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Renormalization of various quantities
for dilute polymer solutions undergoing shear flow
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%'e discuss the renormalization of the stress, gyration, and diftusion tensors for polymers in dilute
solution in the presence of steady shear flow. For all finite values of the reduced shear rate, the
first-order perturbation theory of hydrodynamic-interaction and excluded-volume effects yields reg-
ular functions of the renormalized model parameters. In the high-shear-rate limit, the power-law
dependence of various quantities on the reduced shear rate can be evaluated explicitly.

I. INTRODUCTION

Renormalization-group (RG) theory is a powerful tool
for calculating the properties of polymer solutions. '

Although computational complexity usually makes it
necessary to base RG calculations on perturbative
methods, the RG predictions for various observable
quantities —such as the radius of gyration, the osmotic
pressure, and the zero-shear-rate viscosity —are remark-
ably accurate.

Since the pioneering RG calculations of polymer prop-
erties were based on the existence of a formal relationship
between the statistical mechanics of long polymer chains
and of magnetic systems near their critical points, it is
clear why almost only equilibrium properties have up to
now been calculated by the RG method. It is the purpose
of this paper to discuss the behavior of an infinite number
of quantities —among these the stress and gyration
tensors —under steady shear flow. In particular, we
show that after renormalization of the basic parameters
all these quantities are well behaved, and we give explicit
results for their shear-rate dependence at high shear
rates. Furthermore, we separately discuss the shear-
rate-dependent diffusion tensor.

In principle, there exists a widely accepted starting
point for the RG calculation of nonequilibrium proper-
ties of dilute polymer solutions, namely, a system of cou-
pled Langevin equations for the polymers and the sol-
vent. Since these coupled equations are extremely com-
plicated, the analysis of this paper is based on a diffusion
(or Fokker-Planck) equation for the polymers alone
which can be derived from the coupled Langevin equa-
tions near four dimensions (more precisely, to first order
in a=4 —d, where d is the space dimensionality). The
procedure for calculating shear-rate-dependent quantities
is then exactly the same as in the conventional polymer
kinetic theory based on Kirkwood's diffusion equation
except that all calculations need to be performed in d-
dimensional space. ' "

In Sec. II we present the results of the first-order per-
turbation theory of hydrodynamic-interaction and
excluded-volume effects for an infinite set of shear-rate-
dependent quantities in the long-chain limit. These

perturbation-theory expressions are then expressed in
terms of renormalized parameters (Sec. III), and explicit
results are given in the high-shear-rate limit (Sec. IV).
Since the renormalization constant for the excluded-
volume parameter is not found in the course of eliminat-
ing singularities from the quantities studied in this paper,
we separately calculate this renormalization constant in
order to make it possible to evaluate the fixed-point
values of the renormalized model parameters in the pres-
ence of shear flow (Sec. V). After calculating also the
diffusion tensor for polymers in dilute solutions undergo-
ing shear flow (Sec. VI), we conclude this paper with
several remarks.

II. PERTURBATION THEORY FOR LONG CHAINS

The starting point for the discussion of the flow behav-
ior of dilute polymer solutions in this paper is the Rouse
model. ' In that model the polymers are represented by
linear chains of No identical, spherical "beads" connected
by Xo —1 Hookean "springs. " The solvent is modeled by
an incompressible, Newtonian fluid which is completely
characterized by its viscosity g„and it is assumed to un-

dergo homogeneous simple shear flow, that is, the veloci-
ty field is of the form v, =j I"2, v =0 for j 2, where j is
the shear rate, v the velocity, and r the position vector.
For homogeneous flows, the internal configuration of a
polymer is independent of the location of the center of
mass of the chain. The configurations may hence be
characterized by the Xo —1 connector vectors gl point-
ing from bead j to j+1 (j = I, . . . , Xo —1).

