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We construct a simple coarse-grained model and use it to study global phase behavior of ensem-

bles of Quid membranes. This model is an improvement over previous phenomenological models of
Talmon and Prager, de Gennes and co-workers, Widom, and more recently of Safran and co-
workers. We show here that there is necessarily an entropic contribution, missing in all previous

theories, to the coarse-grained free energy whose physical origin is the same as that of Helfrich s en-

tropic repulsion stabilizing lamellar multimembrane phases. The inclusion of this steric entropy in

the previous phenomenological studies is essential if they are to be used in the study of periodic

phases in microemulsions and analogous surfactant systems. Thus the model enables us to obtain,
in a unified way, phase diagrams containing both uniform and periodic phases in microemulsions

and in binary systems of nonionic surfactant bilayers in a single solvent. Mean-field theory for this

model yields rich phase diagrams containing dilute, random bicontinuous, lamellar, columnar, and

an antiferromagnetic phase that may correspond to a droplet crystal or to a "plumber's nightmare. "
The model depends on two phenomenological parameters related to strengths of steric entropy and

softening of membrane rigidity. We discuss the sensitivity of phase diagrams (in particular the ex-

istence of the middle-phase microemulsion) to values of these parameters. We find that the ex-

istence of a realistic middle phase {with structural length scale much larger than the molecular

length scale) crucially depends on the presence of steric entropy. The model reproduces the experi-

mentally observed four-phase equilibria among uniform phases in microemulsions.

I. INTRGDUCTION

A. Phenomenological approach to ensembles of fluid membranes

In recent years there has been considerable progress'
in understanding the phase behavior of microemulsions
and related complex fluids involving surfactants. Surfac-
tant molecules in these systems typically form extensive
surfaces with fluid internal order. In the case of mi-

croemulsions these surfaces are flexible fluid monolayer
membranes that form at interfaces between oil and water
because of the amphiphilic nature of surfactant mole-
cules. ' In some binary mixtures of surfactant and a sin-

gle solvent, phases of bilayer surfactant sheets similar to
those occurring in microemulsions have been found to
occur at surfactant volume fractions of a few percent.

The phase diagrams of these systems are remarkably
rich. In microemulsions, when the volume factions of oil
and water are comparable, a random bicontinuous isotro-
pic phase consisting of percolating domains of water and
oil may arise. Under appropriate conditions (e.g., for
volume fractions of surfactant higher than a few percent)
various periodic —lamellar, cubic, or columnar—
structures occur. Finally, at very sma11 surfactant
volume fraction, phase separation into dilute phases of oil
with a small amount of water and vice versa occurs (see
Fig. 1).

It is currently believed that this rich phase behavior

can be explained in terms of the thermodynamics of
an ensemble of self-avoiding thermally fluctuating in-
compressible fluid membranes. ' For example, the coex-
istence of dilute and random bicontinuous phases in mi-
croemulsions [Fig. 1(d)] has been explained by Safran
et al. '

by a phenomenological theory of such an ensem-
ble. The essence of this theory is a coarse-graining of in-
terfacial fluctuations: the space occupied by the mi-
croemulsion is divided into a simple-cubic lattice of cells
of side g; each cell is filled with water or oil, while surfac-
tant molecules are presumed to form incompressible fluid
monolayers at oi1-water interfaces. A random mixing ap-
proximation is used to account for the entropy of inter-
faces at length scales larger than g. Fluctuations at
shorter length scales are taken into account by allowing
the bending elastic constant K(g) for interfaces to depend
on the length scale g. ' ' When g is of order g, the de
Gennes —Taupin persistence length, ' K(g) is typically of
order kz T. This model successfully predicts dilute-
bicontinuous phase coexistence with the structural length
scale g of order g in the random bicontinuous phase (in
this case called the middle phase).

To date, the above phenomenological approach has
been consistently applied only to the study of phase
equilibria between spatially uniform phases which occur
in microemulsion systems (dilute and random bicontinu-
ous phases') or in systems of bilayer fluid membranes dis-
solved in a single solvent [dilute (micellar) and sheetlike
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FIG. 1. (a) Dilute phases consisting of oil droplets in a water
background and vice versa. The oil-rich phase is indicated with
dots. Dilute phases occur at low P, (say, less than 1%) and are
the analog of positive and negative magnetization ordered
phases of the Ising model. (b) The random bicontinuous phase
of percolating oil and water domains. This phase occurs at P, of
the order of a few percent and is the analog of the paramagnetic
phase of the Ising model. (c) The lamellar phase consisting of
alternating layers of water and oil. This phase occurs at P,
greater than a few percent. This figure shows defects in the
form of water passages through an oil layer and vice versa. (d)
Three-phase coexistence of the two dilute phases and the ran-
dom bicontinuous phase. When there is such three-phase coex-
istence, the random bicontinuous phase is called the middle
phase.

isotropic phases ]. Phase equilibria between uniform
phases and the nearby sterically stabilized lamellar phase
were also studied in Refs. 1 and 2. However, as noted by
the authors, the lamellar and uniform phases were not
treated in a unified way. The free energy of uniform
phases was calculated using the phenomenological theory
and compared with the free energy of the perfectly or-
dered lamellar phase [i.e., one without defects such as
those in Fig. 1(c) disrupting translational order of the
phase] as estimated from the Helfrich's expression for the
steric free energy of self-avoiding undulating membranes
comprising the lamellar phase. ' In this paper, our main
goal is to develop a theory which treats in a unified way
transitions between various phases, both uniform and
nonuniform (lamellar, columnar, cubic, etc.), occurring in
ensembles of fluctuating fiuid membranes.

&(I4 j)=Xf)

where f, is the free energy of the jth smooth interface S
in Fig. 2(b).

The idea behind the construction of H( [P; j ) is basical-
ly the same as that embedded in the coarse-graining in
standard renormalization-group theories: an effective ac-
tion for long-length-scale fluctuations arises from decima-
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coarse-graining procedure is implemented by dividing
space into a simple-cubic lattice of cells of side g. With
each cell i we associate an Ising spin variable P, which
satisfies P; =0 if the center of the cell is occupied by wa-
ter and P, =1 if it is occupied by oil [see Figs. 2(a) and
2(b)]. For a given configuration of spins IP;j, one can
construct a set of smooth mean interfaces [S j between
oil and water domains [see Fig. 2(b)], and describe them,
as in the approach of Safran et al. ,

' in terms of length-
(i.e., g) dependent elastic constants. These differ from
bare constants because coarse-graining [i.e., the passage
from the situation in Fig. 2(a) to that in Fig. 2(b)] involves
integrating some short-scale interface fluctuations out of
the random surface partition function. The geometry of
the mean smooth interfaces I S j is determined by the
spin configuration [P; j [see Fig. 2(b)]. Then, knowing
the effective elastic constants of mean interfaces, one can
associate a coarse-grained spin Hamiltonian H( I P; j ) to a
given Igj. This Hamiltonian is the sum of free energies
of individual smooth interfaces:

B.Steric entropy and nonuniform phases

In this section we outline our approach to the con-
struction of a phenomenological theory of phase equili-
bria in microemulsions and related ensembles of fluid
membranes. For concreteness, we will speak in terms ap-
propriate to microemulsions. %e stress, however, that
applications of this theory to related problems, e.g., sys-
terns of bilayers in a single solvent, are straightforward.

As in previous phenomenological studies, ' ' our

FIG. 2. Coarse graining of membrane fluctuations is imple-
mented by dividing space into cubic cells of side g and replacing
the rapidly fluctuating interfaces shown in (a) by smooth mean
interfaces shown in (b). The smooth interfaces are characterized

by e8'ective elastic constants. (c) A large fluctuation changing
one configuration of cell spins into another. (d) In order to
avoid large fluctuations such as shown in (c), a hard wall con-
straint is imposed, limiting short-scale fluctuations, which are
integrated out of the surface partition function. Oil regions are
hatched.
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tion of short-scale fluctuations. In our case large, long-
length-scale interfacial fluctuations are those converting
one spin configuration [P; j into another IiI'i,' j [see Fig.
2(c)]—the coarse-grained Hamiltonian H([(('i; j) of Eq.
(1.1) describes the statistics of these fluctuations. On the
other hand, in order to avoid overcounting of
configurations, short-scale interfacial fluctuations, which
we plan to decimate, are not allowed to change one spin
configuration into another. In practice, this means that
the short-scale height fluctuations normal to smooth
mean interfaces (S j are constrained to be less than some
length which is of order of the cell size g as depicted in
Fig. 2(d). To implement this constraint on short-scale in-
terfacial fluctuations, we surround each S with two hard
walls w' and w~ at respective normal distance g/2 and
—g/2 from SJ. These walls constrain short-scale interfa-
cial fluctuations so that they do not change the
configuration of occupation numbers [i)); j [as they would
in the absence of walls as can be seen by comparing Figs.
2(c) and 2(d)].

