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The thermodynamics of the equilibrium polymerization model (grand-canonical ensemble of self-

avoiding walks) in two dimensions is worked out by means of the Migdal-Kadanoff
renormalization-group technique. This method involves renormalization-group flows in an eight-
dimensional parameter space. At the critical point the number of relevant fields {positive ex-

ponents) is four. The leading exponent value differs by less than 1/o from the (presumed) exact
value. The results are exact for the polymerization problem defined on the diamond hierarchical
lattice. Some results are peculiar to this lattice and are not expected to hold for Bravais lattices.
For instance, the polymerized phase (infinite polymerization index) is dilute (zero density of chemi-
cal bonds).

I. INTRODUCTION

The equilibrium polymerization process in a grand-
canonical ensemble of self-avoiding walks is solved exact-
ly on an extremely inhomogeneous lattice, the diamond
hierarchical lattice. Previous exact solutions of the poly-
merization process were obtained for the one-dimensional
and for the Bethe lattices' and for the equivalent-
neighbor lattice. Unlike these and Bravais lattices,
where all vertices are equivalent to each other, the ver-
tices of the diamond hierarchical lattice can be classified
in an infinity of equivalence classes, with each class
containing a vanishingly small fraction of all vertices.
Hierarchical lattices are in general inhomogeneous, and
this feature makes them crude models for disordered sys-
tems. Hierarchical structures have been used to model
the dynamics of glassy materials, spin glasses in equilib-
rium, and the backbone of the percolating cluster. It is
our hope that this study will provide insights into a sub-
ject of considerable current interest: polymers in an in-
homogeneous medium (such as the percolating cluster).

The recursion equations which exactly solve a statisti-
cal model on the diamond hierarchical lattice constitute
the Migdal-Kadanoff renormalization-group approxima-
tion for the same model defined now on a two-
dimensional (2D) Bravais lattice, as first observed by
Berker and Ostlund. ' The drastic geometric differences
between hierarchical and Bravais lattices cause important
differences" in the thermodynamics of a given model
when defined on these lattices. Other features, however,
do not differ qualitatively. For example, the phase dia-
gram for the polymerization problem on the diamond
hierarchical lattice is the same as the expected phase dia-
gram for regular lattices. We develop in this paper a
computational framework for quantities such as the num-
ber of polymers, length of polymers, and their fluctua-

tions, which can be used in the whole parameter space.
By contrast, previous studies, such as e expansion, ' scal-
ing theory, ' and conformal invariance for two dimen-
sions' have focused on the thermodynamic behavior in
the vicinity of the polymerization critical point.

The diamond hierarchical lattice can accommodate no
Hamilton walk (a self-avoiding walk covering a unit frac-
tion of all vertices). In fact, the longest single self-

avoiding walk occupies a vanishingly small fraction of all
vertices in the thermodynamic limit. The maximum cov-
erage (largest possible fraction of vertices on polymers) is
achieved only with a nonzero density of polymers (ma-
croscopically large numbers of polymers). The polyrneri-
zation index (average number of bonds per polymer) lies
in this case between 2 and 4; i.e., the maximum coverage
is achieved mainly with small polymers. These features,
unexpected from our experience with homogeneous lat-
tices, which can accommodate Hamilton walks, are root-
ed in the geometry of the diamond hierarchical lattice.
For the latter lattice all long self-avoiding paths are fun-
neled through some high-coordinated vertices whose oc-
cupation by a polymer blocks all other paths through
these vertices. We expect this bottleneck effect to also
hold on the hierarchical lattice which serves as a model
for the percolating backbone. In the polymerized phase
the polymerization index (average size of a polymer), as
expected, is infinite. However, unlike expectations based
on homogeneous lattices such as the one-dimensional
(1D) and the equivalent-neighbor lattices, the bond densi-
ty is zero in the thermodynamic limit.