The Rouse model in which hydrodynamic-interaction
and excluded-volume effects are neglected is an exactly
solvable model. ' This model is the starting point for a
perturbation theory of the above-mentioned complicated,
nonlinear effects. ' " Hydrodynamic-interaction effects
are described in the Oseen-tensor approximation which
can be justified only near four dimensions. The expansion
parameter in the perturbation theory of hydrodynamic-
interaction eff'ects is gotVo~, where go is the bead-friction
coefficient. The excluded-volume interactions are usual-
ly described by a potential-energy contribution
V (r r„)= ktt T—uofi(r„—r„) for every pair of beads p, and

41 4413 1990 The American Physical Society



4414 HANS CHRISTIAN Ol I INGER 41

nH O(o)
No

(2}

where n is the number density of polymers and H the
Hookean spring constant. In (2) and in the remainder of
this paper, isotropic contributions to the stress tensor are

v where k~ is Boltzmann's constant, T the absolute tem-
perature, and vo the excluded-volume parameter. The ex-
pansion parameter in the perturbation theory of
excluded-volume e8'ects is voNo . The occurrence of the
factor No in the above expansion parameters for
hydrodynamic-interaction and excluded-volume e6'ects
indicates that in discussing the long-chain behavior it is
crucial to perform the calculations in d =4—e & 3 dimen-
sions.

In the following we study an in6nite set of quantities
6' )(m =0, 1, . . . ), which are defined as follows:

N —10
6(m) N) —2m y Cm(q q )

j,k =1

where the angular brackets denote an ensemble average
and the (No —1)X(N0 —1) matrix C,„=min(j, k)

jk/N—o is the usual Kramers matrix (C is the mth

power of the Kramers matrix). Among the tensors '
there are several important quantities. The tensor 6' ' is
closely related to the polymer contribution to the stress
tensor,

neglected because they do not contribute to the rheologi-
cal behavior of incompressible fluids. The quantity 6"'
is directly observable: 6"' is the mean gyration tensor,
and its trace is the mean-square radius of gyration.

The perturbation expansion for the quantities 6™in
terms of gpN0 and U0No can be constructed in exactly
the same manner as worked out for the stress tensor in
Refs. 10 and 11. The results for chains of arbitrary
length are compiled in the Appendix. In the limit of very
long chains (No~ ~ ), these perturbation-theory results
are found to develop singularities near four dimensions.
These singular terms can be explicitly evaluated for all
values of m and of the dimensionless quantity

No(0 .~'=
12H ~ ' (3)

which is the Rouse-model result for the reduced shear
rate P frequently used in experimental investigations of
dilute solutions,

(4)

where Ti
= —H2/y is the polymer contribution to the

viscosity at zero shear rate. Notice that the parameter po
involves unobservable, bare model parameters, whereas P
is an observable quantity. For m & 1, one obtains the fol-
lowing result:

kg T u() 1 2m.N0O' ' = N() 1+ —+ —,
' ln t 1+ 1+ Qo 3(0

8m

1 2mNo—+ -'ln
e ' I. 6t + ) (K 0+K () )

uo 3 0+ 1+2
2n 8m

2mNo—+ -'ln1

e ' I. 72t~+2hcp K'o

+ups™(130)+Cop' '(Po)

'
1 —{d/2)

H
L'/2

7 (6)

and
r

k~T
Qp —

Vp

—d/2

L e/2

In these equations, L, is a dimensionless, phenomenologi-
cal parameter. One may regard L '/ as the size of a poly-
mer segment which consists of a large number of beads, '

and go and uo as the hydrodynamic-interaction and
excluded-volume parameters associated with such a seg-

where the transposed velocity gradient tensor Ko is
characterized by the components ko; =P05„52J, that is,
the shear rate determining the velocity gradients is re-
placed by the reduced shear rate for the Rouse model,
and where the dimensionless friction and excluded-
volume parameters go and uo are defined as usual 2

ment. The functions p '(po) and p( )(po) are well
behaved (i.e., nonsingular near four dimensions}, tensor-
valued functions of po alone,

gm)(P ) f (m)(g ) I +f (m—)(P )(~ +~ T)

+f 3 (Pp)Kp K p+f 4 (Pp)(Kp+Kp ) (8)

and the function ~' '(pp) has the game structure.
Finally, the number t for m ~ 0 is closely related to the
trace of the mth power of the Kramers matrix,
t =Tr(C }/No™.In the long-chain limit (No~ 0() ), the
numbers t for m 1 are independent of No:

