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The aggregation kinetics of colloidal silica is highly dependent on conditions such as the pH and
salt concentration. In this paper we investigate the aggregation of colloidal silica under conditions
that promote rapid growth, contrasting our findings with earlier investigations of the slow growth of
silica. A number of interesting effects are observed, including power-law growth of the mean aggre-
gate radius, dependence of the aggregation rate on concentration and the chemical nature of the salt

used, a reduced aggregate fractal dimension, fragmentation of the fast aggregates under changing
solution conditions, and shear-induced restructuring of aggregates. Finally, we present evidence
that the fractal dimension of aggregates is not strongly universal, but depends weakly on such fac-
tors as the solution concentration. We conclude that although the diffusion-limited cluster-cluster

aggregation model gives a good first-order description of rapid aggregation, real systems exhibit
richer behavior that is not given to such a facile interpretation.

I. INTRODUCTION II. KINETICS OF GROWTH

The chemistry of silica is very rich, involving aspects
of colloid formation, aggregation under reaction- or
diffusion-limited conditions, and chemical gelation.
Indeed, during the formation of a silica gel from a mono-
mer such as tetramethoxysilicon the system can evolve
through each of these regimes of growth. ' At this time,
detailed studies of the critical growth that occurs near
the gel point have been reported, ' and the aggregation
of colloidal silica has been extensively studied under
reaction-limited conditions, where exponential growth
of clusters of fractal dimension D=2.05+0.06 is ob-
served. However, relatively little work ' has been done
on the aggregation of silica under conditions that pro-
mote rapid aggregation. In this paper we present an in-
vestigation of colloidal silica aggregation under rapid
growth conditions, contrasting these findings with slow
aggregation of silica.

Elastic and quasielastic light scattering are employed
to resolve a number of issues concerning silica aggrega-
tion: the determination of the fractal dimension under a
variety of growth conditions; the concentration, p H, salt,
and temperature dependence of the growth kinetics; scal-
in& of the cl'uster size distribution; fragmentation process-
es that accompany changing solution conditions or shear;
and restructuring of' the aggregates. In contrast to the
behavior of slow aggregates, we find a smaller fractal di-
mension of D =1.73+0.06; growth that is in accord with
the diffusion-limited prediction of the cluster mass grow-
ing linearly with time; a complex concentration, pH, and
temperature dependence of growth; sensitivity of the ag-
gregates to shear and changing solution conditions (slow
aggregates are very robust); and specific counter-ion
effects that violate the simple screened Coulomb potential
picture of colloidal interactions. These effects underline
the complexity of hydrophilic colloid behavior.

A. The kinetic rate equation

At the simplest level there are two fundamental issues
of aggregate formation —the kinetics of growth and the
relation of this to the resulting fractal structure of the ag-
gregates. Although investigations of aggregate structure
depend on simulations of growth, the Smoluchowski or
kinetic rate equation provides a useful analytic mean-field
approach to the kinetics, and provides a framework in
which to classify a variety of growth processes. This
classification helps to clarify the difference between ag-
gregation and gelation processes, both of which we ob-
serve in silica.

The Smoluchowski equation expresses the time evolu-
tion of the number of m-mers, N ( m ), in terms of a reac-
tion kernel K;;, which gives the probability of an i-mer
reacting with a j-mer.

dN(m)
N(i)K; N(j ) N(m) gK ~N—(j) .

i, J Ji+j=m

The first term accounts for the creation of m-mers
through binary collisions of i-mers and (m i) mers; -th-e

second term represents the "annihilation" of m-mers due
to binary collisions with other clusters. Although the
structure of this equation is simple, it is diScult to deter-
mine the form of the reaction kernel for a given physical
system.

Van Dong en and Ernst have introduced a
classification scheme for homogeneous kernels, based on
the relative probabilities of large clusters sticking to large
clusters, and small clusters sticking to large clusters. De-
pending on which of these processes dominates, one ob-
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tains quite different growth kinetics and size distribu-
tions. If small-large interactions dominate, then large
variations in cluster mass are discouraged, and the size
distributions will tend to be tightly bunched, like a bell-
shaped curve. On the other hand, if large-large interac-
tions dominate, then the sma11 clusters tend to get left
behind in the scramble and a monotonically decreasing
size distribution (with a power-law decay) is obtained. To
clarify our studies of growth we give a brief summary of
the pertinent results.

The growth classes can be defined by two exponents.
Let the probability that a j-mer reacts with a j-mer (large
with large) be KJ~-j, and let the probability that a j-
mer reacts with a tnonomer (large with small) be K» —j".
Based on these exponents, a few general comments can be
made about homogeneous kernels. First, kernels with ei-
ther A, &2 or v&1 are unphysical, since the reactivity
cannot increase more rapidly than the cluster mass j.
Second, if A. is greater than 1 the Smoluchowski equation
predicts the formation of an infinite cluster in finite
time —a gel point. Finally, kernels with A, 1 give
nongelling behavior, that is, an infinite cluster is formed
at infinite time, so much of the qualitative behavior of the
Smoluchowski equation is controlled by k.

In class I growth large-large interactions dominate, i.e.,
k&v, this class is relevant to gelation, and may be
relevant to aggregation as well. In the nongelling regime,
where A, & 1, the number distribution decays algebraically
like N (m ) —m ', with r= 1+A, , and the weight-average
mass M grows as a power of time M —t' with
z =1/(1 —A.). We note that since I, & 1, the polydispersity
exponent ~ is less than 2, in contrast to systems which ex-
hibit a gel point, where r is greater than 2. Also, as A, ap-
proaches 1 the growth exponent z ~ ~ —in this limit the
growth becomes exponential in time.

The gelling regime of class I growth, where
v & 1 & A, 2, the number distribution again exhibits a
power-law decay N(m)-m ' with r=(A, +3)/2) 2.
Below the gel point this algebraic decay is valid only for
clusters smaller than the typical cluster size
M, = g m N(m)/g m N(m). However, above t, ~

this algebraic decay extends to arbitrarily large clusters,
and the prefactor of the decay decreases monotonically
with time, as clusters bond to the infinite cluster. Near
the gel point M~ diverges like

~ ts, ~
t r, where-

y = 1/(1, —1), and the mean cluster size M, diverges like

~ts„t~ ', where c—r=(A, —1)/2. Thus for homogene-
ous gelling kernels the Smoluchowski equation predicts

LO Z

Class III growth, defined by the domination of small-
large interactions, appears to be a good description of ag-
gregation under diffusion-limited conditions. However,
since v must always be less than 1 and by definition A,

must be less than v, a gel point is not possible in this class
of growth. Because small-large interactions give negative
feedback, large polydispersity is discouraged, and size
distributions tend to be tightly bunched, as in a bell-
shaped curve.