Close to the critical polymerization point, the critical
amplitude of the singular part of the free energy is equal
to a constant plus an oscillatory contribution. Such oscil-
lations are rooted in the self-similar character of the lat-
tice, and have been studied before for other models. '

Unlike those previous studies we find the osci11ations to
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have a relatively large amplitude.
The remainder of this paper is organized as follows. In

Sec. II the salient geometric features of the diamond lat-
tice which influence the statistics of self-avoiding walks
are described. In Sec. III the recursion equations are de-
rived after mapping the polymerization process into an
Ising-Potts model (equivalent to the Hillhorst model' ).
Numerical results for the dependence of the number of
bonds, the number of polymers, etc. , on the model fields
(two fugacities) are also presented here. The singular be-
havior of the thermodynamic quantities in the vicinity of
the polymerized phase is discussed in Sec. IV. Section V
contains our conclusions.

II. GEOMETRY OF THE DIAMOND LATTICE
AND SELF-AVOIDING WALKS

The diamond hierarchical lattice is constructed itera-
tively as shown in Fig. 1. Four bonds of order zero are
assembled into a diamond (or bond of order 1). Four dia-
monds are then put together into a diamond of diamonds
(or bond of order 2). This process is continued
indefinitely.

By construction this lattice is self-similar. There exists
a "volume" scale, the so-called aggregation number,
which equals 4. In renormalization-group studies of
models on d-dimensional Bravais lattices the aggregation
number is written as l, with l =d =2 in this case, and l is
the "length" scale. This scale is responsible for the
modulation by oscillations of the power-law dependence
of thermodynamic quantities close to criticality. This
feature is peculiar to nonrandom hierarchical (fractal)
structures. It does not occur for translationally invariant
structures which do not possess a single scale I, e.g. , for a
one-dimensional lattice exact decimations can be per-
formed with any integer I ~ 2, while for the diamond lat-
tice exact decimations can be performed only with l equal
to an integer power of 2: 2, 4, 8, . . . . A numerical study of
the oscillations can be found in Sec. IV.

The diamond hierarchical lattice is an inhomogeneous
structure. The primitive bonds can be divided into
equivalence classes. Each class is determined by a sym-
metry operation which maps the left branch into the
right branch of the diamond shown in Fig. 1. In a lattice
with 4" primitive bonds there are 2" equivalence classes,
with each class containing 2" primitive bonds. Hence in
the thermodynamic limit, n ~~, the fraction of
equivalent bonds out of the total number of bonds is van-

ishingly small, 2 "~0. By contrast, for a translationally

invariant lattice (e.g. , the square lattice) all bonds, except
the surface ones which constitute a vanishingly small
fraction of the total, are equivalent. Not all hierarchical
lattices are as inhomogeneous as the diamond one. For
example, in the case of the Cayley tree (Bethe lattice with
surface) each equivalence class possesses a finite fraction
of the total number of bonds. In this sense the diamond
lattice is an extremely inhomogeneous structure, a prop-
erty it shares with multifractals.

We now focus on self-avoiding walks grown on the dia-
mond lattice. First we consider a single walk covering
the largest possible number of bonds. On the nth genera-
tion lattice with 4" primitive bonds, this walk covers
2'"+"—1 primitive bonds; i.e., it covers a vanishingly
small fraction of all bonds: 2 "~0 as n ~~. This situ-
ation sets aside the diamond hierarchical lattice from
Bravais lattices where Hamilton walks can be accommo-
dated. It is rooted in the bottleneck effect: in order to
cover as many primitive bonds as possible the polymer
grows in a single direction (the vertical direction of Fig.
1). In fact, as it will be shown in Sec. IV, that the fractal
dimension of this walk is 1. This is also the case with the
hierarchical lattice which serves as a model for the per-
colating backbone.