22m —1

(9)

(10)

where the BJ are the Bernoulli numbers [see Eqs. (9.71) of
Ref. 13]:
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III. RENORMALIZATION
OF THE PERTURBATION-THEORY RESULTS

The 1/e singularities in the first-order perturbation ex-
pressions (5) are related to the ambiguity in the definition
of the beads. In a RG treatment, these singularities are
eliminated by introducing renormalized parameters,

N=Z~Np/L,

u Zuo

g =Zggp,

(12)

(13)

and by suitably choosing the renormalization constants
Z~, Z„, and Z&. At equilibrium, the renormalization
constants canceling all singularities to first order in g and
u are well known

1
Z~ Z~(u ) —1+ u

2K 6

2
u

77 E'
Z„=Z„(u)=1—

Z =Z (g, u)=1 —
g
— u .

3 1

8~26 2~26

(15)

(16)

Equation (5) shows the structure of the perturbation-
theory result in the long-chain limit. The functions

'(Pp) and p' '(Pp) can be evaluated explicitly from
the results compiled in the Appendix.

In steady shear flow it is both for experimental and for
theoretical investigations very convenient to introduce
the reduced shear rate (4). In the presence of hydro-
dynamic and excluded-volume interactions, the first-
order expression for P is

2m.No3kp 1 7 1
P=Pp 1— ———+—ln

8~2 p 9 2 L

T

uo 1 13 1 2@No+ +—ln
2@2 e 24 2 L

(17)

where the reduced shear rate for the Rouse model, Pp,
was defined in (3). As can be seen from (4), the factor in
square brackets results directly from the bare first-order
perturbation expression for the polymer contribution to
the zero-shear-rate viscosity. '" The reduced shear rate
P corresponds to the parameter ip ~ yN "~ introduced in
the discussion of Ref. 7 (see also Ref. 2) as the natural pa-
rameter describing the effect of shear flow on the poly-
mers (here, v is the well-known exponent characterizing
the chain-length dependence of the size of a single poly-
mer).

After introducing the renormalized parameters N, g, u,
and the observable reduced shear rate P into (5) and keep-
ing only first-order terms in ( and u, one obtains for
rn &1:

ka& uO' '=L N 1+
2

in(2nN) I[1—uf'i '(p)+ggI '(p)]t 1+[1—uf2 '(i3)+(g2 '(p)]6t +,(K+K )

+[1 uf3 '(p—)+(g3 '(p)]72t~+2K K +[uf~ '(p) gg4 '(p)](—K+K ) ), (18)

where f,' '(P) and g,
' '(P) are well-behaved functions of

p and the tensor K corresponds to Kp with pp replaced by
P, that is, tr;J =P5i;52;. From (18) it is clear that after in-

troducing the renormalized parameters into the first-
order perturbation results, all quantities 6' ' for m ~ 1

are regular functions of N, g, u, and P. It is important to
notice that the renormalization constants (14) and (16) re-
quired for eliminating the 1/e singularities are not
affected by shear flow (for finite values of the reduced
shear rate P). The definition (1) of 6' ' has been chosen
such that no renormalization of 6' ' is necessary for
m ~1.

We have so far discussed only the quantities 6' ' for
m ~ 1. However, according to (2), 6' ' is related to the
stress tensor and hence is a very interesting quantity, too.
For m =0, there are additional singular terms in the
excluded-volume contributions to 6' ' (see Appendix).
These additional singularities can be accounted for by
omitting the first factor in square brackets on the right-
hand side of (5) (except for an irrelevant, isotropic contri-
bution to the stress tensor). Notice, however, that 6' ' is
not an observable quantity and that, for the experimen-
tally accessible stress tensor, Eq. (2) implies that the pre-
factor (k&T/H)Np in (5} depending on the arbitrary

nkitT([1 ——uf~ '(p)+gg2 '(p)]6t, (K+K )

+[1 uf 3 '(p)+(gi3 —'(p)]72tzK K

+[uf',"(p)—gg,"'(p)](K+K')'] . (19)

According to (19},the stress tensor for long chains is a
function of g, u, and P only —independent of the chain
length N. This does not imply that the viscometric func-
tions are independent of N because these material func-
tions are obtained by dividing certain components of the
stress tensor by the shear rate y (or y ) rather than by
the reduced shear rate P. One hence finds for the
molecular-weight dependence of the polymer contribu-
tion to the viscosity and of the normal-stress coefficients
at arbitrary reduced shear rates rt~(P) o- N" and
4 (P) ~N ""(j = 1,2), respectively.