The original Smoluchowski kernel, developed to de-
scribe diffusion limited agg-regation, gives the reaction
rate as a collision cross section due to diffusion of spheres

10

slo

10
10 ' 10 10 10

of radius R, having the diffusion constant D =kT/6nriR.
The result K, =(R, +R )(D;+D ) ~ (i '~ +j '~ )(i

+j '~
) is a class III kernel with v= —,

' and A, =O. Of
course, recent experiments show that aggregates are frac-
tal objects of dimension D, so the exponent —,

' should be
modified to 1/D —a minor point.

Class II growth is a complex intermediate between
class I and class III growth. In class II growth I,=v ~ 1,
so neither small-large nor large-large interactions are
dominant. Again, since A, 1 no gel point is possible.
Sum kernels of the form (i'+j') are examples of class II
kernels. Although little is known about the size distribu-
tions for class II kernels, for A, = 1 the growth of the aver-
age mass is known to be exponential in time, which sug-
gests that class II kernels are relevant to aggregation un-
der reaction limited con-ditions.

In summary, the kinetic rate equation predicts three
qualitatively distinct behaviors of growth.

Power-law growth:

M„,—t', z= 1/(1 —
A, ) .

Exponential growth:I -e"
W

Gel growth:

In silica systems, experimental evidence exists for all
three types of growth. For example, when an orthosili-
cate is reacted under alkaline conditions, small colloidal
particles are formed. The colloidal suspension can then
be destabilized by either adding salt and or adjusting the
pH, so that the colloidal particles aggregate. If the ag-

t (min)

FIG. 1. Quasielastic light-scattering measurements of the

rapid aggregation of colloidal silica give power-law growth of
the cluster radius with time, in this case with R -t ' . These
data were taken by aggregating a concentration of
4.0X10 wt. % 11-nm radius colloidal silica at pH 8.5. Clus-

ters 1 pm in size are produced in about 24 min.
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10 gregation process proceeds rapidly, power-law growth is
observed, as shown in Fig. 1. On the other hand, if the
aggregation process proceeds slowly, exponential growth
of the average cluster mass is observed, ' as in Fig. 2.
Under appropriate reaction conditions, colloidal particles
are formed that undergo reaction-limited aggregation and
finally form gels. In the vicinity of the gel point the sys-
tem undergoes a crossover from aggregation to gelation, '

and exhibits the power-law divergence shown in Fig. 3.
Having given this brief overview of growth processes in
silica we will now focus our attention on the rapid aggre-
gation regime.

10
500 1000

I
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B. Cluster radius from quasielastic light scattering

FIG. 2. Exponential growth of the mean cluster size is ob-
served under slow reaction conditions. In this case 4.5-nm ra-
dius colloidal particles were grown by catalyzing hydrolysis and
condensation of 0.06M tetrarnethoxysilicon at high pH. The
rapidly formed, highly charged colloids then react extremely
slowly to form aggregates with fractal dimension 2.05+0.06. In
this sample clusters reach a radius of 100 nm after —1500 h. In
a rapidly aggregating system at comparable concentration, 100-
nm aggregates would be produced in a few seconds.
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FIG. 3. Critical growth of silica is observed in the vicinity of
the gel time tI„[e=(tl„t)/tz, ~]. In this case a gel w—as pro-
duced by a sequential acid-base catalysis of 1.0M tetramethoxy-
silicon in methanol with 4.0M H20. At very early times col-
loidal particles are formed. These then aggregate until the
volume fraction of aggregates is 1, at which point the connec-
tivity divergence is observed (measurements were made on dilut-
ed clusters}.

Studies of growth of colloidal silica require some
method to determine the cluster radius. Static light
scattering would permit such studies under restricted
length scale regime, but quasielastic light scattering al-
lows, in principle, radius measurements over several or-
ders of magnitude. How many orders of magnitude are
possible is extremely dependent on the class of growth
that is being studied, and so this technique is very often
misapplied. In the following, we will discuss the applica-
tion of this technique to the study of growth processes,
with particular emphasis on rapid aggregation.

From quasielastic light scattering (QELS) one can ob-
tain information about the size of an object by determin-
ing the relaxation time associated with translational, ro-
tational, or "configurational" diffusion. In the case of a
monodisperse solution of spheres the size information
thus obtained is unambiguous, but in general effects of
polydispersity and internal modes can seriously
compromise the interpretation of the data. In a quasi-
elastic light-scattering experiinent, the intensity I(q) of
light scattered at wave vector q is autocorrelated to
obtain the hornodyne correlation function'
C(t)= (I(q, O)I(q, t) ). The dynamic structure factor
S(q, t) is then obtained from the standard relation

S(q, t)=[C(t)—(1(q,O)1(q, ))]' '.
In the simple case of monodisperse spheres the dynam-

ic structure factor is given by S(q, t) =S (q)exp( qD, t), —
where S(q) is the static structure factor, D, =kT/6rrrtR
is the translational diffusion coefficient, and R is the hy-
drodynamic radius. The physical interpretation is clear
enough; the relaxation time 1/(q D, ) is just the time it
takes a sphere to diffuse a distance 1/q. For nonspherical
rigid objects, such as a rigid rod, rotational motions can
contribute to the scattering in the regime qR &&1, where
R is the rod length. Likewise, for flexible objects such as
linear polymers configurational relaxations can contrib-
ute to the dynamic structure factor when qR ))1. How-
ever, in the absence of depolarized scattering, a condition
that is met for simple dielectric aggregates such as silica,
only translational diffusion contributes to the scattering
when qR « 1. Thus in this regime the dynamic structure
factor may be written S(q, t)=S(q)exp( qD, t) where—
S(q) is the structure factor for an aggregate. The initial
decay rate, or first cumulant I = —d lnS(q, t~O)/dt, is
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S(q, t)= f m N(m)S (q, t)dm
0

so the average first cumulant is

I"/q =f D, (m)m N(m)
0

(2)

then just q D, .
Of course, measurements are virtually never taken on

monodisperse systems so it is important to consider the
effect polydispersity can have on the dynamics, "' even
in the absence of further complications due to internal
modes. The polydispersity averaged correlation function
is just

10

to

~ 0.009
~ 0.046
a 0.084
+ 0.121

sc 0.158
o 0.195
o 0.232

4 0.269

XS (q)dm f m N(m)S (q)dm .
0

(3)

R,
R,

(qR )
(4)

where a is an exponent that depends on D and r. There
are three regimes of polydispersity, ' which we refer to as
weak, intermediate, and strong:

0, r &2—1/D (weak)
cr = 1 D(2 r), 2 ——1/D &—r & 2 (intermediate)

1, r&2 (strong).

