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Optical nutation in a collinear fast-ion-beam —laser experiment
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Optical nutation in Bau has been studied with a rapid Doppler-shifting technique in a cw col-
linear fast-ion-beam-laser experiment. Time-resolved nutation curves have been recorded as a
function of transition, laser irradiance, laser frequency detuning, and laser polarization. Frequency
spectra recorded at difFerent, well-specified, times of interaction between the ions and the laser field

reveal several interesting efFects. Among them is the pronounced influence of the postacceleration
potential on the line profiles. Theoretical curves, calculated in the density-matrix formalism, repro-
duce all the characteristics of the experimental data. Future possibilities of this technique are dis-
cussed, e.g., the prospects of determining transition probabilities through the measurements of opti-
cal nutation.

I. INr HODUcmiON

When a strong laser field starts to interact resonantly,
or near resonantly, with two-level atoms, the atoms will
be coherently driven up and down between the two levels
until different relaxation mechanisms, such as collisions
and spontaneous emission, have damped out the popula-
tion oscillations and steady state has been reached.
Neglecting damping, the angular frequency 0 of this
transient oscillation is given by

0 =(Di Eo/fi) +(to —too)

where D, 2 is the matrix element of the electric dipole
operator and Eo the amplitude of the 1aser electric field.

The second term is the squared detuning between the
laser field frequency co, and the resonance frequency Np.

In the case of zero detuning 0 equals the Rabi frequency

Qs =D, 2 Eo/fi, which was first introduced by Rabi. '

This oscillation is often called optical nutation because
it is the optical analogy of spin nutation. The analogy
was not clear until Dicke showed that transient electric-
dipole transitions behave in the same way as spin tran-
sients of rf magnetic dipole transitions (e.g. , the spin

echo and the spin nutation ). This is the reason why the
Bloch formalism is often used to describe these optical
phenomena, although it was originally created to de-
scribe nuclear magnetic resonance.

Optical nutation was first seen by Hocker and Tang
using an absorption band in gaseous SF6 and pulses from
a 10.6-pm Q-switched CO2 laser. It was later demon-
strated by Brewer and Shoemaker with a Stark-shift
technique, and Farrell, MacGillivray, and Standage ob-
served it using an electro-optical pulsed ring dye laser.
Recently, Golub, Bai, and Mossberg' have observed op-
tical nutation, among other optical transient effects, in an
atomic beam experiment. Many groups have seen Rabi
oscillations by probing the population as a function of

laser field amplitude (or pulse length), " ' rather than
observing them in the time domain.

A number of different experimental techniques have
been developed during the past two decades in order to
study optical nutation and other (optical) coherent tran-
sients, such as photon echo and free induction decay.
Recently, we reported the observation of optical nutation
in a fast-ion-beam-laser experiment with a rapid
Doppler-shift technique. ' In this paper, we bring the
analysis forward, examine additional features of our ex-
perimental technique and demonstrate that the technique
offers the possibility of direct determination of atomic
transition probabilities.

II. EXPERIMENT

Figure 1 shows part of the experimental arrangement:
An isotopically pure beam of ions is overlapped with the
counterpropagating radiation from a single-mode cw ring
dye laser (CR-699) with an effective bandwidth less than
1 MHz. The ions are rapidly Doppler shifted into reso-
nance with the laser radiation when they experience the
nonzero potential in a Faraday cage. In this work, transi-
tions are induced between levels in the 51 and 6p
configurations (see Fig. 2) in nuclear spin-free singly ion-
ized ' Ba. The degree of excitation of the upper level
taking part in a transition is monitored by measuring the
intensity of the spontaneously emitted, incoherent, light
from this level down to the ground level. In this way one
may observe time-resolved population variations simply
by moving the light collector along the ion beam, as well
as frequency-resolved spectra at any given time after the
pulse onset by scanning the laser frequency with the light
collector at a fixed position.

In order to observe nutation, some crucial prerequisites
must be fulfilled.

(i) The tiine to shift the ions into resonance, i.e., the ion
postacceleration time, must be short compared with the
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FIG. 1. Part of the experimental setup. Inside the Faraday
cage the ions are Doppler tuned into resonance with the coun-
terpropagating radiation. A time-resolved signal is obtained by
moving the reflector along the ion beam, whereas a frequency-
resolved signal is obtained by keeping the reflector at any given,
fixed, position (i.e., time) and scanning the laser frequency.
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FIG. 2. Level scheme of BaII indicating lifetimes and the
transitions used. The transition probabilities are from Ref. 23
(in units of 10 s '); transition 1 (585.4 nm), 0.048; transition 2
(614.2 nm), 0.37; transition 3 (649.7 nm), 0.332.

lifetime.
(ii) The time resolution, i.e., the spatial resolution of

the light-collecting system, must be sufficiently high so
that the nutation pattern will not be smeared out. Also,
the light-collecting system must have a high efficiency
since low ion currents through small apertures have to be
used (see below).