In the standard RG treatment, the factors of the form

f 1 uf I'. '(P)+ (gj. '(P)—] occurring in (18) and (19)
are usually exponentiated, that is, replaced with

definition of the beads is replaced by the observable fac-
tor —nk&T. For m =0, one therefore finds, instead of
(18),
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exp[ —uf' ~(P)+gg' '(P)] in order to obtain expressions
consistent with general scaling laws. '

IV. HIGH-SHEAR-RATE LIMIT

Calculation of the functions f' '(P) and g' '(P) occur-
ring in (18) and (19) for arbitrary P from the first-order
perturbation results compiled in the Appendix is in gen-
eral a very complicated problem that can be solved only
numerically. '" In the high-shear-rate limit, however,
these functions can be calculated analytically.

The key observation for discussing the high-shear-rate
limit is that the dominating contributions in (18) and (19)
come from pairs of beads p and v with ~p

—v~/ND=P
(in discussing the first-order correction terms in u and g,
there is no need to distinguish between P and P0). For
smaller values of ~p,

—v~, that is, for more local effects, a
finite reduced shear rate P constitutes only a negligible
perturbation of the equilibrium situation', for larger
values of ~p

—v~, the corresponding beads are so far
separated that excluded-volume and hydrodynamic in-
teractions are suppressed. A detailed calculation
confirms the above observation and shows that the high-
shear-rate behavior is obtained by subtracting a term
(InP0) from each [—,

' 1n(2trND/L)] in (5). One hence ob-

tains for large P after renormalization and exponentiation
of the first-order perturbation expression,

2v —
1

O' '=L N — [t 1+P'6t +,(tr+tr )
H

+p 72tm +2K'K

+0(e)(a+tt )'], (20)

with

1 u" 3(* u'
V= +, X=

sm Sm 2m
(21)

where g' and u * are the fixed-point values of g and u

which govern the long-chain behavior.
Equation (20) holds only for m ~1. For m =0, the

stress tensor is from (19) found by an analogous pro-
cedure to be

r = —nktiT[p"6t, (tt+a. )+p "72t2tt tr r

+O(e)(tt+tr ) ] . (22)

The exponent x is evaluated in Sec. V.
After discussing the high-shear-rate limit in this sec-

tion, we must point out that (at least) two effects that
might be important at high shears rates are neglected in

The finite corrections to the leading-order InP0 behavior
in the perturbation results, of course, lead after exponen-
tiation to prefactors of order 1 multiplying the power-law
terms in P in (20) and (22).

In particular, we obtain for the high-shear-rate behav-
ior of the polymer contribution to the viscosity and of the
first normal-stress coefficient,

(23)

the model underlying the calculations of this paper: (i)
the inertia of the beads and (ii) the Aow modification of
hydrodynamic interactions. To discuss the relevance of
these two effects it is important to note that in studying
the "high-shear-rate limit" we have considered large,
finite values of the reduced shear rate. Even if the re-
duced shear rate P which describes the effect of the Aow

on the polymers on the scale of the polymer size is large,
the shear rate j for long chains is very small [notice that

imp in (4) is proportional to N" ]. To estimate the effect of
shear flow on a local scale, one has to make j' dimension-
less by multiplying it with the time scale for the corre-
sponding local dynamics that is independent of the chain
length N and hence small compared to P. In other words,
for finite P the effect of shear Aow on any local scale van-
ishes in the long-chain limit. For the small shear rates y
considered here, even in the discussion of the large-P lim-

it, bead-inertia effects should hence be of roughly the
same order as at equilibrium and should thus be negligi-
ble (for a detailed discussion of the effect of bead inertia
on the viscometric functions for the Rouse model, see
Ref. 15). Even if the concept of hydrodynamic-
interaction tensors, which relies on the linearization of
the Navier-Stokes equation for perturbations of the sol-
vent flow field, is assumed to be reasonable, hydrodynam-
ic interactions are affected by the imposed homogeneous
flow field. ' Although it is difficult to determine the im-

portance of this flow modification of the Oseen tensor in
a rigorous manner, rough estimates based on Ref. 7 sug-
gest that for fixed P the shear rate y decays sufficiently
fast with increasing N such that flow modification can be
neglected even on the polymer scale.