The strong regime, where ~) 2, corresponds to a system
which has a sol-gel transition, and therefore is valid when
critical growth is observed. In this case the apparent ra-

This expression warrants some discussion. First, in the
regime where qR, «1 we obtain the relation I /q =D„
where the subscript z denotes the so-called z average,
which is the average of any quantity over m N(m).
[Note that although the z-average radius observed in an
elastic light-scattering experiment is the root-mean-
square average ((R ), )'~, the z average observed in a
quasielastic light scattering experiment is the harmonic
average (R '), '.] Only in this limit can R, be extract-
ed from the relation D, =k T /6mrtR, . In . a quasi-
elastic light scattering experiment with a He-Ne laser
operating at 633 nm and at a typical scattering angle of
90', 1/q =54 nm for aqueous samples. When the aggre-
gate size exceeds 54 nm the interpretation of the data be-
comes more complex. However, with reasonable care,
measurements can be routinely run at a scattering angle
of 10' or 1/q =438 nm, which significantly extends the
resolution of the technique. Early quasielastic light-
scattering measurements of colloidal silica aggregates'
were made at angles as low as 3.8', corresponding to the
length scale 1/q = 1150nm.

However, we are interested in understanding what hap-
pens when we greatly exceed the instrumental resolution,
so that qR, ))1. The behavior of Eq. (3) in this regime
depends greatly on the polydispersity. For the purpose of
this discussion it is useful to define an apparent hydro-
dynamic radius R,z~ through the relation I /q =kT/
67T QR pp

We find that the behavior of R
pp

at large qR,
depends very much on the value of ~ in the relation
N(m)=m 'and therefore on the class of growth we are
investigating. In the regime qR, && 1 the general result is

10
10

I

10 10

dius R,„~
—1/q contains absolutely no information about

the actual size of the clusters being formed and so mea-
surements must be taken in the regime qR, &(1. This
length scale ind-epend-ent behavior of the apparent radius
is demonstrated for gelling silica in Fig. 4.

The intermediate regime, where R, -R, ' '/
q' ' ', is relevant to slow aggregation where ex-
ponential growth is observed. Measurements on slow ag-
gregates ' (Fig. 5), demonstrate that R,~~-R, /q
indicating a polydispersity exponent v.=1.85. Since the
true cluster radius appears in this expression it is possible
to obtain size information in this large qR, regime.

Fortunately, power-law growth of silica falls in the
weak-polydispersity regime, where

R happ
R An exam-

ple of this is shown in Fig. 6, where the q dependence of
R

pp
is shown for fast aggregates of colloidal silica. To a

fair degree it is observed that the apparent radius is q in-
dependent, even though the measurements were made at
very high values of qR, . In fact, since the polydispersity
does not introduce any power-law dependence of R

pp
on

q, more subtle effects can be observed. For example, at
large q the structure factor of an aggregate is
S(q) —(qR); if this is substituted into Eq. (3) it is ob-
served that the weight-average diffusion coefficient D
[average of D, over mN(m)] is observed at large qR, .
Thus in the limit of large qR, we obtain R,pp

R where
R =kT/6mgD . The magnitude of this effect is easily
computed: using the universal exponential cutoff for the
exponential tail of the size distribution we obtain

q(cm )

FIG. 4. In a system that exhibits critical growth (i.e.,
R -At ') the apparent radius taken from quasielastic light
scattering becomes length-scale independent in the regime where

qR, &&1. Thus a slow progression is observed from R,pp R,
for samples at early times to R,pp q

' near the gel point (small
E'). Since in this regime R,pp

carries no information about the
mean clusters size R„ the resolution of QELS is seriously

compromised in critical studies of any type. These data were
taken from a 1.0M silica gel.

R,
R

2 —7

2—1/D —z
(5)
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FIG. 5. Quasielastic light scattering measurements on col-
loidal silica aggregates grown under slow conditions {pH 5.5,
0 07M NaCl, 60'C) give R ~~

—R, "/q ' in the regime

qR, ) 1. From bottom to top, these curves were taken from 40,
60, 80, and 100 h of growth. Thus the mean cluster radius can
be extracted from the data, but only after properly accounting
for the q dependence of the apparent radius.

crossover from weak to intermediate polydispersity. This
is because we have already taken the large wave-vector
limit q = ~ in obtaining Eq. (5).

In summary, then, we have shown that (i) polydispersi-
ty severely limits the instrumental resolution in studies of
critical growth where r & 2; (ii) quasielastic light-
scattering studies of exponential growth can still yield
size information when qR, ))1, but care must be used to
extract the true radius from the apparent, wave-vector-
dependent radius; and (iii) in power-law growth the eff'ect

of polydispersity is essentially benign, allowing useful size
information to be obtained even in the limit as qR, ))1.

Another issue arises in studies of fast aggregation. Be-
cause of the rapid rates of growth that are frequently ob-
served, aggregates can grow appreciably during the signal
averaging required to obtain a low-noise autocorrelation
function. The hydrodynamic radius obtained from the
first cumulant of the intensity autocorrelation function is
thus larger than the true radius at the beginning of the
run, but smaller than the true radius at the end of the
run. At some time during the run the true radius is the
same as the measured radius, and this is the time we must
use in the analysis of our data.

The general expression for the time-averaged first cu-
mulant is

10
~ ~

+ & ~ ~ ~ ~
~ ~ + + + +

+
~ ~ ~

10
Time (h)

~ 0.5

+ 1.0
~ 1.5

10
10

I

10 10

q(cm )

FIG. 6. Very rapid quasielastic light scattering measure-
ments from a 2.5X 10 % solution of colloidal silica at pH 8.5
give only a weak q dependence of the apparent radius in the re-
gime qR, )&1. This relatively small q dependence is a result of
the weak polydispersity and the small degree of form isotropy in
the system. In fact, simulations (Ref. 14) show that the princi-
pal axes of the inertial tensor for fast aggregates are nearly
equal.

In the constant kernel approximation, the Smoluchowski
equation predicts r =0 so R, /R =—', , a rather minor
effect. Rotational effects can also be observed when the
polydispersity is very weak, but the effect is small, being
comparable to the weak polydispersity effect itself. Note
that Eq. (5) diverges when r=2 —1/D, which marks the

where I (t) is the true first cumulant at time t, t, and tf
are the initial and final time of the run, and
S~(t)=g m N(m)S (q) is the weight-average static
structure factor at time t. It is useful to consider the be-
havior of Eq. (6) in two limits; qR, » 1 and qR, « 1. We
consider the large-wave-vector intermediate scattering
limit first.