These observations lead us to the following recipe for
constructing the effective spin Hamiltonian H([P; j ): A
given configuration of spins [((); j defines a set of smooth
interfaces [S,j. [It may happen that more than just one
set [S, j can be associated with a given IP; j as depicted
in Figs. 3(b) and 3(c). For the moment, let us presume
that [SJ j is uniquely determined by a given [(();j, as in
Figs. 2(a) and 2(b).] Each S can be thought of as the
mean surface drawn between two hard walls, w ' and w, ,
a distance g apart as depicted in Figs. 2(d) and 3(b) and
3(c). Fluctuations of the jth interface around the mean

interface S, constrained to lie between w' and w, do not
change the occupation number configuration [P j. These
fluctuations are indeed the short-length-scale fluctuations
we wish to integrate out of the surface partition function
in order to obtain the effective spin Hamiltonian, Eq.
(1.1). H([$, j) is the free energy of these fluctuations.
Each entry f in the sum (1.1) is the free energy of the in-

terface confined between walls w' and w . The calcula-
tion of f~ is by itself an entirely nontrivial problem of sta-
tistical mechanics. It can be done approximately when S,.
is a planar or nearly planar surface (see Sec. II B and Ref.
15). The final expression for f, (see Sec. II B) contains a
part expressed in terms of renormalized elastic constants
similar to that of Refs. 1—3. In addition to this, it con-
tains an entropic contribution, missing in all previous
phenomenological studies, ' ' whose origin is the same
as that of the Helfrich entropic repulsion' stabilizing
lamellar multimembrane phases. ' This contribution to
f arises from the difference in entropy of a free interfaceJ
and one which is confined by hard walls. Because we in-

terpret short-scale fluctuations as fluctuations of surfaces
confined by hard walls, ' ' this steric entropy naturally
enters our coarse-grained Hamiltonian (1.1). The pres-
ence of walls reduces wandering entropy of otherwise
rough interfaces, yielding a positive free-energy contribu-
tion' to f, i.e., to the effective Hamiltonian (1.1).

Having constructed H([P; j ), one may proceed to
study fluctuations of IP; j, as well as to determine the
phase diagram of the system. We accomplish this ap-
proximately by mean-field theory as detailed in Secs. III
and IV. The resulting phase diagrams contain both uni-
form and nonuniform, i.e., periodic phases. Uniform
phases correspond to states which have i-independent
average occupation numbers (i));) and include the ran-
dom bicontinuous phase ((iI), ) =

—,') and dilute phases
((((), )A —, ). The bicontinuous [Fig. 1(b)] and dilute [Fig.
l(a)] phases correspond, respectively, to the paramagnetic
and ferromagnetic phases of the model with a spatially
uniform, i.e., i-independent order parameter, (P;)—

—,'.
Periodic phases are characterized by a spatially varying,
i.e., by an i-dependent order parameter, (i)); ) —

—,'. Thus,
the lamellar phase is a layered state with block cells parti-
tioned into alternating even and odd layers of thickness g
[see Fig. 4(a)] corresponding, respectively, to oil and wa-
ter layers of the lamellar microemulsion. For each site i
belonging to an even layer,

(1.2a)

while for each i belonging to an odd layer,

(1.2b)

FIG. 3. A given configuration of cell spins [P, j defines at
least one set of smooth mean interfaces IS, j. Thus the set of
occupation numbers (P; j in (a) defines the two sets of surfaces
{S,j shown in (b) and (c). Two hard walls w,

' and w,
' are placed

around each S, in order to suppress large fluctuations which
may alter the cell spin configuration in (a). Oil regions are
hatched.

The perfectly ordered lamellar structure [Fig. 5(a)] corre-
sponds to a state with /=1 or /=0 in Eqs. (1.2). (The
state with (() =0 can be converted to that with (() = 1 via a
uniform translation normal to the lamellae. ) When
—,
' ( iI) & 1 there are defects in the lamellae, e.g., passages
of water through oil layers or of oil through water as
shown in Fig. 5(b). Finally, when ((i= —,

' in Eq. (1.2), the
average cell occupation number is spatially uniform, and
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FIG. 4. (a) Cell spin representation of the perfectly ordered
lamellar phase. Only oil cubes are represented. (b) The same
for the columnar phase. Smoothing of sharp edges yields two
kinds of columnar phases coexisting at zero spontaneous
curvature —columns of oil in water and vice versa. (c) Antifer-
romagnetic phase corresponding to a droplet crystal.
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FIG. 5. (a) A configuration in a perfectly ordered lamellar
phase and its coarse-grained configuration. (b) The same for a
lamellar phase with defects. Oil regions are hatched.

the state of the system is that of the random bicontinuous
microemulsion. Our approach allows us to study the na-
ture of the phase transition between the lamellar and
bicontinuous phases (see Sec. IV), whether it is second or-
der (P goes continuously to —,

' upon changing a parameter
of the system) or first order (P jumps discontinuously
from P) —,

' to P= —,
' ).

Nonuniform phases other than the lamellar phase ap-
pear in a similar fashion. Thus, the columnar phase cor-
responds to two-dimensional ordering of alternating oil
and water columns of block cells [Fig. 4(b)]. Oil columns
are, once again, characterized by Eq. (1.2a), water
columns by (1.2b). This columnar phase corresponds in

microemulsions to two coexisting tubular phases [see Fig.
4(b) and Secs. II and III for details]. Another periodic
phase we find is one with cubic symmetry arising from a
three-dimensional antiferr orna gnetic ordering of cell

spins [Fig. 4(c)] with (P, ) = (P. ) if sites i and j are
next-nearest neighbors and ( P; ) = 1 —( P ) if sites i and

j are nearest neighbors. Thus, the lattice is once again
partitioned into oil sites, satisfying Eq. (1.2a), and water
sites, satisfying Eq. (1.2b). This antiferromagnetic phase
of the lattice model may correspond in microemulsions to
an fcc droplet crystal (see Secs. II and III) or possibly to
some kind of "plumber's nightmare" (see Sec. V). In Sec.
IV we find that this phase may strongly compete with the
lamellar phase.

In this paper we study transitions between the phases
described above. Our study is based upon an approximate
coarse-grained Hamiltonian H([P;] ) derived in Sec. II
along the lines indicated above. In applications to uni-
form phases, this Hamiltonian leads to results which are
essentially those of Safran et al. ' (we present a somewhat
more detailed discussion of the influence of some phe-
nomenological parameters on the phase diagram, e.g. , on
the existence of the middle phase microemulsion). We,
however, introduce order parameters, reducing to zero in
the spatially uniform random bicontinuous phase, that
describe order in spatially nonuniform phases. We are,
therefore, able to calculate phase diagrams with spatially
nonuniform phases from a single phenomenological
Hamiltonian. An important improvement of our ap-
proach relative to previous studies is the incorporation of
Helfrich s steric entropy into the coarse-grained lattice
Hamiltonian which serves as the basis for our phenome-
nological study. This is the crucial ingredient that allows
us to treat the lamellar phase, which is stabilized by steric
entropy. The contribution to our coarse-grained Hamil-
tonian from steric entropy arises naturally in our treat-
ment as a result of the removal of short-scale fluctua-
tions.

It should be stressed that our approach shares many
deficiencies of previous phenomenological studies. For
example, polydispersivity is ignored (we consider only a
single length scale g, which is variationally determined as
discussed in Secs. II and III). The effects of Gaussian cur-
vature are not included, and our use of some regular lat-
tice produces an artificial spatial anisotropy not present
in microemulsions. Finally, we limit ourselves to study-
ing fluctuations at length scales longer than g by a mean-
field approach. These matters are discussed throughout
this paper and particularly in Sec. V.

The layout of the paper is as follows: in Sec. II we dis-
cuss thermodynamic ensembles of fluctuating fluid mem-
branes and construct the coarse-grained lattice Hamil-
tonian. The derivation of mean-field theory is given in
Sec. III. In Sec. IV we present phase diagrams of mi-
croemulsions obtained from the mean-field theory and
comparisons with experiments (Sec. IVC). A summary
and discussion are presented in Sec. V, while some details
relevant for Sec. II B are presented in the Appendix.

II. COARSE GRAINING AND THE LATTICE MODEL

A. Thermodynamic ensembles of Auid membranes

Let us consider the thermodynamics of a ternary, oil-
water-surfactant mixture with total volume V= V, + V
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+ V„where V„V,and V, are, respectively, the volumes

occupied by oil, water, and surfactant. As in previous
phenomenological studies' we presume that oil and wa-
ter are incompressible and that the entire amount of the
surfactant is absorbed at interfaces between oil and water
regions forming incompressible fluid monolayers of thick-
ness m and of total area A. Thus, the volume fraction of
surfactant is

V,

V

Am

V
(2.1)

which is typically of order of a few percent in microemul-
sion systems. To describe the thermodynamics of such a
system, we envision it as a collection of oriented surfaces
and define V, = V, + V, /2 and V = V + V, /2 as, respec-
tively, the total volume of the system on oil and water
sides of these surfaces. Surfaces are allowed to merge or
divide into smaller ones —thus the total number of rnem-
branes is variable. However, since the total volume of
surfactant or, by Eq. (2.1), the total area A of interfaces is
fixed, one has to impose the constraint

A = g A(R)) (2.2)

V, = IV(IR t ) (2.4)

on the ensemble of fluid membranes.
The partition function associated with the ensemble

constrained by Eqs. (2.2) and (2.4) must be a sum over a
variable number of surfaces. Terms of this sum which
correspond to a sector with some fixed number of sur-
faces are sums over all possible topologies (number of
handles) for each surface, ' as well as, for a given topolo-
gy, integrals over all passible shapes of surfaces. Let us
denote the trace operator performing this summation
over states with a variable number of surfaces, having
variable topologies and shapes, by TrIR

I
~ This operator

J
as well as a Boltzmann factor of the partition function
have to be reparametrization invariant. ' ' ' ' The
Boltzmann factor must ensure self-avoidance of sur-
faces, ' as well as reflect bending elasticity of fluid mern-
branes. It is of the form exp[ H((R. ) )/T j (in un—its

on the ensemble of fluid membranes. A(RJ ) in Eq. (2.2)
is the area of the jth surface, which is a functional of a
three-dimensional vector field R specifying positions of
the surface points, ' given simply by