(iii) To prevent a broad distribution of nutation fre-
quencies, the electric field amplitude of the laser light
over the interacting volume of the ion beam must be ap-
proximately constant, and the longitudinal velocity distri-
bution of the ions should be narrow.

(iv) The Rabi frequency, which increases with increas-

ing laser field amplitude and transition probability, must

be of the order of or greater than the homogeneous
linewidth of the transition.

The step rise time is determined by the velocity of the
ions and the smoothly changing electrostatic potential be-
tween the entrance plate of the Faraday cage and the
earthed plate in front of it. Due to the shape of this po-
tential, the definition of a rise time becomes somewhat ar-
bitrary, but a reasonable measure is the time between al-
most no interaction at all and almost resonant interac-
tion. For instance, the time it takes for the center of the
velocity distribution of ions to shift from 500 MHz off
resonance to 30 MHz o8'resonance is less than 3 ns.

The time resolution is determined by the velocity of the
ions as well as the optics of the photon counting system, '

which has been designed to give both high efficiency and
high spatial resolution. The system consists of (see Fig.
1) a movable parabolic reflector, a converging lens, a
broadband monochromator and a photomultiplier tube.
The reflector collects fluorescence light from its focus
with an acceptance angle of about 10% of the total solid
angle and directs it to the photomultiplier tube through
the lens and the monochromator. The spatial resolution
along the ion beam of the movable detection system has
been measured to be 0.30+0.05 mm corresponding to a
typical time window of about 1.3%0.2 ns.

The ion beam is collimated (cf. Ref. 10) to a diameter
of half a millimeter, and the freely expanding Gaussian
laser beam produces at a distance of 3 m a spotsize inside
the Faraday cage of about 2.4 mm. This reduces the vari-
ation of the laser field amplitude over the cross section of
the ion beam, on which the laser beam is centered, to less
than l%%uo.

The kinematic compression of the longitudinal velocity
distribution in a fast ion beam' ' is essential for the ex-
periment. The Doppler contribution to the observed
linewidth at low laser power (less than 1 mW) has been
determined by fitting a frequency scan over the transition
to a Voigt profile, where the Lorentzian contribution is
known very accurately due to the accurate lifetimes avail-
able for these levels. The result is a Doppler width of 35
MHz, which is sufficiently narrow in order to efficiently
use all atoms in the beam; i.e., most atoms will contribute
to the signal recorded. The additional damping due to
this inhomogeneous line-broadening mechanism is small.

Finally, the laser power densities required for nutation
periods in the nanosecond range are easily obtained with
the ring dye laser for the transitions studied here, produc-
ing Rabi frequencies of the order of 50—100 MHz to be
compared with the homogeneous linewidths of 20—25
MHz. It should be noted that in a fast-ion-beam experi-
ment, the only important homogeneous damping mecha-
nism is the spontaneous emission. This is due to the low
density of the ion beam and the low rest gas pressure in
the experimental chamber.

Having fulfilled all the essential conditions, nutation
curves are recorded by the fo11owing procedure: The
light collector is placed far downstream from the en-
trance of the Faraday cage where the electrostatic poten-
tial is close to its asymptotic value. Then the laser fre-
quency is set to the center of the resonance peak of the
actual transition with the laser irradiance strongly re-
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duced with filter to avoid power broadening and subop-
timizing on any sidewing that appears at high intensities.
This procedure defines zero detuning. Measurements at
arbitrary detunings (any multiple of 10 MHz) is obtained

by changing the offset of the ring dye-laser scan control.
The irradiance is measured, between runs, with a cali-
brated diode inserted behind the entrance aperture of the
Faraday cage. A nutation curve is recorded in two
minutes after positioning the reflector to an appropriate
starting point. Since the reflector moves continuously
during a recording, the time resolution decreases from
1.3 to 1.7 ns.

Frequency-resolved spectra are recorded by positioning
the movable reflector at any given fixed position (i.e.,
time) after the postacceleration region and scanning the
frequency of the laser. A more detailed discussion of the
experimental parameters is undertaken in Sec. V.