In the large-wave-vector regime the static scattering
from the fractal aggregates becomes independent of the
mean radius, and therefore of time, so S„(t)is a constant.
Equation (6) then reduces to

where At=tf —t, . In the special case of power-law
growth, where the average radius increases as R, -t'
the result is simple: Define the apparent time t,pp

as the
time at which the true mean radius of the system is the
same as the measured radius. From Eq. (7) we obtain
t,~

= t; + ht /2[ 1 +0 ( ht /t; )], so that the apparent time
is simply the midpoint of the run time, with a small
correction.

In the small-wave-vector regime S (t) is just the
weight-average cluster mass M —t, . Substituting this
into Eq. (6) gives the same result for the apparent time as
the large-wave-vector limit, so as a general rule the mid-
point of the run time is the appropriate variable against
which to plot mean radius data obtained from quasielas-
tic light scattering. We have consistently used the mid-
point in analyzing all of our data.
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C. Measurements of cluster growth

The aggregation rate of colloida1 silica can be con-
trolled by using salt to screen the surface charge and ad-
justing the pH to vary the surface charge. The isoelectric
point of colloidal silica is -pH 2. 8, and since our studies
were done at high pH a substantial negative surface
charge was present. Rapid aggregation samples at
pH 9.6 were buffered with borax-NaOH solution with
1M NaC1. Samples at pH 8.5 were buffered with borax-
HC1 solution with 1M NaC1. Finally, pH 6.7 samples
were buffered with potassium dihydrogen
phosphate-NaOH solution with 1M NaC1. Aggregates
were formed at concentrations varying from 1.0X10
to 2. 5X10 wt. % SiOz, and the initial colloid radius
was r =11nm.

Aggregation studies at pH 8.5 are shown in Fig. 7 and
are tabulated in Table I. At all concentrations the
growth is well described by a power law, with

8,-t "+— over the range of concentrations investigat-
ed. Since aggregation is rapid at this pH, it is reasonable
to expect growth to be described by the diffusion-limited
expression for the reaction kernel KJ. =(R;+RJ )(D;
+D ). Using the Stokes-Einstein expression
D;=kT/6nrtR; gives K; -kT/6m' in the approxima-
tion that most collisions occur between clusters of com-
parable size. This constant kernel predicts a power-
law increase in the cluster size with time,
M„—[(kT/6nrI)Not]', with the growth exponent z =1,
or in terms of the mean cluster radius
R, -[(kT/6nrt)Not]' . Here No is the initial number
density of colloidal particles. Using the observed fractal
dimension D =1.73+0.07 (see below) and the measured
values of z/D we conclude that the bulk of the data are
described by z=0.95+0. 1, in good agreement with the
diffusion-limited prediction z =1.

A more sensitive test of diffusion-limited growth is

TABLE I. Fractal dimensions of colloidal silica aggregates.

c (wt. % Si02)

0.00025
0.001
0.008
0.01
0.01

0.00025
0.001
0.01
0.01

0.01
0.01
0.01

pH

8.5
8.5
8.5
8.5
8.5

9.6
9.6
9.6
9.6

9.7
10
10

1.73
1.85
1.89
1.97
1.84

1.60
1.75
1.78
1.94

1.98
2.30
1.84

Salt

NaC1
NaCl
NaCl
NaCl
CsCl

NaCl
NaCl
NaCl
CsCl

CsCl rapid
CsCl slow
NaCl

.10

shown in Fig. 8, where the mean number of particles per
aggregate (R/r) is plotted against (kT/6mri)Not (as a
matter of interest, at c=2.5X10 wt. % the initial
number density No is 2X10" cm or 3X10 ' M). On
these universal axes the data collapse is only marginal,
even though the kinetics of growth is apparently diffusion
limited at all concentrations. In particular, it is observed
that samples at higher concentrations grow more slowly
than one might expect, given their initial concentration.
This implies a sticking probability (probability that a col-
lision results in sticking) that decreases with increasing
concentration.

Rapid aggregation can also be induced at pH 9.6, as
shown in Fig. 9. These data have an apparently smaller
growth exponent than the p H 8.5 data, with

10
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io' .I I I

10 10 10 10 10
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FIG. 7. Power-law growth data for colloidal silica at pH 8.5
is shown as a function of silica concentration. At this pH
growth is described by R, —t . — over the range of concen-
trations investigated.

FIG. 8. The growth data in Fig. 7 are plotted to test the Smo-
luchowski prediction for diffusion-limited growth. Here r is the
colloidal radius, No is the initial particle number density, and g
is the solvent viscosity. On these axes growth data at all tem-
peratures and concentrations should fall on a master curve with
a slope of 1. Although linear growth of the mean cluster mass is
observed at any single concentration, growth is slower than ex-
pected at the higher concentrations.
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FIG. 9. Power-law growth data taken at pH 9.6 give a some-
what smaller value of the growth exponent than data taken at
pH 8.5, with R -t +— describing the data over the range of
concentrations investigated.

z/D =0.43+0.07 or z =0.74+0. 12. As we shall discuss
these aggregates are very fragile so it is possible that the
lower exponent is due to a competition between aggrega-
tion and fragmentation. However, the data collapse in
Fig. 10 is substantially better, indicating a less
concentration-dependent sticking probability.

Since the mean cluster size scales as
R, —[(kT/6m')Not]'~ it should be possible to deter-
mine z/D by measuring the concentration dependence of
R, at fixed time. Of course, the universal plot in Fig. 8
indicates that this value of z/D will be smaller than the
value obtained from the time dependence. The mean ra-
dius at 10 min is shown as a function of concentration in
Fig. 11 for samples at pH 8.5 and 9.6. The pH data are

10

FIG. 11. The mean cluster radius after 10 min of growth is
plotted against concentration for samples grown at pH 8.5 and
9.6. The pH 8.5 samples give R, -c ' +—

, whereas the pH 9.6
samples give R, -c '+— . These exponents are significantly
smaller than the diffusion-limited prediction of R —c ' .

best described by R, -c —+ ' and the pH 8.5 data are
described by R, -c ' +— . Thus the concentration
dependence of the pH 8.5 data is anomalously weak.
This effect has also been observed in studies of gold aggre-
gation, ' where R, -c

The anomalous concentration dependence is better il-
lustrated in the following way. If we merely assume that
the reaction kernel itself is independent of concentration,
then R, should be a function of Not. Thus 1/~, the rate
that a cluster reaches 1 pm in radius, should be propor-
tional to the initial concentration, regardless of the form
of the kernel. In Fig. 12 this is shown for the data at pH
9.6, where 1/v-c' +—', and for pH 8.5, where
1/r-c + '. Thus we—observe that close inspection of
the pH 8.5 data reveals that the data cannot be simply
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FIG. 10. A better data collapse is observed for aggregates
grown at pH 9.6, but the agreement with the Smoluchowski
slope of 1 is much worse, perhaps indicating the increasing im-
portance of fragmentation in larger clusters.