We next determine the maximum coverage of the dia-
mond lattice with many self-avoiding walks. The vertices
of coordination numbers 4, 8, 16, . . . , are all internal sites
on polymers. Indeed, if this is not true, i.e., such a vertex
is either the end of a polymer or is empty (not on any po-
lymer), then we could draw from this vertex one or two
more bonds, respectively. This means that we did not
start with a maximum coverage configuration. Since for
each vertex of coordination number larger than 2 there
are two bonds, the fraction of bonds out of the total 4"
lattice edges is b=2(S —S2)/4", where S=—', (4"—1) is

the total number of vertices and S2 =
—,
'4" is the number of

vertices of coordination number 2. In the thermodynam-
ic limit n ~ ~, the largest value for the fraction of bonds
on polymers is b =

—,'.
To determine the number of polymers for a maximum

coverage configuration, we note that

b+p+4 =—'

where b,p, and 40 are, respectively, the density of bonds
on polymers, the density of polymers, and the density of
uncovered sites (sites not on polymers). The densities are
obtained by dividing the corresponding numbers by the
number of lattice edges 4". Since b =

—,
' it follows that

(2)

On the other hand, vertices of coordination number 2 ei-
ther are not on polymers (@0),or are at ends of polymers
(2p), or are internal sites on polymers (x). Then

C p+2p +x =— (3)

FIG. 1. Construction of the diamond hierarchical lattice.

where x is the ratio of the number of internal polymer
sites of coordination number 2 to 4" and —,

' is the ratio of
the total number of vertices of coordination number 2 to
4". After subtracting Eq. (2) from Eq. (3) we find
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p+X —
6

(4) Ising spin S;=+1 and a Potts spin cr; =1,2, . . . , q. The
Hamiltonian is

Since x 0, the largest p =
—,
' and this rnaxirnum coverage

is achieved with trimers (polymerization index b/p =2
bonds per polymer). To compute the smallest p compati-
ble with maximum coverage, we note that this situation
arises when the polymers are as long as possible. We find

a recursion equation: P„+,=4P„+1, P2=1, where P„ is

the number of polymers on the nth generation lattice. By
iterating this equation we find, in the limit n ~ ao, p =—„,
which corresponds to the polymerization index b/p =4.

To summarize, the maximum coverage configurations
have b =

—,
' and —,', p —,'. We have used these results to

check the correctness of our numerical scheme (Sec. III)
in this limit. The fact that a macroscopically large num-
ber of polymers p —,', )0 is needed to achieve maximum

coverage sets aside the diamond hierarchical lattice from
Bravais lattices where Hamilton walks are possible and
thus maximum coverage can be achieved even with a sin-

gle walk (p =0). It also suggests, but does not prove, that
the polymerized phase (polymerization index b/p= ~),
where p =0, is dilute (b =0). This result is proved in Sec.
IV by using the recursion equations.

k=J/(1+ —,'H )

~=H2/( 1+ ~ H~)

The Boltzmann weight associated with a primitive
(zeroth-order) bond ij is

Z;, =exp[qJ5(o„o, )S;S,]

=1+qJ5(o, , o )S,S, + ,'q J 5(—o,, o, ) (9)

and the Boltzmann weight associated with a vertex k is

H—/k&T=qJ g 5(o, , cr )S,.S. +&qH +5(cr, , 1), (6)
&i,j &

where 5 is the Kronecker delta. The partition function
Zo of this model with q ~0, the analog of n ~0, is relat-
ed to the polymer problem partition function' Z:

Z=Z0[2q(1+ —,'H )]

where N is the number of lattice vertices. The fugacities
k and m depend on the magnetic problem parameters J
and H as follows

III. SOLUTION OF THE POLYMERIZATION MODEL

A. Recursion equations

Z„=exp[&q H5(o„, 1)S„]

=1+~qH5(oi„l)S&+—,'qH 5(o&, 1) . (10)

The partition function of the grand-canonical ensemble
of self-avoiding walks (polymerization model) is

Z=gk n.
The summation is over all possible graphs of self-avoiding
walks that can be drawn on the edges of the diamond
hierarchical lattice. 8 is the total number of bonds on
polymers and P is the total number of polymers. The two
positive parameters k and a are fugacities controlling, re-
spectively, the amount of material polymerized and the
number of polymers. In the language of the chemical re-
action theory k is the activity for chain propagation and
m=g, where g is the activity for the initiation or ter-
mination of a chain propagation.