A(R~)= f d s . (2.3)

Surfaces in rnicroemulsion systems are interfaces between
oil and water regions and are, therefore, as anticipated in
Sec. I, the exact analog of interfaces separating up and
down spin regions in an Ising system. Thus, they are
closed, self-avoiding, oriented (say, from water to oil) sur-
faces. For a given configuration of surfaces IRJ ), let us
define the functional 8'(IR, )) to represent the total
volume of the system on the oil side of surfaces (corre-
sponding, after coarse-graining, to the total number of oil
sites with P; = 1 as discussed in Sec. I). Since both oil and
water are considered to be incompressible, one has to im-
pose the constraint

with ks = 1) with

H(IR, ])= gH~(R )+Hs„w(IR,I) . (2.5)

Hs~w in (2.5) is the strict, hard-core self-avoidance in-
teraction, while Hs(R, ) is the bending elastic Hamiltoni-
an, which is a functional of the principal radii of curva-
ture r& and r2. To the lowest order in r, ' and r2

' this
Hamiltonian reads

Hs(R )= d s KM — +——— +KG
1 1 1 2 1

2 r& ~2 "o T) T2

(2.6)

A V, T
G —, = ——ln Tr 5 A —gA(R )V' V V IR

J

X 5( V, —8'(
I RJ ) ) )e

(2.7)
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FIG. 6. Positive Gaussian curvature bending constant KG
favors fusion of the droplets in (a) as well as the creation of the
passage in the lamellar phase in (b). In both cases the topologi-
cally invariant part of the bending energy decreases by 4'&.

The elastic constants EM and KG determine, respectively,
the bending elastic energy due to nonzero mean,
(r, '+r2 '), and Gaussian, (r, r2) ', curvatures. '

ro in

Eq. (2.6) is the so-called spontaneous radius of curvature.
It reflects the tendency of realistic membranes to bend
spontaneously either toward the oil (ro ' )0) or toward
the water (ro ' &0) side of surfaces. Throughout the pa-
per we will be mainly interested in the so-called balanced
systems with ro =0. We note that reduced rigidity con-
stants KM/T and KG/T are dimensionless. The bending
energy arising from the Gaussian curvature term is a to-
pological invariant of a closed surface regardless of the
surface's shape, it is determined by the surface topology
via the formula 4m.(1—h )KG, with h, the number of han-
dles (e.g. , h =1 for toruslike surfaces, h =0 for surfaces
isomorphic to sphere). Positive KG thus favors, for ex-

ample, fusion of two droplets into a single one, or a
creation of an oil passage through a water layer in lamel-
lar microemulsions —in both cases the energy gained due
to Gaussian curvature is 4n.KG (see Fig. 6).

The free energy density, respecting constraints (2.2)
and (2.4), is
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= ——ln . Tr(R (exp ——H( [Rj j )+rr+A(RJ )

—p, IV(IR, j)

(2.8)

defined in terms of two chemical potentials: 0., the bare
surface tension, coupled to total surface area, and p„the
chemical potential coupled to the volume of the system
on the oil side of interfaces. In the thermodynamic lim-
it, V~ ec, V, ~ ~, A ~~, with A /V and V, /V fixed,
the free-energy densities 6, Eq. (2.7), and F, Eq. (2.8), are
related by the Legendre transform

G —, = —0 —+p +F(o,p )v'v v 'v VaI'(O, P, )

(2.9)

where [f(x,y )]„,„~„)denotes the dominant saddle point
off(x,y ), so that variation over cr gives

It is convenient to introduce the unconstrained free ener-

gy density F(o,p, ) by

F(rJ,ij. )

with f, the free energy of a fiuid membrane constrained
to fluctuate around the mean surface S, by two hard
walls, w ' and w, separated by a constant distance g as
depicted in Fig. 7. As observed in Sec. I B, f is .a func-
tional of the shape of S and ultimately can be expressed
in terms of the spin configuration IP, j. Thus, the free-
energy density F(cr,p, ), Eq. (2.8), can be approximated
by

F(rr, p„g)
= ——ln. Tr}~ }exp ——H([P, j)—p, gP;g

(2.13)

with H( I P, j ) given by Eq. (2.12).
In (2.13) we replaced the functional W( IR, j ) figuring

in Eq. (2.8) by the volume g, P, g of oil cells (we recall
that short-scale fluctuations are defined as those which do
not change the coarse-grained occupation numbers P;).
Furthermore, the sum over the number of surfaces, as
well as the sum over topologies entering the trace opera-
tor in Eq. (2.8) is replaced in (2.13) by the ordinary sum
over all spin configurations

aF
v a~' (2.10) Tr(O, }=II 2

i $, =0, 1

(2.14)

while variation over p, gives

aF
V a&.

(2.11)

Note that, in contrast to F(o,p, ) the free energy (2.13)
contains an additional parameter, the cell size g. We will

argue in the following that F(rr, p, ) is the minimum of
F(o,p„g)with respect to g

The unconstrained free-energy density F(cr,p, ) is more
fundamental for studying phase equilibrium in
microemulsions —at first order phase transitions phases
having diff'erent volume fractions of surfactant (wA /V)
and oil ( V, /V) coexist at the same value of cr and p, .
In the following we construct an approximate coarse-
grained Hamiltonian by starting from the unconstrained
partition function (2.8).

B.Coarse-graining of membrane Auctuations

F(o,p, ) =[F(0,)u„g}]„„~~i (2.15)

at constant Vand 0.
Now we proceed to calculate H(I P,. j ) via Eq. (2.12).

To accomplish this we need an approximation for f/,
which is, in general, a function of g (the distance between
imaginary hard walls w~' and wj ) and a functional of the
vector field R, which specifies the shape of the mean sur-
face S between the walls w' and w (see Fig. 7):

H(IP j)= &f, (2.12)

In this section and Sec. II C we proceed to implement
the program outlined in Sec. IB, i.e., to construct the
effective coarse-grained lattice Hamiltonian H( I P; j ) that
is a function of "spins" P, indicating whether the center
of the cell i of volume g of a simple-cubic lattice is occu-
pied by water ( $, =0) or by oil ( $, =1 ). Each spin
configuration j P; j defines a set IS, j of smooth interfaces
separating oil and water domains. As explained in Sec. I,
coarse-graining consists of integrating out of the uncon-
strained partition function (2.8) all surface fiuctuations
that do not change occupation numbers tI), . Thus, the
height fluctuations of the jth interface above a smooth
mean interface S are constrained to be less than some
length of order the cell size g (Fig. 3). Then, H( IP,. j } is
given by Eq. (1.1),

S w2
I

/
/

/
/

I
I
1

}
I

N Wp

FIG. 7. A membrane constrained to fluctuate around the
mean interface S by hard walls m, and m~ at respective normal
distances +g/2 and —g/2 from S.
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fj=f(k RJ) . (2.16)

1+Ko(L, )
r&r2

(2.17)

We proceed to define entries of (2.17). The integral in
(2.17) is over the mean surface S . The form of the free
energy (2.17) is that of a surface which has an effective
surface tension a(L, ) and effective bending constants
KM(L&) and Ko(L, ) . The length L, is related to the
distance g between walls by

An approximate formula for f (see Ref. 15 and the Ap-
pendix} in the limit where the mean free length L& be-
tween collisions of the surface with hard walls is much
smaller than the principal radii of curvature r, and r2 of
the mean surface S, is given when there is no spontane-
ous curvature ( r o

' = 0 ) by

f(g, RJ)= f d s/ a(L))+ ,'KM(L—)) +—1'
r) r2

are strongly dependent on the actual value of n, while in-
dependent of a' (as a result of our crude approximation
of mean surfaces as a sum of elements which have zero
Gaussian curvature). In Eq.(2.22), we introduced the de
Gennes —Taupin persistence length

4m.K(a )=a expP (2.22')

a (L ) ) =o„(L,)+F„, (2.24)

The length a in Eqs. (2.22) to (2.24} is a short-distance
cutoff. It is of order of the distance between surfactant
molecules in the surface or, possibly, of the membrane
thickness w . In the following we will set a =m. In fact,
by a simple redefinition of the bare parameters KM(a )
and Ko(a ) in Eqs. (2.22} and (2.23), one can easily show
that this assumption has no effect on the structure of
phase diagrams.

Finally, we discuss the surface area term a(L
&

) of Eq.
(2.17). It has the form'

with
2. 18)(g—w) =LfT/[32npKM(L, )]

with w the membrane thickness. The constant p in (2.18)
is a dimensionless phenomenological parameter, original-
ly introduced by Helfrich' in his theory of smectic elasti-
city of lamellar multimembrane phases. It is a number of
order unity. ' The choice,

(2.19)p=1/(3m ),
proposed by Helfrich' seems to be in agreement with
some experiments on lyotropic lamellar systems. ' In
Sec. IV we will study the sensitivity of the phase dia-
grams to changing p in the reasonable range

10 '~@&1 . (2.20)

The physical meaning of (2.18) is simple: height fluctua-
tions of a finite free membrane of side L, are of order' '

(2.21)l =L, T/KM(L, ) .

Thus, a large membrane confined between two walls
separated by g will undergo collisions with the walls, with
the average distance between collisions L &, which satisfies
Eq. (2.21) with I =g—w, and Eq. (2.18) follows.