FIG. 12. The inverse growth time to 1 pm is plotted vs con-
centration for aggregation at pH 8.5 and 9.6. If the kernel in
the Smoluchowski equation is concentration independent then
1/~-c'. Although the pH 9.6 data agree with this prediction,
the pH 8.5 data give 1/~- c, indicating slower than expected
growth at higher concentrations.
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described in terms of the diffusion-limited growth model.
In conclusion, the growth we have observed is in

reasonably good agreement with the predictions of the
Smoluchowski equation with the diffusion-limited kernel,
when only the time dependence of the growth is con-
sidered. The somewhat smaller value of z observed in the
pH 9.6 case may be a result of competing fragmentation
processes that become dominant at large cluster sizes.
However, larger discrepancies are observed when the
concentration dependence of the growth is analyzed. At
pH 8.5, growth is slower than expected based on the
diffusion-limited approximation or the fundamental form
of the Smoluchowski equation. This may be due to a re-
duced sticking probability at higher concentrations,
which may in turn be due to the presence of a surface ac-
tive stabilizing agent in the original colloidal silica. It is
known that a system with a small but finite sticking prob-
ability ultimately crosses over from reaction- to
diffusion-limited growth. Thus with a concentration-
dependent sticking probability it is possible to observe
diffusion-limited behavior in the time domain without ob-
serving diffusion-limited growth in the concentration
domain.

III. STRUCTURE OF AGGRKGATKS

A. Fractal models of aggregation

Having ascertained that the growth kinetics is in
reasonable agreement with the diffusion-limited model, it
is of interest to measure the structure of these colloidal
aggregates. There is considerable controversy surround-
ing this issue as a result of the disparate plenitudinous re-
sults reported thus far for a variety of systems. In fact,
much of the recent interest in aggregation has centered
on the observation that the scattering behavior of these
systems indicates a mass fractal structure (in a mass frac-
tal the radius R increases with mass M as M-R, where
D is the fractal dimension). In retrospect, this fractal
structure seems natural since the growth of aggregates is

hierarchical in nature: small clusters collide to form
large clusters, which collide to form larger clusters ad
infinitum .As long as the relative interpenetration that
occurs in these collisions is independent of scale, self-
similarity is certain. In this section we explore the depen-
dence of the aggregate fractal dimension on colloid con-
centration, solution p H, and specific salt.

One of the earliest models of aggregation' is the so-
calied diffusion-limited aggregation model (DLA), in
which aggregation is envisioned by the irreversible stick-
ing of Brownian monomers to a seed cluster. This
particle-cluster model captures the striking self-similarity
of aggregates, but predicts a rather large fractal dimen-
sion of D =2.5. It became immediately apparent that a
physically tenable model of aggregation must include col-
lisions between all possible species, monomers and clus-
ters. At this time it is thought that there are two limiting
regimes of cluster-cluster growth: the diffusion limited
regime, where clusters have a sticking probability of uni-

ty, and the reaction-limited regime, where particles have
a sticking probability approach zero. Simulations of the
diffusion-limited model, with power-law growth, give a
fractal dimension of D =1.75 [Fig. 13(a)] and reaction-
limited simulations give more compact clusters, with
D =2.05 [Fig. 13(b)). Exponential growth is observed ex-
perimentally in the latter regime. This is a major
discrepancy between experiment and simulation and
serves to discombobulate the current theoretical under-
standing of aggregation.

Whenever scaling behavior is found it is tempting to
believe that some kind of universality underlies the ob-
served behavior. Hopefully, the experimental system
then falls into a few relatively simple universality classes.
Results that don't fit into established modes of scaling be-
havior are often assumed to be in a crossover regime of
one sort or another. However, some features of aggrega-
tion, such as the ability of the clusters to rearrange, are
too complex to simulate, yet may be important in real
systems. Thus these limiting regimes must be thought of
as the simplest behavior aggregating systems can exhibit,

DIFFUSION-LIMlTEO Cl-Cl-3d
M & )0,732

260 OIANIETERS

REACTION-LIMITED CI-CI-sd
I

M = 16,332

180 DIAMETERS

FKJ. 13. A 3-d diffusion-limited cluster-cluster aggregate (a) is compared to a 3-d reaction-limited cluster-cluster aggregate (b).
Simulations give a fractal dimension of —1.75 for diffusion-limited aggregates and 2.05 for reaction-limited aggregates. These
features are courtesy of P. Meakin.
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and do not necessarily manifest the full range of behavior
possible in physical systems. In fact, an important issue
in aggregation is whether or not the kinetics of growth is
a strong determinant in the structure of the aggregates.
In the following we will discuss how concentration,
growth kinetics, and pH affect the fractal dimension in

aggregating systems.

B. Elastic light scattering

Early attempts to measure the fractal dimension of ag-
gregates involved depositing clusters on a substrate and
using electron microscopy to obtain an image that could
then be analyzed by simple statistical techniques (pair-
correlation function or "sandbox" scaling) to obtain the
fractal dimension. ' ' In this approach problems arise
due to the difficulty in preventing further high-
concentration aggregation of clusters as the sample is de-
posited on the substrate, and in dealing with the distor-
tion of the aggregates as they are collapsed into two di-
mensions. Also, such studies must be limited to fractal
objects with dimensions less then 2, since objects of
greater dimensions cast a solid shadow onto the plane.

Because of the difficulties inherent in the electron mi-

croscopy techniques, it was quickly recognized that
scattering is the technique of choice for the investigation
of fractal structure. In a scattering experiment the inten-
sity I is determined as a function of the length 1/q. For a
coherent scattering process, such as light scattering, the
interpretation of scattering data from a monodisperse
solution is straightforward: the intensity per unit concen-
tration c is a measure of the average mass in a box of
length 1/q. Thus for sufficiently small lengths 1/q ((R
the fractal relation M-R becomes I/c —1/q . Of
course, if the length 1/q approaches the radius r of the
colloidal particles from which the aggregates are grown,
fractal scattering behavior crosses over to the classical
Porod result for scattering from a sharp interface
I-1/q. Thus fractal scaling is observed only in the re-
gime r &(1/q &&R. In the vicinity of a sol-gel transition
the very broad distribution of cluster masses can alter the
relation I/c —1/q but for the aggregation of silica this
relation is valid.