III. THEORY

Our description of the observed nutation is based on
the density-matrix formalism. The result for an ideal-
ized two-level atom where spontaneous emission has been
neglected has already been given. In our experiment,
however, both of the two levels are degenerate, corre-
sponding to different orientations of the dipole moment,
where the different states are denoted by the magnetic
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quantum number m. Furthermore, the spontaneous
emission is substantial (see Fig. 2). These effects have to
be included in any attempt to reproduce experimental
data.

The laser induces transitions between two degenerate
levels, which we denote 1 and 2, 1 being the lower level
which is metastable. Since the laser light is linearly po-
larized, only dm =0 transitions are induced. The popu-
lation numbers of the 2m states p2 2 will oscillate with
different Rabi frequencies since the dipole moment
D, 2 depends on the magnetic quantum number m (see
Fig. 3 and Ref. 21).

A proper treatment of the spontaneous emission must
be based on quantization of the radiation field, which is
described, e.g. , by Stenholm. We give in the appendix a
treatment where the degeneracy of the levels is explicitly
taken into account. As concerns the diagonal density-
matrix elements (i.e., the population numbers), one finds
that the spontaneous decay rates enter in the equations
exactly as could be expected from a phenomenological
point of view, causing damping of the oscillations as well
as coupling between different m values via hm =+1 tran-
sitions. A less predictable result is that the nondiagonal
matrix elements decay spontaneously with half the decay
rate of the upper level (when the lower level is metasta-
ble). Thus the equations of motion for the density-matrix
elements take the form
dP1m, 1m

~mP1 2mm mP2m, lm +2 g Xm', mP2m', 2m'
m'

dP2m, 2m
m P lm, 2m mP2m, 1m VP2m, 2m

dP1m, 2m
(Pi, i P2, 2 ) + (i ~ r)Pl, 2—

where 6 is the detuning, y the total decay rate from ei-
ther of the states 2m, y the decay rate of the particu-
lar transition 2m'-1m, and

Um
=

~ Eo D1m 2m ~

l GJf
P1m, 2m e P im, 2m

P2m, 1m P 1m, 2m

The decay rate y is given by the lifetime ~ of the upper
level through

J= 1/2
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FIG. 3. Diagrams showing the relative intensities for transi-
tions between di6'erent states. It is clear that the only transition
with one Rabi frequency in this part of the Ba II level scheme is
the J=

2
~J=—,

' transition using linearly polarized light and

hence only hm =0 transitions.

where P is the branching ratio for transitions from level 2
to level 1 and ji and j2 are the angular momenta of the
two levels. Using the well-known expression for the tran-
sition probability in terms of the dipole moment, one can
derive the following expression for the absolute value of
Um:
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z 3~c I
21

where I is the irradiance of the laser beam. Since the
phase of U only influences the phase of the nondiagonal
density-matrix elements, one can, without altering the
physically measurable quantities, take U real and posi-
tive. Hence all atomic parameters needed to calculate the
density matrix are the transition wavelength, the lifetime
of level 2 and the branching ratio for the transition to lev-
el 1.

From the equations above we find that an analytical
solution for the density-matrix elements can be found in
the form

l

Pim, 1m ~ ~m se
l

A. t
P2m, 2m g bm, i e

P1m, 2m ~ Cm, &'

where A, ; and the coefficients a „etc., are complex num-
bers to be determined from a matrix eigenvalue equation.

During the postacceleration the ions experience a
time-dependent detuning. By writing the Schrodinger
equation in a coordinate system moving with the ions,
one finds that the equations of motion for the density ma-
trix in the form written above remain valid provided one
makes the definition

P„=exp i f lr v(t)dt ice—t p„
and replaces 6 by the Doppler shifted detuning b,a given
by

AD(t) =b, covk(t—)/c .

In general, one cannot solve the density-matrix equations
analytically in the postacceleration region. The equations
are therefore solved numerically in this region, but when
the asymptotic value of the potential is approached, an
analytical solution is applied.

IV. RESULTS
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A. Time-resolved spectra

Experimental curves have been produced with the
transitions indicated in Fig. 2 using different laser field
amplitudes, different detunings as seen by the ions in the
beam, and different polarizations of the laser light. Fig-
ures 4-7 show observed optical nutation under varying
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FIG. 4. Dependence of nutation on dipole moment Dl 2 us-

ing linearly polarized light (hm =0 transitions). The solid line
is the calculated curve.

FIG. 5. Dependence of nutation on laser field strength Eo us-

ing transition 3 and linearly polarized light (Am =0 transitions).
The solid line is the calculated curve.
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recordings. The theoretical curves presented are calcu-
lated from nominal data of all parameters, i.e., no least-
squares fit have been applied. Two separate cases will be
discussed: the regime of low laser power and the one of
high laser power.