Thus, at length scales larger than L&, membrane fluc-
tuations are strongly constrained by the presence of the
walls. At scales less than L„fluctuations are like those
of a free membrane in the absence of walls; the major
effect of these fluctuations is a strong length-scale depen-
dence of the effective bending constants KM(L, ) and
Ko(L

&
) of Eq. (2.17), given by

aT Li aT
KM(L, ) =KM(a }— ln:— ln

4m a 4m. L )

(2.22)

c'T
Ko(L, ) =Ko(a )+ ln

4m a
(2.23)

with a =3 and a' =—',0 (see Refs. 11, 12, and 15; Helfrich'
recently proposed arguments in favor of a = 1, a' =0).
As demonstrated in Sec. IV, the details of phase diagrams

Lj1cr„(L,) =(o —op) 1+
4m.K a

(2.25)

and

= "T
4L 1

era in Eq. (2.25) is a constant dependent on the KM(a)
and a (see Ref. 15)—its precise value does not affect the
structure of phase diagrams, which can be expressed as a
function of a subtracted surface tension,

(2.26)

CT =0 CTp . (2.27)

F„,Eq. (2.26), is the steric free energy density (per unit
area) introduced originally by Helfrich. ' It is an entro-
pic interaction coming from the fact that each collision of
the surface with the walls reduces the membrane entropy
(with respect to the one of a free membrane) by an
amount of order unity. ' Thus, the surface free energy
increase corresponding to this steric entropy is of order T
per collision, i.e., of order T/L f per unit area of the
mean surface S, as described by Eq. (2.26). By means of
Eq. (2.18), F„canbe rewritten as

F„=T/[128p(g —w) KM(L, }]. (2.28)

So, to summarize, the coarse-grained Hamiltonian
(2.12) can be written, by Eq. (2.17), as

H(IP;I }=a«i)~(IP;])+KM«i»M([0 ])
+Ko(L ) )Bo( [P; ] ), (2.29)

with a(L&), KM(L&), and Ko(L&) given, respectively, by
Eqs. (2.24)—(2.27), (2.22) and (2.23), with L, related to g
by Eq. (2.18). Each of the entries A, BM, and Bo of (2.29)
is given by a sum of the integrals over smooth average in-
terfaces [S j, of the form

A(IP, ))=g Jd s (2.30)
J
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2

&M( I 4; I ) = Xf d'&, —+— (2.31)

and

KM(g )=T

and, by (2.18)

(2.33)

(2.34)

The typical structural length g we obtain in the ran-
dom microemulsion is of order g in agreement with

Safran et at. ' Then, Eqs. (2.33) and (2.34) ensure that the
contribution of the steric free energy (2.26) is comparable
to those of other interactions of the coarse-grained Ham-
iltonian (as will become more clear in the following sec-
tions). Thus, the inclusion of steric effects is necessary to
obtain a complete theory of microemulsion systems.

The typical length scale g in the lamellar phase (i.e.,
the layer thickness, see Sec. I B) at the first-order transi-
tion point to the random bicontinuous phase also satisfies
Eqs. (2.33) and (2.34). We anticipate here the physical
picture of this phase transition (see Fig. 5). Upon de-

creasing the volume fraction of the surfactant (2.1), the
layer thickness g, as well as the distance between col-
lisions L„increases until some critical volume fraction
when the validity of Eqs. (2.33) and (2.34) is reached. At
this point, the bending energy cost of creating a passage
(see Fig. 5) is of order T. On the other hand, the entropy
increase on going from perfectly ordered lamellar [Fig.
5(a)] to random microemulsion is of order 1 per cell, i.e.,
the corresponding free-energy decrease is of order T per
cell. Note that a passage is the same size as a unit cell as
shown in Fig. 5(b). Thus, at some critical volume frac-
tion of the surfactant, the lamellar phase melts into the
random bicontinuous phase.

Let us stress the qualitative character of the present
theory based on the use of relations such as Eq. (2.22),
which is strictly valid for L, «( . We presume that this
equation, describing softening of the membrane rigidity
KM(L, ) remains qualitatively correct up to L, & g
[when it predicts K(L&)=T ]. This is likely to be so,
since at length scales larger than (, a free fiuid mem-
brane is expected to behave as a completely crumpled ob-
ject, characterized by the absence of long-range orienta-
tional order of normals erected perpendicular to local
surface elements. ' Thus, the effects of rigidity should
disappear at L, )g, as is consistent with K(g )=T In.
the following we presume that a reasonably good fit to
the exact KM(L& ) has the form of (2.22) even for large

a, (ty, })=yf d's,
j ] 2

3, B~, and BG are functionals of the spin configuration

[P, )
—positions of smooth average interfaces S between

water and oil domains are to be determined from the
knowledge of occupation numbers P; (see Sec. II C).

Note that, by Eq. (2.22), when the mean free length L,
of a membrane is of order but somewhat less than the
persistence length g~, one has

L, , of order but less than g„.In principle, the parameter
e entering this fit can be different from the previously
mentioned value a =3. The value of a for L

& «gz might
not be appropriate for L

&

& g .

From Eqs. (2.18) and (2.22), one can see that to a good
approximation,

KM(L )=K (g)= ln
aT

M 1 eft 4
(2.35)

for w «g«g . In fact, Eq. (2.35) is the one used by
Safran et al. in Ref. 1. Equation (2.35) is diff'erent from
(2.22) since in (2.22) the argument is L, rather than ( as
in (2.35). Nevertheless, both formulas agree quantitative-
ly for m «g«g, and, more importantly, quahtatively
when (& gp when both formulas predict that the effective
bending constant KM(g ) =KM(L, ) is of order T [Recall
that for this case g=L, =g as indicated by Eqs. (2.33)
and (2.34) ].

Thus, in the following we will use Eq. (2.35) in the
coarse-grained Hamiltonian (2.29). The next and the
most drastic simplification we make is to set (as in previ-
ous studies' ) the effective Gaussian curvature bending
constant to zero:

KG(L) )=0 . (2.36)

o'
&

o' o'o o (2.37)

With the aid of (2.37), one may rewrite the steric free en-

ergy, Eq. (2.28), as

F„=
32)Ma(g —w) ln

(2.38)

So, from (2.37) and (2.38) [with m =a as discussed in the
paragraph after Eq. (2.22')] we have that a(L, ) [Eq.
(2.24)] is approximately

a(L, ) =a,tt(g) =~, +
32@a((—a ) ln

(2.39)

In conclusion, as the entries of the effective Hamiltoni-
an (2.29), we use expressions given by Eq. (2.35), (2.36),
and (2.39).

Note that a,a(g) and, consequently, the effective Ham-
iltonian (2.29) diverge strongly as /~a = w. Thus the

The assumption (2.36) is consistent with a crude approxi-
mation (Sec. IIC) in which mean surfaces S are com-
posed of pieces with zero Gaussian curvature so that the
Gaussian curvature term (2.32) might be thought to be
zero. Though, in principle, one might hope that some of
the essential features of the phase diagrams can be under-
stood within the framework of a single-bending-constant
approximation, Gaussian curvature may have some in-
teresting effects as discussed in Sec. V.

Finally, we will simplify our formulas for a(L, ), Eqs.
(2.24) to (2.28). For L, «g~, the second term in large
parentheses of (2.25) is either small or, when L& & g, of
order unity. Thus, as a qualitatively good approximation,
one may take
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numerator in the second term of a,ir(g) provides a short-
scale cutoff to g at g;„=a=w. Most of the transitions
discussed in detail in Sec. IV are not affected by this
short-scale cutoff' (e.g., the lamellar-to-bicontinuous phase
transition described above occurs at (=( »a). Howev-
er, the length scale g in the dilute phase at the first-order
transition between the random bicontinuous and dilute
phases (which occurs in a range of values of a and p as
discussed in Sec. IV) is of order (;„atlow T. The same
result was obtained in the phenomenological treatment of
Safran et a/. ' Though one might argue about the validity
of the theory when g & a, the fact that the length scale in
the dilute phase at coexistence with the random bicon-
tinuous phase (i.e., in the middle phase microemulsion) is
of the order of some molecular length (say, the size of mi-
celles) seems to be in agreement with experimental obser-
vations. We note that the theory of Ref. 1, rather than
using the smooth cutoff' procedure embedded in Eq.
(2.39), imposes a hard cutoff by limiting g to be greater
than a. Nevertheless, the properties of the dilute phases
coexisting with the middle phase predicted by both our
theory and that of Ref. 1 are identical. In particular,
both theories predict g a in the dilute phases. We will
discuss this in more detail in Sec. IV where we also study
the existence of the middle phase microemulsion state,
which is strongly dependent on the actual values of a and

p chosen. However, it should be stressed that both the
hard cutoff prescription of Ref. 1 and our smooth
prescription are purely of a mathematical character.

C. Construction of the lattice model

In this subsection we proceed to construct the effective
lattice Hamiltonian (2.29). The problem at hand is to es-
timate somehow the area A ( [ P; } ) and bending terms
BM([$;]) and BG([P;)) [Eqs. (2.30)—(2.32)] which are
sums of integrals over smooth mean interfaces tSJ ) be-
tween water ( P; =0 ) and oil ( P; = 1 ) domains.

One possible strategy is to start from ordinary Ising in-
terfaces [Fig. 8(a)] on a cubic lattice contributing g to
A([p;] ) [Eq. (2.30)] for each bond {ij ) connecting
nearest-neighbor sites occupied by different liquids.
Then, it is easy to see that

(2.40)

where N &, &
is the occupation number of broken bonds,

N(;, ) =P;(1—
(( )+(1—$;)((), , (2.41)

which is 1 if the the (ij ) bond is broken and zero if it is
not.