Scattering experiments are usually made with light,
neutrons, or x rays. For growth processes such as aggre-
gation, where the clusters can become very large and the
fundamental colloid size is already —10 nm, light scatter-
ing offers the most accurate method of determining the
fractal dimension, for several reasons. First, light scatter-
ing can easily explore length scales 1/q from 25 to 1000
nm —an ideal match for aggregates. X-ray and neutron-
scattering results are usually limited to lengths from 0.1

to 20 nm, and since particle sizes are typically of the or-
der of 10 nm, often only a crossover to fractal scattering
behavior can be observed.

Second, incident light cruxes tend to be very high and
photon detectors have high quantum efficiency and low
dark count. Thus it is easy to run very low sample con-
centrations, of order 10 g/m); by contrast, x-ray and
neutron-scattering measurements are often made at 10
to 10 g/ml where the effect of interparticle interactions

can be important. In fact, at such high concentrations in-
tercluster interactions can dominate the scattering, mak-
ing a fractal interpretation of the data otiose. Third,
light-scattering measurements are made with a "pinhole-
collimated" beam, so "desmearing" corrections need not
be made to the data, as in x-ray scattering measurements
made with a slit-collimated beam (Kratky camera).
Desmearing is an ill-conditioned inverse transform prob-
lem, so in some of the x-ray scattering data reported for
fractal systems no attempt at desmearing the data has
been made. It should be mentioned that some investiga-
tors have reported impressive scattering data despite
these difficulties, but the expertise required is substantial.

C. Measurements of the fractal dimension

Elastic light-scattering measurements were made at sil-
ica concentrations ranging from c =2.5X10 wt. % to
10 wt. %. At the highest concentration, growth was
rapid, with 1000-nm clusters being produced from 11.0-
nm radius colloidal silica in about 0.8 min. Light-
scattering data can take several minutes to collect, so
measurements are appreciably smeared in time, which
might lead to some questions about the validity of these
data. In fact, these measurements are valid only because
the system is mass fractal. In a mass fractal system the
scattered intensity at wave vector q is independent of the

t R 0
~ 10 396 1 78

4 21 571 1 86

+ 35 734 1.84

50 874 1.84

~ 60 957 1.83

90 1168 1.85

120 1345 1.85

10' 10
~ .. I
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q(cm )

FIG. 14. Time-resolved elastic light-scattering data for rapid
aggregates grown at pH 8.5 and a concentration of 10 '% silica
show a time-independent fractal scattering, with I/e-q
over a large time regime (scattering curves have been vertically
shifted for clarity). At the earliest time a slight departure from
power-law scattering is observed, due to the proximity of the
low-q data to the crossover to the Guinier regime, but spontane-
ous restructuring was not observed.
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cluster radius if qR »1 (conservation of mass). Thus the
fact that the clusters grow appreciably during the dura-
tion of the measurements is unimportant as long as

qR, ))1. For example, at pH 8.5 and a concentration of
10 wt. %, 1000-nm clusters are produced in 66 min.
Time-resolved scattering data, shown in Fig. 14, demon-
strate that the observed scattering, and thus the fractal
dimension D =1.84, is independent of time. Thus in our
system we do not observe the "restructuring" of silica ag-
gregates that has been observed previously. It is con-
ceivable that this stability is due to the presence of a
buffer in our solutions. However, at very large times the
scattered intensity actually decreases, due to the sedimen-
tation of large clusters from solution. For example, if a
rapidly aggregating sample is allowed to age overnight
then the clusters will have formed a delicate, easily
resuspended precipitate on the bottom of the scattering
cell. Subsequent scattering measurements on the
resuspended clusters then give a larger fractal dimension,
as discussed below.

In Fig. 15 scattering data for rapid aggregates formed
at a concentration of 2. 5 X 10 wt. % silica are contrast-
ed with scattering data for aggregates grown under slow
conditions at a concentration of 10 ' wt. %. The change
in fractal dimension with D = 1.73+0.07 to 2.05+0.06 is
apparently in agreement with simulations of diffusion-
limited and reaction-limited aggregation, ' however, the
situation is really not so clear. The data in Table II show
that the fractal dimension of rapid aggregates increases
with concentration, even though the kinetics is always
power law. Since slow aggregation is done at high silica

10
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10

10
10 10 10

q(cm )

FIG. 15. Light scattering on rapid aggregates at
c =2.5 X 10 give a fractal dimension of 1.73+0.07, in contrast
with data for slowly grown aggregates, which gives
D =2.05+0.06. These dimensions agree with aggregation simu-
lations (Ref. 14).

TABLE II. Growth exponents for colloidal silica aggregates.

c (wt. % SiO ) pH T ('C) z/D ~ (min)

0.00025
0.001
0.002
0.004
0.004
0.004
0.008
0.01
0.025
0.05

0.00025
0.001
0.01
0.05

8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5

9.6
9.6
9.6
9.6

25
25
25
40
25

5

25
25
25
25

25
25
25
25

0.52
0.49
0.52
0.57
0.55
0.60
0.62
0.59
0.53
0.59

0.41
0.49
0.35
0.45

0.90
0.85
0.90
0.98
0.94
1.04
1.07
1.02
0.92
1.02

0.71
0.85
0.62
0.80

297.9
65.7
39.9
16.2
24.6
32.8
14.3
12.7
6.9
4.0

305.6
79.1

9.9
0.80

0.01 10.0 0.38 0.75 15.1

concentrations it is unknown if the fractal dimension is
concentration dependent. Thus a facile explanation of
aggregation in terms of two simple universality classes is
yet unproven by extant experimental evidence.

IV. FRAGMENTATION AND RESTRUCTURING

A. Restructuring experiments

Spontaneous restructuring of rapid aggregates to a
higher fractal dimension does indeed seem a reasonable
expectation, since it would be surprising for diffusion-

Our measurement of D =2.05+0.06 is in agreement
with previous measurements of the fractal dimension for
slow aggregates, including the original measurements on
silica. However, our measurements of the fractal dimen-
sion of rapid aggregates show some new features. Previ-
ous measurements on unbuffered silica solutions indicate
that only two values of the fractal dimension are ob-
served, D =1.75+0.05 or D =2.08+0.05, and that some-
times aggregates that initially have a fractal dimension of
1.75 can spontaneously restructure to a fractal dimension
of 2.08. For example, aggregates grown at pH 8.5 and a
concentration of 0.001 wt% are reported to restructure
to a fractal dimension of 2.08 in less than 5 min. Our
measurements in buffered solutions at the same pH,
shown in Fig. 14, vouchsafe not a clue of restructuring on
any time scale. Thus it seems worthwhile to investigate
the structural properties of silica aggregates in more de-
tail.