I.om laser power. The laser power in these recordings
has been below 1 mW, which corresponds to an irradi-
ance below 0.05 W/cm . As can be seen in Fig. 8 the
width of the transition increases with decreasing interac-
tion time, which is an effect of transit time broadening.
Moreover, Fig. 9(a) shows that not only does the width
change with the distance, but also the peak position
changes with approximately 90 MHz over a distance cor-
responding to some 10 ns. This phenomenon is further il-
lustrated in Fig. 9(b) where the time development of the
degree of excitation is calculated at low intensities. Close
to the postacceleration potential gap negative detuning
yields a higher degree of excitation than zero detuning,
which moves the peak towards negative detuning. Note
that these curves all display a change in the peak position
even when the asymptotic value of the postacceleration
potential has already been reached within 1 V, corre-
sponding to a detuning of a few megahertz. Hence the
slightly varying detuning in this region, due to the slowly
changing potential, is not responsible for the peak shift;

0.035

0.030

0.025
o

0.020

0.015

0.010

0.005

005

0.04

o 003

0.02

0.01

0.00

V r—
-200 -100

I

20

100 OetUning (MHz)

= 0MHz

= -15 MHz

15 MHz

40 Time (ns)

2D 2po
0 005 . 3/2 i/2

I = 0.03 W/cm'

o.o04 At time 6 ns

0.003

c 0 002

!0.001

(MHz) -300 -200 -100 pe tuning

0.04
'oW2 - 'Pi/2

j = 0.03 W/cm'

At time 22 ns
O
X

O

0 ~ 02

0.01

(MHz) -200 —100 100 Qe tuning

FIG. 8. Frequency spectra of transition 3 at two different in-
teraction times using very low irradiance and linearly polarized
light. Dotted curves are theoretical spectra calculated from
nominal values on all parameters.

FIG. 9. (a) Theoretical frequency spectra of transition 3 at
very low laser irradiance and (b) the corresponding time devel-

opments at different, Axed, detunings.

rather, this is a consequence of the nonadiabatic Doppler
switching that occurs (cf. the discussion in Sec. VI). The
spectrum would be shifted to the positive side if the po-
tential had been negative instead of positive. One may
conclude that in order to obtain a correct and well-
defined detuning avoiding line shifts and broadenings
when setting the resonance frequency, one should be far
away from the postacceleration gap. It is worth noting
that this also holds for isotope shift and hyperfine struc-
ture measurements using collinear fast-ion-beam-laser
spectroscopy.

High laser power. The sequence of frequency scans in
Figs. 10 and 11 shows some distinct features. The asym-
metry, i.e., the long wing on the low-frequency side, is
obvious —as well as the dip appearing after a long in-
teraction time. This asymmetry can again be understood
from the postdeceleration. With negative detuning, ions
will be in resonance with the laser field somewhere in the
gap, before entering the detection region, whereas this
will not happen with positive detuning. The dip is due to
optical pumping, i.e., ions at resonance are more
efficiently transferred, via spontaneous emission from the
excited level, to the ground state where they are lost from
further interactions with the laser field (cf., e.g., Refs. 24
and 25). There is a good agreement between the experi-
mental and the theoretical curves, which indicates that
the postacceleration potential, as well as the velocity dis-
tribution, has been taken into account in a satisfactory
way.
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Therefore, in order to determine transition probabilities
from nutation data, a least-squares fit has to be made
with only one free parameter apart from the normaliza-
tion parameters mentioned previously, namely, the tran-
sition probability. However, if the branching out of the
system is not negligible, which is true for all practical
cases with our technique, the residual branching enters as
a free parameter as well, unless the lifetime of the upper
level is known. If the lifetime is not known, it can be
measured with the time-of-flight method. The idea here
is that with this method it is possible to determine the
transition probability for a given transition without hav-

ing complete knowledge of all the branching ratios. The
uncertainties in the time scale and the irradiance have a
simple relation to the uncertainty in the transition proba-
bility, but the other experimental parameters that deter-
mine the shape of a nutation curve do not, i.e., the time
resolution, the spatial intensity distribution of the laser
light, the Doppler width, the detuning, and the post-
acceleration potential. To explore their relations, these
parameters, except for the spatial intensity distribution,
have been varied systematically in least-squares fits of
theoretical nutation curves to experimental ones. It turns
out that these latter parameters contribute only marginal-

ly, or may be controlled to give only small contributions,
to the uncertainty in the transition probability. In gen-
eral, the importance of these parameters is reduced with
increasing Rabi frequency. Below a discussion follows of
the different parameters that may influence the uncertain-
ty in transition probabilities derived from nutation
curves.