A problem arises when one wants to estimate bending
terms, Eqs. (2.31) and (2.32). A natural step is somehow
to smooth the sharp edges of Ising interfaces (which are
plaquettes of the lattice which is dual to the lattice of
spins P; ), as indicated in Fig. 8(b): each edge is replaced
by one-quarter of a cylinder with radius (/2 and height g
[contributing m. /2 to BM( [P, ] ) and nothing to BG( [((i; j )

because the Gaussian curvature of a cylindrical surface is
zero] while corners are approximated by —,

' of a sphere
with radius g/2 [contributing ~ to BM( [P, ] ), and vr/2 to

(b)

(c)

()&z
FIG. 8. To estimate the bending energy of mean interfaces,

sharp edges and corners of Ising interfaces in (a) are smoothed
in (b). There is no simple way to smooth Ising interfaces in (c).
(d) We use smoothing which removes only sharp edges of Ising
interfaces.

BG( [(t, ] ) ]. However, ambiguities in the smoothing pro-
cess appear when one wants to smooth more complex
configurations like the one in Fig. 8(c). Thus, it is
diScult to propose a good and simple smoothing process
for estimating BM( [P, ] ).

In the following we confine ourselves to an extremely
simple smoothing process which consists of associating
with each sharp edge of the unsmoothed interface a con-
tribution of m. /2 to BM( [P;] ). This corresponds to the
aforementioned replacement of an edge by one-quarter of
a cylinder [giving zero contribution to BG([P; j ) ] as
shown in Fig. 8(d). We decided not to include any contri-
bution to a BM( t P, ] ) from more complex situations such
as the corner in Fig. 8(a). Thus, our scheme is, basically,
to associate the contribution AB=m/2 to each pair of
plaquettes of the unsmoothed interface which share a
common sharp edge [Fig. 8(d)]. Accordingly, a single oil
cube immersed in water background gives

BM( ( p, ) ) = 1268 =6m, (2.42)

Though the difference between 6~, Eq. (2.42), and Sm., Eq.
(2.43), might seem not so important (corresponding to
other quantitative uncertainities, as those of Sec. II B), we

shall try in the following to elucidate possible effects of
such an uncertainty by introducing a new phenomenolog-
ical parameter m such that the contribution of a sharp
edge to BM( t P, ) } is

AB=
3

When

(2.44}

m =—
2 (2.45)

while in the framework of the smoothing approach de-
scribed in the preceding paragraph (which is unambigu-
ous for this simple case), the cube is smoothed into a
sphere of radius g/2 giving

(2.43}
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the contribution of a single cube is

BM( IP, } ) =126,B = 8m, (2.47}

coinciding with Eq. (2.43), which is obtained by a more
sophisticated smoothing turning the cube into a sphere.

There are some more fundamental reasons for the in-
troduction of the parameter m. First, note that by Eqs.
(2.35) and (2.44), the bending-energy contribution
K ff( g)BM( [ ((};} ) of a single oil cube in water is

1268K,ff(g)=maT In(g lg) . (2.48)

Thus, some uncertainty of a may be absorbed into an un-
certainty in m (recall that, as discussed in Sec. II 8, the
value of a appropriate for g «g might not be appropri-
ate when g &

g~ ). Actually, as demonstrated in the fol-
lowing, u will enter the final form of the effective Hamil-
tonian either in the combination ma or in the combina-
tion (pa) '. In Sec. IV we will present phase diagrams
for various values of these two phenomenological param-
eters.

The second reason for introducing m is illustrated in

Fig. 9, which shows that for a cluster consisting of a large
number of blocks, the smoothing process (though, for this
particular situation, unambiguous} overestimates bending
energy: the spurious anisotropy introduced by the use of
the cubic lattice requires that the tilted interface in Fig. 9
be approximated by a "staircase. " On the other hand, in
microemulsions, there are no preferred directions, and it
would be more natural to approximate the tilted interface
by a planar one (as done with the horizontal and vertical
interfaces in Fig. 9). Thus, in general, even a more so-
phisticated smoothing approach would overestimate the
actual bending-energy because of lattice anisotropy.
However, as shown in the following, the bending energy
contribution to H(IP, }) is proportional to ma. Thus,
this contribution can be somewhat lessened by choosing
smaller values of m than those in Eqs. (2.45) and (2.46).

Now, we proceed to write down the final expression for
BM( t p, } ) in terms of I p; } by associating the contribution
b,B of Eq. (2.44) to each sharp edge of the unsmoothed
lattice. This is unambiguous if the edge is shared by just
two plaquettes of the unsmoothed interface [Fig. 10(a)].
However, if four plaquettes share the same edge, there
are two ways to smooth [see Fig. 10(b)). Since we
presume zero spontaneous curvature ro ', contributions

this reduces to the previous choice with AB =~/2. When

(2.46)

BM(I(t' } }=3~~ X N(,kl)
& i, &, k, I)

(2.50)

where the sum runs over the bonds of the lattice which is
dual to the lattice of spins or, equivalently, over the pla-
quettes of the original lattice [Fig. 10(c)].

A generalization of the theory to the case of nonzero
spontaneous curvature would not be trivial —it would re-
quire additional two-state (i.e., Ising) variables to distin-
guish between two sets of smooth interfaces tS~ } in Fig.
10(b) (or in Fig. 3) corresponding to a given spin
configuration IP;}. These variables have to live on the
bonds of the dual lattice. %'hen ro '=0, the effect of
these variables is trivial because the two configurations in
Fig. 3 give equal contributions to BM( Ip; } ) for ro ' =0.
For general ro '%0, one can show that these new vari-
ables can be integrated out of the partition function. The
resulting Hamiltonian is not invariant with respect to
global Ising symmetry P;~1—P;. Thus, nonzero ro '

(a) (l)
OHW W

W 0 0

0 W0

W ~ W wPo

( c)
', ~

)L.

~/ NP.
FEEi

(e)

of both configurations to BG([P, } ) are equal. Thus, for
ro ' =0, one has to count bends, as indicated in Figs.
10(c)—10(I}.Let us denote by N(;Jk&& the number of bends
associated with various configurations of four spins P;,
P~, Pj„and P& surrounding a bond of the lattice which is
dual to the lattice of spins [see Fig. 10(c}]. This spin
operator can be only 0 [Fig. 10(d}], 1 [Figure 10(e}],or 2
[Fig. 10(f)]. It is easy to check that the unique spin opera-
tor counting the number of bends is

&ijkI) (a) (Ji) + (Ji) &k~) (kj) (Ik)

+N(g, &N(;() 2N(;I—)N(J(}N(kj)N((k), (2.49)

where N(;&} is given by (2.41}. Note that both N(;J } and

X&; kI) are invariant with respect to the global symmetry
P;~1—(t, . Each bend contributes 68 [Eq. (2.44)] to
BM(Iy, }).S

V,»

FP/iP~

FIG. 9. Spurious spatial anisotropy of the cubic lattice causes
an overestimate of the bending energy.

FIG. 10. {a) When an edge is shared by two plaquettes there
is a unique way of smoothing. {b) When four plaquettes share a
single edge, there are two ways of smoothing. {c) Four spins
surrounding a bond of a dual lattice. (d)—{f) give configurations
of mean interfaces corresponding to various configurations of
four spins in (c). Oil regions are hatched.
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breaks the symmetry between oil and water. Of course,
this symmetry breaking vanishes when ro ~0. The
presence of arbitrarily small spontaneous curvature is,
however, of importance in interpreting the phases of the
lattice model for microemulsions. Thus, e.g., by smooth-
ing the columnar phase of the spin model [Fig. 4(b)], one
may obtain two tubular phases in the system with
V, = V: either tubes of oil in a water background or vice
versa. Depending on its sign, a small nonzero value of
ro ' would favor one or the other of these phases. At
ro ' =0 the two phases coexist and correspond to a single
columnar phase of the lattice model. Similarly the anti-
ferromagnetic phase of the spin model [Fig. 4(c)] may
correspond to two fcc droplet crystals (oil droplets in wa-
ter and vice versa) coexisting at r~

' =0.
Let us note that a third set of additional Ising variables

might be needed to resolve the smoothing "uncertainty"
illustrated in Fig. 11. These new variables have to live on
sites of the dual lattice. Both these and the previously
mentioned additional variables assist in resolving situa-
tions where more than one set of smooth interfaces IS~ I

can be associated with a given spin configuration I P; ].
Actually a more complete theory including Gaussian cur-
vature e6'ects has to account for these variables living on
sites and bonds of the dual lattice (e.g. , note that two
smoothed configurations which can be associated with
unsmoothed cubes in Fig. 11 have di6'erent topology and
thus different Gaussian curvature energies).

In the following we will confine ourselves to balanced
microemulsions, i.e., to systems of fluid membranes
which have zero spontaneous curvature, ro ' =0, and to
the simple prescription for counting bends imbedded in
Eq. (2.50). In the single bending constant approximation
[which presumes Ka(L, ) =0, Eq. (2.36), or, equivalently,
Ba( IP; I ) =0, as explained above], the coarse-grained lat-
tice Hainiltonian (2.29), can be written by means of Eqs.
(2.40) and (2.50) as

H(IP, I )=g a(L, ) g N(,))

(a) (c)

FIG. 11. The two unsmoothed cubes in (a) may correspond
to smooth configurations in (b) and (c).