V. RENORMALIZATION
OF THE EXCLUDED-VOLUME PARAMETER

In order to evaluate the exponents v and x occurring in
(20), one needs to calculate the fixed-point values g' and
u* in shear flow. These values are to be determined as
those particular values of g and u for which Z&=Z„=O.
The analysis of the preceding sections shows that Zz and

Z& are not affected by shear Aow (for finite )t3). However,
since u0 does not occur in the zeroth-order (or Rouse) ex-
pressions for the quantities studied in this paper, u0 may
simply be replaced by u in the first-order perturbation
corrections and the renormalization constant Z„ in shear
flow remains undetermined. In order to evaluate Z„we
follow Ref. 1 and use the following expression for the re-
normalization constant at equilibrium as a starting point
for our discussion:

Z„(u)=1—
4 lim e f dx f dy f d k 4GQ(x, k)

(2') 6

X 60(y, k),
(24)

where Ga(x, k) is the Fourier-transformed Rouse distri-
bution for two segments separated by x =~p —

v~ along
the chain [here, the Fourier variable k is made dimen-
sionless by means of the length scale (kti T/H )' ]. The
limit @~0is introduced to extract the singular part in an
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Go(x, k) = exp( —
—,'xk'), (25)

and the integrals and limit in the above expression for the
renormalization constant can easily be performed to
reproduce (15). In the presence of shear flow, one has to
replace Go(x, k) by Go(o, x,k) which depends also on the
position (r E[O,NO] of the small loop within the chain
(and, of course, on the shear rate}. For the Rouse model
one has

Go(o, x,k)= exp[ —
—,'k At(o, x) k],

with

(26)

unambiguous manner [in a more rigorous notation, one
should introduce e' and d'=4 —e' under the limit in (24)
and let e' go to zero]. Since only the singular part of the
integrals is relevant, the result should be independent of
the parameter a which characterizes the maximum size of
self-interaction loops (a should be small compared to the
number of beads, No).

At equilibrium, one has

the interacting beads within the chain. Our result for Z„
seems to conflict with a very recent note, ' which arrives
at the conclusion that steady shear flow induces a cross-
over from a self-avoiding-walk fixed point with v=0. 59
to a new, strong-shear fixed point with classical exponent
v= —,

' and u'=0. In Ref. 17, however, the shear rate y
describing the effect of shear flow on a local scale is kept
constant (see the discussion at the end of Sec. IV). In per-
forming a large number of iterated rescalings and going
to increasingly larger spatial scales, in Ref. 17, the effect
of shear flow becomes more and more important; the pa-
rameter characterizing the strength of the shear flow on
the polymer scale (which is the reduced shear rate p) is
infinitely large when the shear rate j is kept constant and
the long-chain limit is considered [cf. (4)]. For the finite
(but possibly large) reduced shear rates p assuined in this
paper, the shear rate y' in the long-chain limit has to go
to zero and the discussion of Ref. 17 is not applicable.

Since neither Z& nor Z„ is affected by steady shear flow

with finite reduced shear rate, the fixed-point values g*
and u * are also unaffected by shear flow,

2

At((r, x) =x1+ s(1 —s)(tto+tt() )
0

VT E
u '=, g' =2''e .