Although restructuring times of hours have been re-
ported in the literature, on these time scales the aggre-
gates sediment to the bottom and must be resuspended by
agitation in order to make scattering measurements. The
very act of shaking can induce structural changes in the
aggregates and it is diScult to determine whether the
structural changes thus observed are spontaneous or
shear induced. In the following we discuss various
mechanical aspects of rapid aggregates, including their
susceptibility to shear, pH, and salt concentration.
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limited growth to generate an equilibrium ensemble.
Also, under rapid aggregation conditions there is little
time for ripening so that siloxane bonds form between
colloidal particles. However, when we attempted to in-

vestigate spontaneous restructuring we were impeded by
the effects of sedimentation. In the following we describe
some of these experiments.

When a concentration of 10 wt. % silica was al-
lowed to aggregate in a scattering cell at pH 8.5 the
scattering data, shown in Fig. 14, show a stable fractal di-
mension of 1.85 at times from 10 to 120 min. Since spon-
taneous restructuring was not observed on this time scale,
the sample was then gently swirled in the scattering cell;
this increased the fractal dimension to 1.94. Shaking the
sample then increased the measured fractal dimension to
2.12 as shown in Fig. 16. The shaking may cause internal
aggregation of the cluster, with branches attaching to
neighboring branches to form compact clusters with cir-
cuits. In particular, at small q the scattering data of the
shaken sample often have a steeper slope, consistent with
a greater collapse on larger length scales, where the clus-
ters are more flexible. Other attempts to measure spon-
taneous restructuring met with similar results—
restructuring was only induced by shear.

To further investigate the possibility of restructuring,
10 wt. % silica aggregates were grown at pH 9.6 for a
total of 17 h. These clusters attain a radius of 1000 nm in

only 10 min. Although we hoped that such a long anneal
time might encourage structural changes, after 17 hours
the aggregates had formed a fine sediment on the bottom
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FIG. 16. The effect of agitation on the scattering behavior of

aggregates is shown for silica clusters grown at pH 8.5 and a
concentration of 10 '%%uo. If this system is unperturbed the
scattering is as shown in Fig. 14, with a stable fractal dimension
of 1.85. When the sample is swirled, restructuring to a dimen-
sion of 1.94 occurs, and when the sample is shaken, the fractal
dimension increases to 2.12. These results are not surprising,
and simply indicate that the clusters internally aggregate under
conditions of shear. The increase in the fractal dimension with
internal cluster aggregation has been demonstrated in computer
simulations of Meakin (Ref. 14).
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of the scattering cell. This sediment was resuspended by
agitation to give an aggregate radius of 1700 nm and the
scattering data then taken are shown in Fig. 17. These
data are very non-power-law, but do indicate greater col-
lapse on larger length scales. The long anneal time did
seem to encourage ripening and made the aggregates
somewhat less resistant to the effects of shear.

We were able to produce shear-induced structural
changes in other samples as well. For example, samples
prepared at 10 wt. % silica at pH 9.6 gave a dimension
of 1.8 after 5 min. Shaking the sample vigorously re-
duced the cluster radius by half and increased the mea-
sured dimension to 2.01. Great sensitivity to shear was
observed in samples prepared under very rapid condi-
tions.

When these studies were made at much lower silica
concentrations c = 10 wt. % the aggregates were found
to be more stable to handling, but vigorous agitation
could still increase the scattering exponent to as much as
2.2. Presumably this is due to the fact that the aggre-
gates have more time to ripen.

In short, we were unable to observe spontaneous re-
structuring to a higher fractal dimension, but noted great
sensitivity of the aggregate size and dimension to shear.
Similar observations have been made on gold aggregates.

B. ES'ect of ionic environment

The delicate nature of rapid aggregates is further il-
luminated in dilution studies. For example, a sample was
prepared at pH 8.5 and c =5X10 wt. %, allowed to
completely settle overnight to allow a maximum time to
ripen, and was resuspended by agitation, at which point

q(cm )

FIG. 17. When aggregates are resuspended, larger structural
changes occur. Silica aggregates at c=10 '% were grown at
pH 9.6 until sedimentation was complete and the aggregates
formed a fine precipitate on the bottom of the scattering cell.
After the solution was resuspended the scattering data are non-

power-law, with positive curvature on logarithmic axes. Since
the low-q slope is greater, one can conclude that greater
structural changes occur on larger length scales.
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the cluster radius was 1300 nm. The sample was then di-
luted 10:1 into buffer without salt and a radius 600 nm
was found. A further 5:1 dilution gave a radius of 400
nm and a scattering exponent of 2.2. This decrease in the
cluster size with dilution surprised us since it indicated
that rapid aggregation in silica might occur in a shallow
secondary potential minimum.

The effect of dilution is much more dramatic when the
aggregates are not allowed to ripen, as illustrated in the
following. At pH 8.5 and c =5X10 wt. % growth was
allowed for 17 min, giving a cluster size of 2100 nm. A
10:1 dilution into buffer with no salt then gave very small
clusters of a radius of 70 nm. After 5 min the radius de-
creased to 30 nm. Thus it seems that rapid aggregation
does indeed occur in a shallow secondary minimum that
is highly salt dependent, since increasing the screening
length induced spontaneous fragmentation. This effect
cannot be attributed to shear alone: an identical sample
was aggregated to 2100 nm in 17 min and was then shak-
en vigorously. This resulted in a decrease to 700
nm —over ten times as large as the diluted clusters.

To further demonstrate that these fragmentation
effects are due to the change in charge screening, we re-
peated the previous experiments by diluting into buffer
with salt. If the fragmentation under these conditions is
smaller, this would show that shear alone cannot explain
the dramatic effects we observed. The 10:1 dilution gave
relatively large clusters of radius 900 nm (versus 70 nm)
with a scattering exponent of 2.2. A futher 5:1 dilution
gave 700-nm clusters and a scattering exponent of 2.2.
Under these conditions the clusters then continued to
grow, indicating that although some shear effect is ob-

10

served, shear alone cannot account for the size reductions
obtained by dilution into a low-salt environment.