1 1

V
XN(V)= 3v IJ

1
N(,,„,)

——0 .
(I,J, k, l)

Then F(o,p, =O, g) is approximately H( I P; I )/V, and

F(a,p, =0,g) =a(L, )/g, (2.52a}

or

F(o,p, =0)= [a(L, )/g];„(&) (2.52b)

for perfectly ordered lamellar microemulsion with

V, = V, i.e., p, =O. Equations (2.52) were derived re-

cently in Ref. 15 in a theory of smectic elastic constants
of lamellar multimembrane systems. As explained there,
the thermal equilibrium smectic state of these phases (the
one satisfying the Landau-Peierls theorem) is achieved
when the function (2.52a) is minimal with respect to vari-
ation in g, the layer thickness. Here, we presume by Eq.
(2.15) that this variational principle is valid in general,
not only in the special case of perfectly ordered lamellar
phase. Thus, the lattice size g, which was initially an ar-
tifact of the phenomenological approach, is naturally
chosen by demanding that the system be an equilibrium
state.

In the following we will use the Hamiltonian (2.51)
with entries a(L, ) and KM(L, ) approximated, respec-
tively, by Eqs. (2.39) and (2.35):

T

7TT
I I 0 s

32 (g )21 (g /g)
2 (tj)

mm+
3

KM(L i ) g N(;Jk().
(i,j,k, l )

(2.51) + —,', maT in(g~/g) g N(;~kI) .
(I,j, k, l &

(2.53)

Spin operators N(,, &
and N(;~k)) entering (2.51) are

defined respectively by Eqs. (2.41) and (2.49). The first
sum in (2.51) runs over bonds of the lattice of spins P;,
while the second one runs over plaquettes, as discussed
above. Parameters a (L i } and KM(L i ) in (2.51) are, even-
tually, functions of the cell size ( [see Eqs. (2.18), (2.22),
and (2.24)—(2.27)]. As the next step, one has to insert the
Hamiltonian (2.51) into the partition function (2.13} in
order to obtain the free-energy density F(cr,p„g),which
after minimization over ( gives the phenomenological
free-energy density F(o,p, ), as indicated in Eq. (2.15).
Let us elucidate the meaning of this minimization in the
example of a state, depicted in Fig. 5(a), which is very
close to a perfectly ordered lamellar microemulsion. For
such a state all N&,-jkl &

=0, while N&,"& is approximately
1 if P; and P belong to neighboring layers and zero oth-
erwise, and

III. MEAN-FIELD THEORY

A. Variety of microemulsion phases within mean-field theory

In this section we construct a mean-field theory in or-
der to calculate approximately the free-energy density
F(o,p,, =0) given by Eqs. (2.13) and (2.15) as

TF(o.,p, =0)= ——1n TrI& Iexp
2

H( [P; I
)—

T min(g)

(3.1)

As previously anticipated, there are two phenomenologi-
cal parameters, pa and ma, entering (2.53). The sensi-
tivity of the phase diagram to the variation of these pa-
rameters is discussed in Sec. IV.
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with H( [tt); I ) as in Eq. (2.53). In (3.1} we restricted our-
selves to the states characterized by p, =0. The magnetic
field term

in Eq. (2.13) is the only one which breaks the global sym-
metry [P, I ~I 1 —

)}},) of H([P, I ). As observed in Sec.
II C, H( I P, ) ) has this symmetry because we restricted
ourselves to balanced microemulsions (zero spontaneous
curvature ro

'
) which are symmetric with respect to ex-

changing water and oil domains. Our quantitative results
with p, =0, presented in Sec. IV in terms appropriate for
microemulsions, are also applicable to binary systems
composed of surfactant bilayers in a single solvent, water
or oil. These systems are naturally characterized by zero
spontaneous curvature and are essentially indistinguish-
able from balanced microemulsions. For concreteness in
the following, we will use language appropriate for mi-
croemulsion systems. In this language the states we are
interested in, characterized by )M, =0 are (a) those which
are invariant under exchange of oil and water cells [i.e.,
the paramagnetic phase, depicted in Fig. 1(b), corre-
sponding to the random bicontinuous microemulsion
with V, = V ], (b) states which are invariant with respect
to this exchange accompanied by a discrete translation
(i.e., the periodic lamellar, columnar, and antiferromag-
netic phases of the spin system describing a rnicroemul-
sion system with V, = V ). In addition to these states,
we will study the ferromagnetic phases of the model
which correspond to diluted oil- and water-rich phases in
which the oil-water symmetry is spontaneously broken.
These two phases coexist when p, =0 just as the up and
down phases of an Ising ferromagnet coexist in a zero
magnetic field [Fig. 1(a)].

%e anticipate that the phase behavior found in this pa-
per is basically that of an Ising model with competing in-
teractions. Our work can be seen as a bridge between the
phenomenological approach of Refs. 1—3 and the lattice
theories of microemulsions of Schick and co-workers and
others which predict diagrams similar to ours. In our
study, we focus mostly on the zero magnetic field case
mo=0, thus obtaining phase behavior of balanced mi-

croemulsions corresponding to the 1:1 oil-to-water
volume ratio cross section of the ternary oil-water-
surfactant phase diagram' (see Sec. IV}. In this case,. it
is appropriate to label the paramagnetic phase as the
bicontinuous (B) phase. In the presence of nonzero uni-
form field, this phase continuously evolves to a mostly oil
phase (at large positive p, ) or to a mostly water phase (at
large negative )M, ).

In the following we calculate the free energy (3.1) in
mean field theory, which, as usual, presumes that the spin
probability distribution function can be approximated by

1
(~~po =0) [ (H( [Ol I }~0 So]min(g (q ) ) ~ (3.3)

where ( )0 denotes the average with respect to the distri-
bution (3.2), and So is the entropy:

So= —g [g;1nf;+ ( I —
t/i, )ln(1 —P, )] . (3.4)

with

—1

2
(3.5b)

for the paramagnetic, i.e., the B phase, and )I})T)()I}(—,')

for the ferromagnetic, i.e., the oil (water) rich D phase.
Thus, the ferromagnetic ordering is characterized by a
spatially uniform, i.e., i-independent order parameter
1(),

—
—,
' =p —

—,'. Periodic phases have an i-dependent order
parameter f; —

—,', e.g. , the lamellar phase (L) has

(3.6a)

when i is in even ( "oil"}layers, and

(3.6b)

when i is in odd ("water") layers of thickness g [Fig. 4(a)].
A perfectly ordered L phase [Fig. 5(a)] results when p = 1

or )}) =0 in Eqs. (3.6). The columnar phase (C} is defined in
a similar way, with Eq. (3.6a) satisfied in "oil" columns
and Eq. (3.6b) satisfied in "water" columns of side g [see
Fig. 4(b)]. In the antiferromagnetic phase (A) [Fig. 4(c)],
the cubic lattice is divided into two interpenetrating sub-
lattices of "oil" and "water" cells of side g with Eq. (3.6a)
satisfied in the "oil" cells and Eq. (3.6b) in the "water"
cells. Thus nearest-neighbor cells of the original lattice
are different and next-nearest neighbors the same. These
periodic phases are perfectly ordered when ))) =1 (or 0) in

Eqs. (3.6). In equilibrium at nonzero temperature,
thermally excited defects will reduce )}I) from its saturation
value of 1 (or increase it from 0). Long-range translation-
al order persists, however, until P= —,

' when the uniform

bicontinuous phase is regained as indicated by the
equivalence of Eq. (3.6) and (3.5) in this limit.

By Eqs. (3.5) and (3.6) it is easy to see that for all
phases we consider (B, D, L, C, and A phase),

So = ——[P in/+ (1—$)ln(1 —
)t) )],V (3.7)

Note that the mean-field approximation to the free-
energy density is obtained by minimizing Eq. (3.3) with
respect to both [ 0, I and g at constant V and o.

As anticipated in the Introduction, the uniform diluted
(D) and bicontinuous (B) phases are characterized by i
independent (P, ) = P,'

(3.Sa)

P, ([P;I)= gP;(P;), (3.2)

with P, (1)=$,=1—P, (0), so that (P, )0=/, with
0~$; ~1. Then, the mean-field approximation to Eq.
(3.1) reads

which is a standard expression for the entropy of mixing.
The difference in free energy among the various phases
comes from (H( I P, I ))0 in Eq. (3.3), which by Eq. (2.53)
is conveniently expressed as
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o 1 ~T
32pa(g —a) 1n(( /()

+—
3 1n(g /()BN(p), (3.8}

(0)
AN Ii BNJ

6

(c)
eN

6

with N =8, D, L, C, and A, while A~(P) and B„($)
are defined by

B

(3.9) 0 I

0.5 '0 I

05 0 0.5

and

Bw(0) =
y & N(ip()

(i,j, k, l &

(3.10)

and

A~(P) = A~('+ A~'P(1 —
()I&), (3.1 1)

(P) 8(o(+8(1)(}(&(I P)+8(2([y(1 &t&)]2 (3.12)

with averages performed with respect to the N phase
[defined by Eqs. (3.5) and (3.6), respectively, for uniform
and periodic phases]. It is easy to see that A(v(P) and
B~(P) are g independent. It is less trivial but, neverthe-
less, straightforward to calculate them. Here we give the
results for various phases N. They are all of the form

FIG. 12. The area (a) and bending (b) structure factors. (c)
gives the approximate bending structure factor we use in our
calculations. Because of the symmetry under P~ 1 —P, curves
are given only for 0 &(( & —,'. The limit P= —' correspond to ran-

dom bicontinuous phase (B). D indicates the dilute, L the lamel-

lar, C the columnar and A the antiferrornagnetic phase.

8(v((((&= —,') are equal for various phases N as they should
be: the state with (t&= —,

' is the limit in which all the phases
become identical to random bicontinuous phase, Eq.
(3.5b).