2
' (3O)

224x
&( )z

0
(27) For the exponents v and x introduced in Sec. IV we

hence obtain

and s=(r /No. As a consequence of the dependence
of small loop contributions on their position within
the chain, one has to replace 460(x, k)G&(y, k) in the
expression (24) for Z„with 2GO(o, x, k )Go( r, y, k }
+Go((r, x, k)G&(o,y, k)+Go(w, x, k)GO(w, y, k) [cf. the
diagrams on p. 336 of Oono's review article (Ref. 1)].
The renormalization factor in shear flow might hence in
principle depend on the positions cr and ~ of the beads
(o, r 6 [O, NO]) between which the renormalized
excluded-volume interaction is considered.

To obtain Z„one has to calculate integrals of the form

fd"k Go(o, x, k)Go(r, y, k)=
det[ (o,x)+ (~,y)

(28)

With the above expression for At(o, x},one obtains

det[At((r, x }+At(r,y)]

24P()=(x +y)"+ (x +y)d
No

X[x s (1 s) +y t (—1 —t) ]

36P()
(x+y) [x s(1—s)+y t(1 —t)]

Xo
(29)

For fixed po, the limit No~ ~ should be performed first,
and afterwards the limit @~0should be carried out. The
correction terms containing po in (29) disappear for
No ~ ~ ~ This expresses merely the fact that, on the local
scale of self-interaction loops, every finite reduced shear
rate corresponds to weak shear jhow. Therefore, the re-
normalization constant Z„ is not affected by shear flow.
In particular, it is independent of the positions cr and r of

1 e ev= —+, x= —.
2 16' 2

(31)

VI. DIFFUSION TENSOR

In the presence of a homogeneous flow field v(r)=~-r
(for shear flow, one has (r;, = jfi„-52J ), the diff'usive prop-

The exponent v is the usual end-to-end-distance exponent
in the presence of excluded-volume interactions. The ex-
ponent x governs, for example, the shear-rate dependence
of the polymer contribution to the viscosity and the first
normal-stress coefficient at high shear rates [cf. (23)].
The observation that the linear combination of g* and u *

in the expression for x in (21) results directly from the oc-
currence of the same linear combination in the first-order
perturbation expression for the viscosity [cf. (17)] sug-
gests writing the exponent x as x =4—2vd. Notice that
the exponent x is positive and thus describes shear thick-
ening at high shear rates. This shear-thickening
phenomenon arises because hydrodynamic interactions
are partially switched off when the polymers become
more and more stretched at high shear rates (the viscosi-
ty for long, free-draining chains is much larger than for
non-free-draining chains). The power-law behavior indi-
cates that this switching off is only partial and persists to
arbitrarily high reduced shear rates. Notice, however,
that the excluded-volume contribution to the exponent x
is negative. " A positive exponent x is at variance with a
prediction based on a blob argument. ' In our detailed
calculation summarized in the Appendix, the scale in
which shear becomes relevant for the suppression of hy-
drodynamic interactions ( ~(u

—
v~ =No ip ) is much small-

er than the size of the blobs in Ref. 18
( ~ ~

N yP1/(vd)) 19
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d—&r. . &=» &rc.m. &+ & F'.
dt

(32)

The diffusion tensor 2) can be calculated by falling back
upon Kirkwood's diffusion equation which characterizes
the time evolution of all bead-position vectors and hence
also of the center-of-mass position. After keeping only

erties of polymers depend on the direction relative to the

characteristic directions of the Aow field and hence need

to be characterized by a diffusion tensor rather than by a

scalar diffusion coefficient. A possible definition of the

diffusion tensor 2) is related to the average velocity of the

center of mass, r, caused by an external force F' (cf.

Refs. 20—22),

first-order perturbation corrections to the corresponding
Rouse result, one finds

0n= ' 1+ y &g,n„.&

p
P (33)

where 0„ is the d-dimensional Oseen tensor describing
the hydrodynamic interactions between beads JM and v. '

Since in (33) averaging is only required in the perturba-
tion contribution, the averages of the Oseen tensors may
be performed with the Gaussian Rouse distribution and
are hence closely related to the hydrodynamic-interaction
function & defined in the Appendix. For steady shear
How, one can write

ka T 3'1+
gP'p 8&

1 1 2wXp 3(p i i %( 1

+hi�(x

y)(»p+» p )+h2(x y)»p'» p )+—» 1+, dx dy
327r x —

yl
(34)

where the hydrodynamic-interaction function & may be evaluated in four dimensions and the functions h (x y) and
hi(x, y) are closely related to the matrices S "„'and S '2„' introduced in the Appendix:"

hi (x,y) =3lx —y I [(x +y) —
—,
' lx —yl

—
—,'(x +y)'],

h2(»y)=3lx —yl[ —,'Ix yl
—3(x +y ) —5xy(x+y)+(x+y) (x +y +2)] . (36)

Notice that the double integral in (34) is convergent because for Ix yl ~0 the functions h, and h and hence also the
numerator of the integrand are of order Ix —yl.

