n pp
(B4)

which is identical to the relation cote' =~~ obtained by
McLean and Saffman, ' where the correspondence be-
tween the notations is

where the series can be computed. One sees easily that
the terms Re Y+ and ReZ + are subdominant, and putting
(B2)—(B4) into the integral equation (3.11), we finally ob-
tain the relation

[(2v—1 )p P]—2
p p+P

2. E(1
This case is much easier; here we look for an asymptot-

ic behavior of the form

y (x) —
—,
' —Ax (B7)

1
[2/pp cot(pp /2 ) ] =0

Pp
(B5) for x large. The dominant terms are then only I, (xo ) and

Is(xo ):
whose first solution is p =P /(2v 1). Note —that this re-
sult is not modified by surface tension.

In the viscous fingering case, one can first check (by
considering P times the integral over the liquid domain X

I (x )- — x ~ I (x )- ——x
1 0

P 1
0 & 3 0 P 0

so we obtain, by substituting in (3.11),P= 1/(1 —K).
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