Thus, to summarize, by Eqs. (3.7) to (3.12), the mean-
field free-energy density (3.3) can be written as

with constants Az' and 8&' given in Table I. Az((II&) and
B~(P } in Eqs. (3.11) and (3.12) are given in Fig. 12. From
this figure one can see that A~((((&= —,'), as well as

I

F(o,p, =0) = '[4(N, (,P)]m(„(

with

(3.13a)

4(N, g, P) = —o', + [ A~ (+ A~ '(t&(1 —
()I&)]

32@a(g—a) In(g /(e)

+— [1n(g~/g)] [B~ '+Bg P(1 —$)+Bz '[$(1—P)] I+ T[$ in/+(—1 —P)ln(1 —P)] (3.13b)

and A~ and Bz' as in Table I. So, the problem is to
minimize the function 4(N, g, P) with respect to continu-
ous variables g(a &g&g ) and (t&(0&()(&&1) and then to
determine the dominant phase by identifying the N for
which [4(N, g, P)];„(t&( is minimal. In this way one ob-
tains the phase diagrams which (for fixed values of the
phenomenological parameters (((a and ma ) can be
represented in terms of just two thermodynamic parame-
ters, e.g. , the reduced surface tension o., /T and inverse
reduced rigidity T/KM(a ), as discussed in more detail in

the following.
An interesting property is the volume fraction of the

surfactant [Eq. (2.1)]. For typical microemulsion systems
of interest, it is only a few percent. Equations (2.1),
(2.10), and (3.13) imply that the equilibrium surfactant
volume fraction in mean-field theory is

Sec. IV for construction of phase diagrams in the
{T/KM(a), P, ) plane (see Fig. 13).

Details of phase diagrams will be presented in Sec. IV.
However, even without detailed calculations, some of the
features of these diagrams can be conjectured from Eq.
(3.13) and Fig. 12. In the region of the negative surface
tension (7„the periodic phase having maximal AN(/=0)
is strongly favored by the first or area term in (3.13b).
This is, in fact, the antiferromagnetic phase [see Fig.
12(a)]. The columnar phase is also favored by the area
term but less than the antiferrornagnetic phase. The di-

g (0)
N

(0)N
BN" B(2)

N

TABLE I. Constants entering area and bending structure
factors.

Ax(4) = [A~o'+ —A~ 4(1 —4—)], (3.14)

where P and g are determined by ()4/B$=0 and
ae/ay = 0. Equation (3.14) will be of importance in

D
L
C

6
2

-2
-6

12
12
4

-12

-12
-12
-12
-12
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FIG. 13. Four types of ( P„1)phase diagrams obtained from
our model. Diagrams are schematic. The typical scale for {t, is
of O(10%%uo) while that for T is O(1). The phases shown are the
ferromagnetic or dilute (D), the paramagnetic or bicontinuous
(B), the lamellar (L), and antiferromagnetic (3) phases. Tie
lines in the coexistence regions are indicated by horizontal
hatching. The DB critical line is dashed.

lute and lamellar phases are disfavored by the area term
alone. Thus in the absence of the second or bending term
in (3.13b} the antiferromagnetic phase would dominate
the negative surface tension region. On the other hand,
the bending term in (3.13) strongly disfavors the antifer-
romagnetic phase, while favoring the dilute, lamellar,
and, to a lesser extent, the columnar phase [see Table I
and Fig. 12(b); note that, accidentally, the bending func-
tions of the dilute and lamellar phases coincide:
BI (P)=BD(P)]. Thus, the bending term of (3.13) [pro-
portional to K,s(g), Eq. (2.35)] can be expected to be of
importance in determining which of the periodic phase
wins in the negative surface tension region. Thus, one
may expect that the heavily curved antiferromagnetic
phase (interpreted as a droplet crystal in Sec. II C) will
dominate in the high-T portion of the negative surface
tension region [where K,s(g)/T is relatively small]. On
the other hand, in the low Tportion [high -K,a(g}/T ]
one expects the dominance of the lamellar phase,
which obviously costs no bending energy [cf., Fig. 12(b),
BL (0)=BI (1)=0]. These conjectures are confirmed
quantitatively in Sec. IV. The situation in the region of
the low surface tension cr, in Eq. (3.13) is more subtle and
is discussed in Sec. IV. Finally, positive 0., strongly
favors the dilute phase via the area term in (3.13) [see Fig.
12(a)]. Thus, at least in the low Tregion, one may e-xpect
phase separation, i.e., the dominance of the dilute phase.

rameters to be determined to reach agreement with ex-
perimental observations (or with results of more rigorous
theoretical approaches). Thus one may exploit the ex-
pansion

(3.15)

[and a similar one for /Iz(P) ] with constants Bz' to be
considered as phenomenological parameters. Similarly,
one may introduce the effects of Gaussian curvature,
which are completely neglected in this paper. The con-
stants B~' are not completely arbitrary. Thus, e.g. ,

B~ (P) [as well as /I ~(P) ] have to be equal for all N when

{t= —,
' since all phases reduce to the B phase in this case.

Also, there is no bending energy in perfectly ordered L
and D phases so that Bz(/=1)=0 (i.e., B~'=0) when
N=L or D. In completely diluted phases, there are no
surfaces implying AD'=0. Also, it is easy to see that
AL '=

AL (/= 1) has to be 1.
With these remarks in mind, we decided to simplify

our calculations by setting

B(2) 0 (3.16)

32pa(1 —a/g) In(g~/g)

+ [1n(g /g) ]B~', (3.17)

it is easy to see that for

Jv(() ( 1, (3.18)

the minimum of N{N, g, P) with respect to P occurs at
Thus, when g is in a range in which (3.18) is

satisfied, the length-scale-dependent free-energy density
of the N phase,

which is equivalent to dropping the [{()(1—P)] term in
Eq. (3.13b). Also, we decided to retain the parameters
B~ and A ~ ', i =0, 1, as given in Table I. This
simplification does not violate any of the general princi-
ples discussed in the preceding paragraph. Moreover,
none of the trends in phase diagrams we described in Sec.
IIIA is altered [see Fig. 12(c) for comparison with the
previous curves with B~'WO, which are given in Fig.
12(b)], since the bending energy still favors D, L, and C
phases while disfavoring the A phase.

In choosing (3.16) we have not been led by any of the
phenomenological data. The basic reasons for (3.16) are
the following: first, when B~'=0, the t)) dependence of
(3.13b) is identical to that of the mean-field free energy of
a nearest-neighbor Ising model. This simplifies minimiza-
tion over P at fixed g, as well as visualization of the re-
sults. Thus, by defining a g -dependent "exchange" con-
stant,

B.Possible extensions of the phenomenological theory
and an additional approximation

The constants /llv'' and B&' in Eq. (3.3b) can also be
treated in a phenornenological manner —as adjustable pa-

4{N,g)=[4 {N,g, P)]

coincides with that of the B phase:

4(B,$)=N(N, g, P = ,' ) . —

(3.19)

(3.20)
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On the other hand, when

~)v(k) » (3.21)

the curve 4(N, () bifurcates from N(B, $). Competition
between various phases is easy to visualize in terms of
functions (Ii(N, g) (see Sec. IV). Note that by (3.19) and
(3.13a),

C. Dimensionless form of the mean-field theory

y=(4,
(((,, = c—r, ( /T,

(3.23)

(3.24)

Finally, it is useful to introduce dimensionless parame-
ters

F(o,P, =0)= [4 (N, g)]~(n()v, g) (3 22) and

Thus the dominant phase X is determined by the function
4(N, g) which has the deepest minimum as a function of

The second motivation for (3.16) is more of an histori-
cal one. With this choice of B~ ', our mean-field theory
[Eq. (3.13b)] when applied to uniform phases reduces to
that of Ref. 1 when m =2, +=1, and steric entropy is
switched off 1/p=0. Some comparison with Ref. 1 will

be made later.

z =a /gz =exp[ 4n—Ksr.(a )/aT] .

Then by Eqs. (3.13) and presuming (3.16),

F(cr,p, =0)= [4(N,y, (t))];„((v ~)

with

(3.25)

(3.26)

4(N, y, g) =
3

—),y'+, A„"'+A„'" (1—
)

32(M(z(1 —z/y) ln(1/y)

+ [ln(1/y)][BI(()+BN("P(1 —P)]+())in/+(I —()))ln(1 —(()) (3.27)

Note that, by Eq. (3.24), cr, (0 corresponds to (M, & 0, and

vice versa. To summarize, phase diagrams can be ob-
tained by minimizing 4(N, y, P) with respect to y, (t, and
N with z (y & 1, 0((() & 1, and N=B, D, L, C, and A,
and can be expressed in terms of the two parameters p,
and z defined in Eqs. (3.24) and (3.25). In analogy with

Eq. (3.19), it is useful to define the dimensionless length-
scale-dependent free-energy density via

4(N, y ) = [4(N,y, g)];„(&). (3.19')

The dominant phase X is one with the minimum value of
[4(N,y )];„(y).

The parameter z enters (3.27) only through the expres-
sion (1—z/y ) =(1—a /g), which is close to unity when
a (&g. After replacing this expression by unity, (3.27)
depends only on p, and not on z, and one concludes that

I

phase boundaries between two phases which both have
a &(g at the transition occur along a vertical line (u, =
const in the (p„,z) plane [the (1—z/y) term in Eq.
(3.27) produces a finite slope of these boundaries as exhib-
ited in Figs. 14—18]. For such a transition, the reduced
surface tension o', /T is by Eq. (3.24) of order of g~
thus, it is small at low T when g~ is large or, equivalently,
z [Eq. (3.25)] is small. However, as discussed in Sec. IV,
not all of the transitions are of this type.