C. Time scale and time resolution

The total uncertainty in the time scale is 0.54% (Ref.
30) and may produce a small systematic error in the
determination of a transition probability. It will be of
negligible importance compared with other sources of er-
ror.

The uncertainty of 12% in the value of the finite time
resolution wi11 not affect a transition probability derived
from data more than 2.7%. This uncertainty is, of
course, easily reduced if so is necessary.

There is a small variation of detection eSciency along
the ion beam which, also when taken into account,
gives a residual uncertainty to the determinations of tran-
sition probabilities. This uncertainty is well below 0.2%

D. Laser irradiance and laser beam pro6le

The irradiance of the laser light is the most important
experimental parameter. Presently, the uncertainty in
the irradiance is too high (20%) to admit an improve-
ment of the accuracy of any of the dipole moments in the
transitions used here. However, power meters with abso-
lute accuracies as high as 1% are commercially available,
contributing only 0.5% to the uncertainty in the transi-
tion probability.

The inherent power noise from the dye laser is, accord-
ing to specifications, 2.5% (root-mean-square value in the
region 10 Hz —100 kHz) and since the dye laser will
reflect power fluctuations from the pump laser, specified

to be less than 1%, a power ripple of 3—4% can be ex-

pected, adding a Gaussian damping to the nutation
curves. Since the power ripple has not been measured, it
is not included in the calculations and will, therefore, in-

troduce a small error to the transition probabilities deter-
mined. This ripple can be reduced by active stabilization.

The intensity profile is expected to be flat over the in-
teraction region within approximately 1%. With our
present power measurements, it is not possible to deter-
mine the profile with any corresponding accuracy and it
may therefore be less flat than estimated. Laser-field in-
homogeneities may therefore be an additional, but small,
damping source.

E. Doppler width and detunings

The dominant contribution to the Doppler width is
probably the acceleration voltage ripple of around 6 V.
This could, of course, be improved with a more stable
power supply. The uncertainty of 11% in the Doppler
width only introduces a 0.7% uncertainty in the deter-
mination of a transition probability. Beam misalign-
ments could also contribute to the overall Doppler width,
but in this setup a beam overlap within a few mrads is
easily obtained and hence this contribution is less than a
few megahertz.

In these measurements, the Rabi frequency has been of
the order of 50—100 MHz and the detuning is therefore
important. Here Fig. 9(a) might be recalled, which
showed that the detuning has to be set with some care,
i.e., optimization should be carried out far away from the
excitation region. In such cases, the transition is cen-
tered within 5 MHz.

However, the detuning may change during an experi-
ment. This is the reason for recording our data in a short
time to limit the effects of a gradually changing accelera-
tion voltage, which is the main cause of detuning varia-
tions.

A small drift in the accelerating voltage of 0.015% (5
V) changes the detuning with 25 MHz and therefore also
the nutation pattern. Monitoring the ion current
through the 0.49-mm aperture during an experiment pro-
vides a method of checking voltage drifts provided the
deflective magnetic field is stable. The sensitivity of this
method depends on the dispersion of the electromagnetic
separator. Perpendicular to the beam at focus, the
dispersion is 19 mm/amu at 100 amu, corresponding to
an estimated 18 V/mm, or 90 MHz/mm, at 32 kV. With
an ion beam full width at half maximum diameter of 5

mm, this means that the detuning has been stable within
20 MHz if the current has not changed with more than
+3%. In general, the current has been extremely stable.

The best solution is to stabilize the detuning. Various
schemes can be found in the literature, e.g. , that of
Huhnermann et al. ,

' who lock the frequency of the laser
to any other isotope present in an auxiliary beam line.
Their scheme demands a good short-time stability; i.e.,
ripple and noise of the acceleration voltage should be
below 0.5 V. If that condition can be fulfilled, their
scheme can stabilize to below 1 MHz.

An error in the detuning of 10—20 MHz would change
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the derived value of a transition probability with 5 —20'Fo

depending on the sign of the detuning as well as transi-
tion and Rabi frequency. If one allows the detuning to
vary as a free parameter, the fitted value of the detuning
never changes more than approximately 10 MHz, what-
ever other parameters are varied. %'ith a stabilization
scheme, this error would become almost insignificant.

The shape of the post acceleration potential is not
known exactly, but the good agreement between the
theoretical and the experimental spectra indicates that it
is taken into account in a satisfactory way. The voltage
itself is known very accurately. Simulating a change in
the shape of the potential by varying the voltage with as
much as 10% does not change the value of the transition
probability with more than 1.8%.