At equilibrium (»p=O), the integrand of the double integral in (34) vanishes due to the normalization &(1)=1, and
the diffusion tensor is hence isotropic and reproduces the well-known equilibrium diffusion coefficient. For arbitrary
values of the reduced shear rate, the I /e singularity in (34) is canceled after introducing the renormalized parameters ~
and g formed with the equilibrium renormalization constants (14) and (16),

kBT
'

1 —(d/2)
BL
H

1 3g, 3g i i &(I+h, (x,y)(»+» )+hi(x, y)»» )—11+,(ln2mN —
—,
'

)1+, dx dy
16~ 327r x —y

' 3e/S
1 NOC— 1,

N
(38)

becomes isotropic and follows a power-law dependence
both on molecular weight and on reduced shear rate. For
a fixed reduced shear rate, the molecular-weight depen-
dence of the diffusion tensor can to first order in e be
rewritten in the more familiar form Xl ~ N ' ' 1.

VII. CQNCLUDING REMARKS

We have shown explicitly that in steady shear How the
first-order perturbation theory of hydrodynamic-

Equation (37) is the final, renormalized, first-order
perturbation-theory result for the diffusion tensor in

steady shear fiow. For»AO, the double integral in this
equation must be evaluated numerically.

' The high-
shear-rate limit for the diffusion tensor can be discussed
in the same way as for the quantities 6' ' in Sec. IV. In
this limit, the diffusion tensor

(37)

I

interaction and excluded-volume effects for the stress,
gyration, and diffusion tensors (and an infinite set of fur-
ther quantities) yields well-behaved expressions in terms
of the renormalized model parameters. All the above
quantities are regular functions of the chain length N, the
friction coefficient g, the excluded-volume parameter u,
and the reduced shear rate P. All renormalization con-
stants are found to be independent of the reduced shear
rate. For high shear rates, the various quantities exhibit
a power-law dependence on the reduced shear rate, and
the corresponding exponents have been calculated analyt-
ically to first order in @=4—d. The resulting exponents
indicate that the decrease of hydrodynamic interactions
leads to shear thickening for the viscosity at high shear
rates. For intermediate shear rates, the various universal
material functions introduced in this paper need to be
evaluated by numerical methods. '

The starting point for the discussion in this paper was
Kirkwood's diffusion equation for the polymers general-
ized to d-dimensional space. In that approach, hydro-
dynamic interactions are described in the Oseen-tensor
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approximation which, near equilibrium, can be justified
to first order in e. We here assume that the Oseen tensor
yields a reasonable description of the polymer dynamics
also at high shear rates, and we hence neglect the flow
modification of the Oseen tensor. ' We furthermore
neglect the effect of bead inertia. The limitations result-
ing from neglecting the above-mentioned effects should
be investigated in more detail, and a more systematic cal-
culation based on the coupled Langevin equations for po-
lymers and solvent would certainly be desirable. Howev-
er, calculations of the viscometric functions based on the
coupled Langevin equations are very complicated even in
cases where approximations are made that imply that the
results must be equivalent to those obtained by the ap-
proach employed in this paper.
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+8kHz"a Tr(C + )], (Al)

where C is the Kramers matrix, K is the transposed ve-
locity gradient tensor for steady shear flow, and
AH =gol(4H) is the basic time constant. The results for
6 Ev' and 6 H,

' presented below are straightforward gen-
eralizations of the first-order perturbation theory for the
stress tensor developed in Refs. 10 and 11.