Our solution of the model is based on its equivalence to
a discrete version' of the n-vector model with n~0. '

This discrete vector model can also be written as an
Ising-Potts model: at each lattice vertex i there is an

I

Since we are eventually interested in the q ~0, higher-
order terms are not exhibited in Eqs. (9) and (10) as they
make no contribution in that limit. The Migdal-
Kadanoff renormalization group for d dimensions and
with a linear scale factor 1=2 is

Z
2d —1

Z;kZkZk

where Z, & is the Boltzrnann weight for an nth order bond,
and ZJ is the Boltzmann weight for an (n+1)th-order
bond. The single site weight Z& does not renormalize.
For d = 1 and d =2, Eq. (11) provides the exact solution
for the one-dimensional lattice and for the diamond
hierarchical lattice of Fig. 1, respectively. Though only
two parameters J and H determine the polymer problem
studied here, the recursion equation (11) generates six
more parameters. The Boltzmann weight for an nth or-
der bond, n ~1, is

Z,"=1+—,
'q'r h [5(cr, , 1 )S, +5(o, 1)S ]+qJ5(cr, , cr )SS + ,'qL[5(cr, , 1 )+5(cr—,1)]

+qD5(o, , l)5(cr, 1)S,S + ,'q r M5(cr, , 1 }5(cr—,1)(S,+S )+q E5(o, , 1)5(cr, 1)+q R5(cr, , o ) . (12)

The field h appearing above creates a magnetic field at each lattice vertex proportional to the vertex coordination num-
ber. It must be distinguished from H which is a uniform field.

We first perform the decimation involved in the right-hand side of Eq. (11) and find

Z&Zi, Z& =2qA [1+—,'q' h[5(o, , 1)S, +5(cr, 1}S]+qJ5(cr, , o )S,S + ,'qL[5(.cr, , 1)+5(o,—1)]
Sk 'ek

+qD5(o;, 1)5(o,1)S,S.+ —,'q M5(o;, 1)5(o ., 1)(S;+S )+q E5(o, , 1)5(o,1}+q R5(o, ,cr.j,
(13)
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where

h =[(1+,'H—)h+2JH+2DH+M+ ,'Hh—+Jh

+ ,'Lh—+Dh ]/A,
J—J /A,
L =[(1+,'H )—L+MH+2K+,'LHh—+ ,'Mh—+ ,'L )—/A,

(14)

D=[(1+ iH ) ih +DHh+JHh+ iMh+2JD+D ]/A,
M= [(1+—,'H ) —,'Lh + ,'MHh—+Kh+ JLH+ JM+LDH

+ ,'LM+—DM]/A,

K=[(1+ 'H ) 'L—+ 'L—MH+—LK+ ,'M']/A-,

R =0.

B. Numerics

For given values of the fugacities k and ~ the free ener-

gy is computed as follows. First from Eq. (8) we deter-
mined the values of J and H. By comparing Eqs. (9}and
(12) we find that the starting values of the other six fields
are h =L =D =M=K=0 and R =

—,'J . The free energy
is then obtained from Eq. (17) by iterating Eqs. (14}and
(16). The summation on the right-hand side of Eq. (17) is

stopped after n terms if the (n+ 1}th term is less than
)O

—14

The derivatives of f with respect to ink and in~ give
the fraction of bonds on polymers to the total number of
lattice bonds (denoted by b) and the ratio of the number
of polymers to the total number of lattice bonds (denoted
by p). The derivatives of b and p with respect to ink and
inn. determine the Auctuations of these quantities:

5f 5f
51nk '

51nm

Since for 0 =1 the power in the right-hand side of Eq.
(11) is 1, Eq. (14) provides an exact renormalization-
group solution of the polymerization problem. The poly-
merization free energy per vertex f= (lnZ ) /N is

W(5b') =
51nk '