F. Other parameters

Besides the primary parameters mentioned, static elec-
tric and magnetic fields may affect the optical nutation
curves. A fairly strong, smoothly varying electric field is
present in the postacceleration region. Consequently, the
Stark effect has to be considered since significant shifts
and splittings would mean an additional detuning mecha-
nism in the postacceleration gap. The Stark effect of the
levels in our experiment were estimated using tabulated
transition probabilities for all significant contributors.
The maximum polarizability found was only 7
kHz/(kV/cm) and since the electric field has a maximum
value of 7.5 kV/cm, the Stark effect is in the order of 100
kHz and therefore totally negligible.

There is a weak stray magnetic field measured to be
less than O. l mT. This will, in principle, remove the de-
generacy, and may even produce additional beats. The g~
values are typically 1 for the studied levels and the corre-
sponding Zeeman splitting is roughly 1.5 MHz. This
splitting is not observable, but produces beats in the or-
der of 300—400 ns, which would perturb our measure-
ments if the amplitude of the beats were significant.
There is no sign of deviations in our curves which could
correspond to beats, and that indicates that the experi-
mental geometry is advantageous for this kind of mea-
surements. The removed degeneracy will not affect the
calculations since the splitting is small compared to the
homogeneous width of the transitions used.

The preceding discussion has shown that the only two
experimental parameters, which presently introduce sub-
stantial errors in a transition probability determination,
are the irradiance and the detuning. %ith the Rabi fre-
quencies obtained in our experiments, the best solution at
the present time will be to allow the detuning to vary as a
free parameter within error bars simultaneously with the
transition probability in a fit to experimental data. This
is motivated by the fact that these two parameters affect
the shape of the nutation curves in slightly different ways.
This will result in a final uncertainty of 23%%uo with quadra-
tic addition. Reducing the uncertainty in irradiance by a
factor of 10 with a precision power meter and stabilizing
the detuning within 1 MHz will result in a total uncer-
tainty of the transition probability below 8% with linear
error addition, whereas a quadratic addition yields an un-
certainty below 4%.

vr. nr5CUSSION

%e have demonstrated the possibilities which the rapid
Doppler-shift technique in collinear fast-ion-beam —laser
spectroscopy offers in studying optical transient effects, in
particular, the possibilities to study "simultaneous" time-
and frequency-resolved phenomena. The asymmetric
consequences of a postacceleration potential have been
investigated.

Future developments are possible. For instance, it is
possible to introduce a second laser that couples the
upper level to a higher-lying level. Provided that this ex-
tra coupling is weak compared with the coupling of the
initial two-level system, probe spectra could be obtained
by observing the Auorescence decay from the introduced
probe level. Such probe spectra would show a splitting of
the upper level into a doublet. This doublet is the well-
known Autler-Townes doublet, first observed in the op-
tical region by Refs. 33 and 34. The effect is generally
known as the ac Stark effect. A lot of work, experimental
as well as theoretical, has been devoted to the study of
Autler-Townes spectra during the past decade, but until
recently no one had investigated what happens directly
after the instant the splitting field is turned on until the
time where the doublet, which is a steady-state structure,
has been fully developed. One reason for this is that
Heisenberg's uncertainty relation imposes limits on the
resolution when one makes simultaneous measurements
of time and frequency. Bai, Mossberg, and Berman
solved this problem in an elegant fashion simply by
studying the time development of one probe frequency at
a time with a detector coupled to a transient digitizer. It
is quite clear from our earlier discussion that with our
time resolution, which is one order of magnitude higher
than that of Bai, Mossberg, and Berman, we could
proceed further and study the transient development of
the ac Stark effect by studying the probe-frequency spec-
tra with the detector placed at one position at a time.
The velocity of the ions gives the time scale and time-
resolved ac Stark spectra are obtained. In such experi-
ments the initial conditions could be varied simply by let-
ting the ions experience short excitation pulses prior to
the turn on of the driving field, i.e., by introducing fur-
ther potential steps. It is clear that this would simultane-
ously reveal the response of optical nutation to different
initial values.