A more extensive study of ionic fragmentation was
conducted on a sample prepared at p H 8.5 and
c =10 wt. % (under these conditions 700-nm clusters
are produced in 1 h). A 10:1 low-shear dilution by pour-
ing into buffer without salt then gave 250-nm clusters,
whereas a high-shear dilution by pipeting gave 110-nm
clusters. Thus there is some contribution to the size
reduction from the shear fields produced by handling.
However, in either case spontaneous fragmentation con-
tinued to occur in this low-salt environment; the poured
sample decreased to 120 nm after 48 h and the pipeted
sample decreased to 90 nm. In contrast, a 10:1 pipeting
dilution into buffer with salt gave 540-nm clusters that
then aggregated to 2000 nm after 48 h, as shown in Fig.
18, demonstrating conclusively that the fragmentation is
due to an increase in the screening length and a change in
the shape of the interaction potential.

C. p H and speci6c salt eff'ects

The solution pH is a strong determinant in the aggre-
gation kinetics, sometimes with surprising results. For
example, reducing the pH to 6.7 gives very slow aggrega-
tion at higher concentrations, but rapid aggregation at
low concentrations. In fact, after 71 h, 22-nm clusters
are produced at c =5X10 wt. % and 46-nm clusters
are produced at c=10 wt. %%uo . Likewis e, whe nCsC1
salt is used instead of NaCl a dramatic decrease in aggre-
gation rate is observed at high pH, as shown in Fig. 19.
For example, at c =10 wt. % we studied growth at pH
8.5, 9.6, and 10. At pH 8.5 a radus of 1270 nm was pro-
duced after 2.8 min and a dimension of 1.84 was mea-
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FIG. 18. When rapid aggregates grown at pH 8.5 and
c =10 '%%uo are diluted 10:1 into burr without salt substantial
fragmentation occurs, indicating that the interactions that hold
the colloidal particles together are reversible. When the dilu-
tion is made into rapid growth conditions, at pH 10, cluster for-
mation continues. By contrast, silica aggregates grown under
slow growth conditions do not appear to be reversible, probably
due to the formation of covalent siloxane bridges (ripening) be-
tween particles.

t (min)

FIG. 19. Growth studies of silica aggregation at c =10
with 1M CsCl show a dramatic change in the aggregation rate
at pH 10, with a crossover from rapid, power-law aggregation at
pH 9.7 to slow, exponential growth (note: with 1M NaCl aggre-
gation is rapid at pH 10). This change in growth kinetics is ac-
companied by a change in the fractal dimension from 1.98 un-

der rapid conditions to 2.3 under slow conditions.
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sured. At pH 9.6 a radius of 420 nm was produced after
4 min and a slightly larger dimension of 1.94 was deter-
mined. Measurements at 25 and 36 min gave clusters of
866 and 950 nm, respectively, and dimensions of
1.94+0.02. Finally, at pH 10 the growth changed from
power law to exponential, and after 5 min clusters of a ra-
dius of 18 nm were produced. After 190 min these clus-
ters grew to 557 nm and a fractal dimension of 2.3 was
observed. When the pH was just slightly less than 10 the
aggregation was very rapid, with 566-nm clusters formed
in only 3.4 min and an observed fractal dimension of
1.98. Thus a very abrupt transition in the aggregation ki-
netics and the fractal dimension was observed near pH
10, indicating that the dimension is indeed coupled to the
mechanism of growth. However, the relatively large
values observed for the fractal dimension indicate that
the universality in the aggregation dimension is not that
great. With NaC1 this transition was not observed; at pH
10 the growth was rapid (590-cm clusters in 3.4 min) and
the fractal dimension was 1.83. The nature of this
specific salt effect is not understood, but clearly it cannot
be rationalized in terms of a screened Coulomb potential.

In another experiment we grew rapid aggregates of low
fractal dimension 1.8, reduced the size of these aggregates
by a pH quench, and let growth again occur in a slow
growth regime to produce aggregates of higher dimen-
sion. We prepared a 10 wt. % solution at pH 8.5, let
the clusters grow for 70 min to give a radius of 670 nm,
and then quenched the pH to 6.3. This immediately re-
duced the radius to 100 nm, but after 5.8 h the radius had
slowly increased to 400 nm and a dimension of 2.01 was
ebtained from light scattering. After 7h the radius in-
creased to 446 nm and a=2.05 was found, and after 23
hours a radius of 780 nm was obtained and a dimension
of 2.05 was found. Thus the rapidly grown aggregates
had regrown to a higher dimension under slow growth
conditions.

V. CONCLUSIONS

The current description of aggregation is in terms of
two universality classes: slow aggregation with exponen-
tial growth and D =2.05, and rapid aggregation with
power-law growth and D =1.73. We find that although
this is indeed a useful first-order description of the aggre-
gation of silica, there are certain observations that indi-

cate that silica is more complex. For example, fractal di-
mensions of 1.6—2.0 were found for rapid aggregation un-
der various conditions of concentration, salt, and pH,
and fractal dimensions from 2.05 to 2.3 were found for
slow aggregation. Also, although power-law growth was
observed with a growth exponent z —1 at p H 8.5,
significantly smaller exponents were found at higher pH.
Thus the relation R, -t ' between the fractal dimension
and the kinetics of growth is not generally true, although
it was observed for 2.5X10 wt. 'ilo silica at pH 8.5.
Similar conclusions have been reached for gold, ' where
again the observed growth exponent z was smaller than
expected.

The concentration dependence of the growth was also
weaker than expected from the constant kernel approxi-
mation, especially at pH 8.5, and we were able to demon-
strate that in the context of the Smoluchowski equation
either a concentration-dependent kernel or a fragmenta-
tion term would have to be added to describe these data.

We found that silica aggregates grown under rapid
conditions are delicate, showing substantial fragmenta-
tion effects with shear and changing solution conditions.
Diluting clusters into a low-salt environment demonstrat-
ed that the interaction between clusters is easily reversi-
ble, unlike slow aggregates, which are robust due to the
gradual formation of covalent bonds between particles.
Spontaneous restructuring was not observed in any of our
experiments, but restructuring was easily induced by agi-
tating the sample. Many of the reported restructuring
times are sufficiently long for the clusters to completely
precipitate, thus resuspension must have been necessary
to make scattering measurements on the clusters. There-
fore we believe that the resuspension may be the source
of the reported restructuring measurements.

Finally, at pH 10 we observe a dramatic difference be-
tween aggregation rates with NaCl and CsC1. This
difference demonstrates that the nature of the interaction
between these hydrophillic colloids is very complex' and
cannot be understood in terms of simple charge screening
concepts.
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