W(5p') = P, W(5b5p ) = b

5 inn 5 inn

(18)

f=
—,
' g C„/2",

n =-0

where

C„=in[A„/(1+ —,'H )] .
(15)

where A' is the number of lattice edges (to be dis-
tinguished from N the number of lattice vertices). These
quantities were computed by numerically differentiating
f. The following inequalities constitute checks on the va-

lidity of the results:

We verified the correctness of Eqs. (14) and (15) and the
accuracy of our numerics, by comparing the free energy
obtained from (15) to the exact closed formula for 1D po-
lymerization

f=lnI —,'(k+1)+[—,'(k —1) +km]'

where k and ~ are determined by J and H according to
Eq. (8).

To obtain the recursion equations for the diamond
hierarchical lattice we have to square Eq. (13) since the
power on the right-hand side of Eq. (11) is two for d =2.
We find

0 4 a n=1x10
b m'- 1x10
c ~= 0.1

d 7r= 1.0

f~0, b~O, p~O, (5b )~0,
(5b )(5p ) ~ (5b5p )

Figures 2 —7 exhibit a few results concerning the
dependence of various thermodynamic quantities on the
two fugacities. In Figs. 2 and 3 we show the dependence
of b and p on k for a few fixed values of m. For the small-

h'=2A. ,

J'=2J,
L'=2L+ —,'h

D'=2D+ —,'h

M'=2M+2Jh +2Dh +Lb,
K'=2K+Mb +2JD+ —,'L +D

R'=2R+ J 2

(16)

0.3-

b 0.2-

0.1-

The polymerization free energy per primitive bond is

f=
—,
' g C„/4",

n=0

where

C„=21n[A„/(1+ ~H }]

(17)
FIG. 2. Variation of b with k for the following 77. values:

10 '", 10, 10 ', and 1.



4$ POLYMERIZATION ON THE DDIAMOND HIERARCHICAL. . . 4375

0.15-
a m-1x10 '0

b 7r- 1x10 6

c g- 0.1

d P- 1.0

0.08-

a k- 1.0
b k-05

0.06

0.1

P 004-

0 05.
0.02-

0.02 0.04 0.06
I

0.08 0.1

FIG. 3.. 3. Variation of p with k for. 3. or the following vr values:
FIG. 5. Variation ofp with ~ for thwi ~ or the following k values: 0.25 7

er m some structure develops, which is tied to
1 h h 1

d d ofb d
rc ica models (see Sec.

( 1o

o an p on m for three

, an a ove the critical k =—' i

4 and 5. As m~O,
. , =

—, ) is shown in Figs.
g.s m ~0, b and p tend to zer

e po ymerization index (avera e1,b/) f ' fka unction of k for a fi

maximum occurs at k=k =—'.
m~O, for k) k

In the limit

„we expect b/p=0(1/1nm)~~ see

Sec. IV bee ow). The fluctuation of is
a function of k for

'
n o p is shown in Fig. 7 as

th' t't '
d

'

M a - a anoff scheme is realizable

IV. SINGULAR BEHAVIOR

In the two-dimensional subsa su space determined by J and

to the polymerization roblion pro em defined in Eq. (5), we find

0.06

a k- 0.6

80-

0.05.

60

004

b oo3- b/p 40-

0.02-

20

0.01 .

0
0.00002 0.00004 0.00006 0.00008 0.0001

FIG. 4. V. Variation of b with m for the
0.5, and 0.6.

m or t e following k values: 0.4, FIG. 6. Variation of the olFIG . o e polymer index t, b/p) with k for
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0.035'

0.03 ~

where u is a fixed small number, say 10 . Iterating n

times Eq. (19) we find

J(n) (J/J )2"

0.025 ~

0.02

~c&i&i ~2

0.0&5 ~

0.01

where Jc =
—,'. We estimate n from Eqs. (21) and (22):

2"= [ln( u /H ) ]/[ ln( J /Jc ) ]
=

—,'[ln(u /n. )]/[1n(k/kc )] .