We first present the excluded-volume contribution.
The general result for m ~0 can be written in the follow-
ing form:

APPENDIX

For the quantities 6' (m ~0) defined in (1), the
first-order contributions in the excluded-volume and
hydrodynamic-interaction parameters, 6Ev and 6H, ,
respectively, are summarized in this appendix. These
corrections are to be added to the corresponding Rouse
expression,

k, T
6(mi Ql —2m

[ I fr( C )+2k (K+KT )Tr((™+ i
)R 0 H

() Uo o
N&

—2m

6EV
2 +'V (2m )"

No

( e/2) —1
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=i iP vi V e, ( 1)
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(A2)

where

(A3)

and the matrices

S(m)
pv

2m maX(P, V) —1

j, k =min(p, v)

(A4)

are equal to the matrices S„'„'defined in Eq. (18) of Ref.
11 divided by ~iu

—v~. Since the matrices S„'„' for m ~1
contain a further factor of ~p

—
v~ (at least in the long-

chain limit), the only terms in (A2) which lead to 1/e
singularities near four dimensions are those terms con-
sisting of two factors S, one of which with superscript
"(0)"(notice that S„'„'= 1).

Notice that from (A2) one can conclude that the quan-
tity 2A, H(a 6' '+6' ~ ) is equal to the nonisotropic
part of 6Ev. One therefore has a close relationship be-
tween the excluded-volume contributions to the gyration
tensor and to the viscometric functions. This relation-

ship which may be used to calculate the equilibrium ra-
dius of gyration from the excluded-volume contribution
to the zero-shear-rate viscosity is closely related to the
validity of the Giesekus expression for the stress tensor in
the absence of hydrodynamic interactions.

For conveniently presenting the hydrodynamic-
interaction contribution O, it is necessary to introduce
the hydrodynamic-interaction functions %(o ) and %'(o' ).
Both the argument and the values of the function %(o)
are second-rank tensors:

1 d(d —2) ddk 1 kk

&(2~)"

X exp( —
—,
' k.o k ) . (A5)

The self-consistently averaged hydrodynamic interactions
in d dimensions are described by this function %(o),
whereas the fluctuations in the hydrodynamic interac-
tions are closely related to the fourth-rank tensors
X(o):io
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dependent factors are canceled in the expression for 6 ',
given below [cf. (AS)]. With these h~drodynamic-
interaction functions the contribution 6, can be writ-

ten as

6 (m) —N 1 —2m [p(m +1)+2g ( In(m +2)+ p(m +2) T)
HI a K K

In these definitions, the d-dependent prefactors have been
chosen in the same way as in Ref. 10; most of these d-

+SJ 2 p(m+3) T]HK (A7)

where the tensors C ' ' for m & 1 are defined as follows:
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' e/2
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sym
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The subscript "sym" in the last equation indicates that the right-hand side of (AS) must be symmetrized because the
tensors C' ' should be symmetric [alternatively, one could use nonsymmetrized tensors 8' ' and symmetrize the ten-
sors OH,

' resulting from (A7)]. The tensors &„„'P„'„',and %„'„'occurring in (AS) are defined as follows:

&„„=I+X„(K+KT)S„))„)+2J2HK «'S„"„',
p' '=2J (K+KT)(BBT)m + Sg2 K KT(BB. T)m+1

(A9)

(A10)
max(p, , v) —

1

~~ j =min(p, )

[1(1 5mo)(BC— ')„+2AH(K+K )(BC )„+SXHK K(B'C +')„) . (Al 1)

In (A10) and (Al 1), the No X(No —1) matrix B is defined by B„=(j/No) —8(j —P), where 8(x) is the Heaviside steP
function, i.e., 8(x)=0 for x &0 and 8(x)=1 for x ~0 (in terms of B, the Kramers matrix C can be written as
C=B B). Notice that the tensors %„'„' are regular for v=)M. Therefore, the term involving the hydrodynamic-
interaction function % in (AS) does not lead to I /e singularities near four dimensions.

Equations (A 1), (A2), and (A7) constitute the rigorous first-order perturbation expansion in the excluded-volume and
hydrodynamic-interaction parameters for Hookean chains consisting of an arbitrary number of beads and for arbitrary
shear rates.
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