Another interesting feature that could be investigated
is the amount of adiabatic following ' introduced by
the finite turn-on time of the exciting field. This is when
the detuning changes slowly enough for the atomic sys-
tern to adjust its level population smoothly while it is
tuned into resonance. In Bloch's vector formalism (see,
e.g. , Ref. 37) this corresponds to the case when the pseu-
domoments of the ions remain aligned along the effective
field of the laser light in the rotating frame. With Rabi
frequencies and relaxation times of the order of magni-
tude as in the present paper these effects can not be seen,
but they should be visible with higher power densities or
with atomic transitions with large dipole moments. Adi-
abatic following may be of importance for all fields of col-
linear laser ion-beam spectroscopy where slow postac-
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celerations are being used. These effects could, with a
few modifications, be studied with our setup. Finally,
with commercially available power meters with absolute
accuracies in the order of 1% this method, based on mea-
surements of optical nutation, may be possible to use to
measure transition probabilities with an accuracy of a few
percent.
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We write the total wave function for the atom-radiation
system

p(r, t )= g l(„(t)&I@(r)& , (A5)

APPENDIX: QUANTUM-MECHANICAL DERIVATION
OF THE EQUATIONS OF MOTION

FOR THE DENSITY MATRIX

The problem of Rabi oscillations in a quantized field
can be treated in several different ways. %'e shall here
apply the Schrodinger picture to retain some resemblance
of the nonquantized field treatment, although the Heisen-
berg picture is more formally elegant. Thus the time evo-
lution of the atom-radiation system is governed by the
Schrodinger equation with a Hamiltonian of the form

(A 1)

where the "coefficients" lg„) are wave functions in radia-
tion space which can in their turn be expanded in terms
of the number eigenstates:

(A6)

Inserting the expansion (A5) into the Schrodinger equa-
tion, we obtain the following set of coupled equations for

i (Q+—to„)lg„)

Applying the dipole approximation of the interaction en-

ergy we obtain for the three parts of the Hamiltonian

8... =Apso„lp, )(pl, (A2a)

k v

which can also be written in the integral form

(A7)

lg„(t)) =e & lg„(0))+f e ~ g (8„—8'„)gg„„„lg„(~))d~
0 k v

(A8)

Setting the coupling constants gl, equal to zero, we obtain the zeroth-order solution

(A9)

Feeding this solution into the integral in (A8) we obtain the erst order solutio-n

lg(t))=e " lg(0))+ f e " g (ttl, —8„)ggl,„„e " l((0)) d~
0 k v

(A10)

The time-dependent operators can be moved outside the integral sign by means of the commutation relation

nz ~"+~| )z
Qk8 =e k ~

which is valid for any complex number z. Thus, evaluating the integral, we get

(Al 1)

lg„(t))=e
' " lg„(0)&+ yyigg„. (A12)
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where

(A13)=N —N

We define the atomic density operator p as the trace of the

full density operator Pg with respect to the radiation

states. For the matrix elements p„=(plplv) we obtain

by a straightforward calculation

(A14)

Combining (A14) with (A7) we get the following expres-
sion for the time derivative of the density-matrix ele-
ments:

ppv

the spontaneously emitted radiation travels outwards
from the origin, the result appears as a pure multimode
coherent state if the radiation geld is measured at the ori
gin. In other words, the wave function fulfills the relation

g fk&ke '"'g= gfkake
' " e '"'y, r))r. ,

k k

(A16)

where ak are the coherent-state parameters of the laser
field at the time considered. Assuming that (A16) is valid
at t =0 we find from (A12) that to the first order in the
coupling constants we have

g fk&k lg„(t) )

+ X X(gk, i. &k.l&k
—a klan)

(A15)

The radiation field consists of the coherent laser field

plus the spontaneous radiation. We consider the free-
field propagator e '"' acting on the wave function with r
positive and much larger than the optical period. Since

= Q fk e "aklg„(t))
k

l (N co~)f

+i g gk„„ 1 g„(t) ) . (A17)
N Nk

Using this relation and its Hermitian adjoint, we obtain
from (A15) the following set of equations which are
correct up to the second order in the coupling constants:
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(A18)

The first term on the right-hand side of (A18) is of zeroth
order in the coupling constants and yields the expected
oscillatory behavior of the density-matrix elements be-
tween states of different energy. Then comes some first-
order terms which involve the coherent-state parameters
ak and represent the stimulated emission and absorption.
Equating the expectation value of the laser field to the
classical notation of a coherent radiation field

p —Re(E et(k r ~t))
0 (A19)

we find the following relation from which all first-order
terms in (A18) can be calculated:

1 ctj) fg cxkgk~ e = Eo'Dp e (A20)

X gkpvgkX~
k

t ( CtP~ COO )1

e
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The second-order terms of (A18) are responsible for the
spontaneous decay. Letting N0 denote an unspecified
constant, we Gnd that a11 these second-order terms are of
the type

The imaginary part of this integral can be calculated for
large time values (as compared to the optical period) by

using the formal relation

sin[(co coo)t]—
dco~n5(co coo) as t.~ ~—.