Since, for the first n iterations A = 1, see Eq. (14),

f(J,H)=4 "f(J'"',H) .

(23)

(24)

0.005 '
Now J'"' is large (since H is small) and consequently we
use a "low-temperature, " or maximum coverage, approx-
imation:

0.5 1.5 2.5 f( J'"',H ) =—' lnj'"'+
—,', lnH (25)

FIG. 7. Variation of the p fluctuation JV(5p ) with k for
m= l.

where —,
' and —,', are, respectively, the values of b and p at

maximum coverage, (see Sec. II). A finite entropic con-
tribution is neglected in Eq. (25), Combining Eqs. (23),
(24), and (25) we find

an unstable fixed point at J=—,
' and H=O (or k = —,

' and

n =0). The recursion equations for H =0 are

f(k, n. ) = —,'[ln(k/k, )] /ln(1/n. )

for ~~0, k) kc= (26)

J'=2J~ and R'= J4 . (19)

The field R does not affect the free energy in any way (it
is redundant' ) and can be ignored. Linearizing the re-
cursion equation at the fixed point J=—,

' we find the
thermal eigenvalue A, r =2 and then the thermal exponent

yr =In)i, T/In2=1. This exponent is the fractal dimen-
sion of the infinite self-avoiding walk. The fractal di-
mension of the self-avoiding walk on the hierarchical
lattice which models the percolating cluster is also
unity. This result differs from Flory's formula
yT=(d+2)/3= —,

' for d=2. In fact, for general d the re-

cursion equation (19) becomes

2d —1J2 (20)

(21)

which has the unstable fixed point at J=2' and the
thermal exponent is yT=1, independent of d. This result
shows the great difFerence between d-dimensional Bravais
lattices, d 2, and the hierarchical lattices corresponding
to the Migdal-Kadanoff renormalization-group scheme.
On these hierarchical lattices the linear polymer grows
only along the one direction, the vertical of Fig. 1, which
explains why the polymer is one-dimensional. The "heat
capacity" exponent, within the Migdal-Kadanoff renor-
malization group, is

a =2—d/yT=2 —d .

We estimate next the free energy f for small values of
the field m (small H), for k (or J) greater than the critical
value of —,'. Then Eq. (19) approximates the first n itera-
tions until the other fields start to become nonnegligible
because of the HJ'"' contribution in the second of Eq.
(14):

By taking the logarithmic derivatives off with respect to
k and @[see Eq.. (18)) we find that b and p vanish loga-
rithmically slowly as m tends to zero. The polymerization
index b/p, on the other hand, diverges logarithmically
slowly. Similar conclusions hold for dimensions larger
than 2, within the Migdal-Kadanoff scheme. For d=1,
on the other hand, the same analysis yields the exact re-
sult f= ink for k ~ 1 and irido.

The critical exponents y; are obtained from

y, =ink, /ln2 where 2 is the change in scale factor and A, ;
are the eigenvalues of the recursion equations at the criti-
cal fixed point. We find four positive exponents; i.e.,
there are four relevant fields associated with the polymer-
ization critical point. It will be interesting to verify this
Migdal-Kadanoff scheme prediction that the codimen-
sion ' of the polymerization critical point is four by other
methods (e.g. , Nienhuis's Coulomb gas representation of
2D phase transitions ). The largest exponent is the
"magnetic" one:

yi, =ln[ —,'(9++33)]/ln2= l. 8821 .

It differs by less than 1% from Nienhuis's value
—'„'=1.8958. The other three positive exponents are all
equal to unity, and this includes the thermal exponent
discussed at the beginning of this section.

Close to the critical polymerization point kc =
—,',

~c =0, the singular contribution to the free energy can be
written in a scaling form:

(27)

where 6=2yz/yT {the factor of 2 is due to the fact that
rr=H ) and 2 —a=2/yT. The requirement that the criti-
cal manifold be an isolated point at m. =0 and k =kc im-
plies
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