N N
(A22)

The real part of the integral only gives rise to a (small)
shift of the energy levels (part of the Lainb shift), which

we assume to be included in the measured transition fre-

quency. Disregarding this shift we get, except in a negli-

gibly small time interval, the following result which

yields all second-order terms in (A18):

I

or the complex conjugate of such a sum. When the
quantization volume tends to infinity, the sum tends to an
integral which can be written as follows:

I ( ct)i ((30 ) t
eg gkpvg)u~

k Nk NP
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i Dq Di I o) dc@ . (A21)6' ETC
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l (Qjg COp)f
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We shall now assume that there are two degenerate
levels 1 and 2 with energies Ace, and Acu2, respectively.
The states of these levels are labeled (lm) and (2m), re-
spectively, where m is the magnetic quantum number.
Furthermore, we assume that level 1, which is lower than
level 2, in metastable, i.e., it is not dipole coupled to any
lower levels. On the other hand, level 2 may be dipole
coupled both to level 1 and to other levels. (We do not
allow cascade transitions from level 2 to level 1.) For the
sake of simplicity we assume that the levels that are
higher than level 2 do not participate and can be left out
completely in the calculations.

It is seen from the zeroth-order approximation that the
density-matrix element p„„oscillates with the angular ve-

locity co„„. In the resonance approximation we retain in
(A18) only terms oscillating with almost the same angular
velocity, since only such terms can, when integrated,
yield significant contributions to p„,. The effect of the
resonance approximation on the first-order terms in
(A18} is that only transitions in resonance with the laser
field are induced. We shall restrict our treatment to the
case where the laser only induces transitions between the
states of the levels 1 and 2 mentioned above. Using the
spherical tensor components, which for a general vector
A are given by

that the energy difference is (almost) equal to fico„To
reduce further the number of states involved we express
the scalar product of the dipole moments in (A23} in
terms of the spherical tensor components defined in
(A24a) —(A24c). Remembering that only one of these
components can be nonzero for a given set of m values,
we obtain the following relation, where the numbers 1 —4
denote four arbitrary levels and 5 is the Kronecker delta:

1m ],2m p 3m 34m 4

+2 g Ym', mP2m', 2m' &

m'
(A27a)

P2m, 2m —i cu
Vm +qP1(m +q), 2m

dt
l COt+e Um +qP2m, 1(m +q) 2VP2m, 2m

dP1m, 2(m —q)
Um(P)m, )m P2(m —q), 2(m —q))

(A27b)

This means that the scalar product of two dipole mo-
ments can be nonzero only if the difference between the
m quantum numbers is the same for both moments.
Since no levels higher than level 2 are excited and level 1

is metastable, it follows that the equations we need to cal-
culate the diagonal elements p1 1 and p2 2 can be
written as follows:

dDP 1m' 1m —i mt l CiPf

()mP)m, 2(m —q) mP2(m —q), lm

A "'=—( A„+i Ay )/&2,

A' "=(A„iA~)l&2—,

(A24a)

(A24c)

+()~2) 7 }Plm, 2(m —q)

where q is given by the laser polarization and

q+1

(A27c)

(A28)

1

Ep D)m2m = g ( 1}Ep D)m2m
q= —1

(A25)

we can write the scalar product between the dipole mo-

ment and the polarization vector 1
7mm' 3 21~ 1m', 2m ~

6Me0C
(A29)

(A30)
If the laser is linearly polarized in the direction of the
quantization axis, only the q =0 component is nonzero.
In the same way, the two circular polarizations are
represented by q =+1 (with a quantization axis along the
beam). The right-hand side of (A25) is nonzero only if
the difference between the m quantum numbers of the
states is equal to q, and consequently, only such transi-
tions are induced by the laser.

As concerns the second-order terms in (A18), which

give rise to the spontaneous decay of the upper level, it is

easily seen that the matrix element p„ is "spontaneously
coupled" only to matrix elements between states such

Here the Rabi frequencies U can be taken real and posi-
tive without essential restriction since their phases only
determine the phase of the nondiagonal density-matrix
elements. The parameter y ~ can be interpreted as the
decay rate from the state 2m to the particular state 1m ',

whereas y represents the total decay rate for the 2m state
to all lower levels. These quantities are easily related to
the lifetime of level 2 and the branching ratio for transi-
tion from level 2 to level 1 by means of the Wigner-
Eckart theorem.
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