Finally, in terms of y and z, the surfactant volume frac-
tion (3.14) reads

(3.28)

while the g-dependent exchange constant, Eq. (3.17), is
expressed as

1 7T
~~(4) —= A(y)= ——v,y'+

32@a(1—z/y) ln(1/y)
A)I( '+ [ln(1/y )]B„'." . (3.29)

IV. GLOBAL PHASE DIAGRAMS
OF MICROEMULSIONS

A. Summary of results

In the study of phase diagrams we focused on the most
interesting manifold (for balanced systems) with

p, =O. ' Thus, we obtain phase diagrams of balanced
microemulsions corresponding to the cross section of the

I

ternary oil-water-surfactant phase diagram with a 1:1
oil-to-water volume ratio. As explained in Sec. III, phase
diagrams can either be presented as a function of chemi-
cal potential in the ()M„z)plane or as a function of sur-
factant concentration in the (P„z)or (P„T)plane where
? = T/K(a ) =4a/[u ln(1/z)].

We first summarize our results. Their details are ex-
plained in the following section. Our coarse-grained
model depends on two phenomenological parameters ma



LEONARDO GOLUBOVIC AND T. C. LUBENSKY4358

(b) (b)
0.07 0.07 0 035

I

I

I

I

I

I

-DII

I

I

I

l

0.035

I

L

'i I-

4

I

I L
L

D B

1 I I I I I I

28 0
00'0-

1 I 1 I 1 I 1

18 0 0.23

FIG. 14. (a) Type I phase diagram in the (p„z)plane for
ma=2. 64 and p/m =0.38. Insets give the regions in which

two multiple points occur. (b) The same in the (P„z)plane. In

this figure and in Figs. 15—18, coexistence regions with horizon-

tal tie lines are shaded.

FIG. 16. {a) Type III phase diagram in the ( p„z)plane for
ma=3. 18 and p/m =043. The inset magnifies the D-B-A tri-

ple point. (b) The same in the ( P„zlplane.

and pa [see Eq. (3.27)] whose values are to some extent
uncertain, as discussed in Sec. II. Thus the form of phase
diagrams depends on two dimensionless phenomenologi-
cal parameters, e.g. , on ma and p, /m, as depicted in Fig.
13, which presents the basic types of diagrams we find in
the ( 1t1„f') plane. This figure encompasses the range of
estimates for a, m, and p: a=3, "' ' or 1, ' (see Sec.
II B); m =2, —,

' or even smaller, as discussed in Sec. II C;
and 1tt of the order 10 ' to 1 (see Sec. II B).

Regardless of the particular choice of these parame-
ters, the lamellar (L) phase dominates at sufficiently low
temperature, whereas other periodic phases may occur at
higher T, in agreement with qualitative considerations at
the end of Sec. III A (see Fig. 13). For some choices of
the phenomenological parameters, the antiferromagnetic
(A) phase intervenes between the bicontinuous (B) and
lamellar phases even for P, as small as a few percent.
Similarly the columnar (Q phase may occur at small ((1„
but only on the boundary of the aforementioned range for
p ( 1M &0. 1). Therefore, in Fig. 13, we have chosen not to
show diagrams with the C phase and to focus on the in-
teresting interplay between the A and I. phases.

The four basic types of diagrams in Fig. 13 correspond
to the following ranges of parameters: (I) p/m
& f(ma), ma&3; (II) p/m &f(ma), ma&3; (III)

0.1

I

0]
(b)0 015 0.0151 l 1 1 I 1 I 1 1

I

Bp t

I

I

I

18 0
0&0

I I I 1 1 I 1

8 0 0.1

FIG. 15. (a) Type II phase diagram in the (JM„z) plane for
ma=2. 22 and p/m =0.34. The inset gives the region with two
triple points. (b) The same in the ( P„zlplane.

FIQ. 17. (a) Type IV phase diagram in the {p„z)plane for
m a= 3. 18 and p/m =0.32. (b) The same in the ip, z) plane.

p/m & f(ma), ma&3; and (IV) p/m &f(ma), ma&3,
where f (x) is a decreasing function of x with f(2)=0.36
and f(6)=0.22. In the following we summarize the main
features of these diagrams.

For ma & 3 (type I and type II diagrams), coexistence
states between the dilute phase and other phases appear.
In particular, there is coexistence between dilute and
bicontinuous phases and a middle phase. As ma~3,
these coexistence states are depressed towards f'=0, and
there is a transition at ma =3 to type III and type IV dia-
grams in which there is a second-order D-B transition
and no coexistence of D with other phases (see Fig. 13).
Note that, even in type I and type II diagrams the D-B
transition is second order at sufficiently high T. Near the
D-B critical line the D phase may itself become "bicon-
tinuous, " i.e., it may consist of percolating oil and water
domains. '

An interesting feature of our diagrams is the presence
of the antiferromagnetic phase. Its relation to other
phases in type I and type III diagrams is different from
that in type II and type IV diagrams. In the former
types, there is a direct bicontinuous-to-lamellar transi-
tion, and the A phase occurs at relatively large values of

while in the latter types, there is a direct
bicontinuous-to-antiferromagnetic transition but no
direct bicontinuous-to-lamellar transition. The antiferro-
magnetic phase intervenes between the bicontinuous and
lamellar phases in type II and type IV diagrams and
occurs at much smaller values of ((}, than in type I and
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FIG. 18. (a) An example of a (p„z)phase diagram containing
the C phase (ma=6, p/m =0.1}. (b} The same in the {P„z}
plane.

type III diagrams (see Fig. 13). In the chemical potential
phase diagrams, the antiferromagnetic phase in type II
and type IV phase diagrams occurs in the region of ul-
tralow surface tension (cr, = Tg~, see Sec. III C},
whereas it occurs at relatively higher values of the sur-
face tension in type I and type III diagrams.

When p)&1, i.e., when effects of steric entropy are
weak [see Eq. (2.28}],the D B Lmul-tipl-e point in type I
diagratns appears at high f' with g=g =a in the middle
phase. However, as p is decreased to a realistic value of
O(1), the temperature of this point is strongly reduced,
so that D-B coexistence occurs in a range of T with

g=g »a in the middle phase and /=a in the dilute
phase. These properties of the D-B coexistence are con-
sistent with experimental observations. Thus, the effects
of steric entropy discussed in this paper are indirectly re-
sponsible for the existence of a realistic rniddle phase mi-
croemulsion via the suppression of the lamellar phase.

Structural length scales g on either side of the various
transition lines in Fig. 13 are typically of order g . An
exception to this rule occurs in type I and type II dia-
grams in which (=a in the dilute phase when it coexists
with other'phases. This is in agreement with Refs. 1—3.
In these types of diagrams, there is generally a region of
D-D coexistence with a liquid-gas-like critical point,
while the D-B critical line terminates at a critical end
point (see Fig. 13}. At tetnperatures just below this point,
there is three-phase coexistence of the middle phase with
dilute phases, whereas at temperatures just above the end
point there is a second-order D -B transition and a region
of D-D coexistence. In this region a dilute phase, arising
itself from a phase separation, further separates into two
kinds of dilute phases having different length scales, (=a
and g=g~, respectively. Thus, the D Dcoexistence re--

gion in Fig. 13 corresponds to four-phase coexistence.
Available experimental data ' on balanced systems

indicate the existence of direct first-order lamellar-to-
bicontinuous and dilute-to-bicontinuous transitions.
Thus, they are consistent with type I diagrams. Our
model predicts such a diagram within the acceptable
range of the phenomenological parameters. Moreover, as
explained above, steric entropy plays an important role in
determining the properties of a realistic middle phase
with a structural length scale g=g~ &&a.

Examples of the above four types of diagrams obtained
numerically from mean-field theory of Sec. III numerical-

ly are given in Figs. 14—17. An example of a diagram
with the columnar phase is given in Fig. 18. In the fol-
lowing we will try to document and explain some of the
aforementioned properties of phase diagrams.

B.Nature of the phase transitions

As discussed in Sec. III C, phase transitions between
two phases which both have g=gz =a /z »a at the tran-
sition occur along an almost vertical straight line in the
(p,„z)plane (i.e., p is almost constant along the phase
boundary at low z). This is documented in Figs. 14—18 in
which many of the transitions are of this kind. If such a
transition is first order, then the corresponding coex-
istence region in the (P„z)plane is bounded by two al-
most straight lines at low z (Figs. 14-18). Phases in-
volved in these transitions have length-scale-dependent
free-energy densities 4(N, y ), Eq. (3.19'), whose minima
have a finite limit when z =a /g~ =exp[ —4m/(af')]~0.
These minima occur typically at some y =O(1)»z cor-
responding to (=O(gz ) »a. For example, the L -B tran-
sition illustrated in Fig. 19 is of this kind.

However, not all of the transitions are of this kind. Ex-
ceptions are first-order transitions between D and other
phases which occur for ma & 3, i.e., in type I and type II
diagrams (see Figs. 13, 14, and 15). Let us discuss these
transitions. From Eq. (3.27), it can be shown that for
z=O

4(D,y ) = —
y

for y &(1 or, equivalently,

4(D, g) =- T
ma —3

(4.1a)

(4. 1b)
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FIG. 19. (a) Length-scale-dependent free-energy densities 4
of the B (thin curve) and L phases (thick curve) at low tempera-
tures ( z (&1}. y=g/(~ and z &y &1. The minima of these
curves have a finite limit when z ~0. (a)—(c) represent the situa-
tion above, at and below the first-order L -B transition.

for g «g . Thus for ma (3 and z =0, the length-scale-
dependent free-energy density of the dilute phase diverges
to —00 when y=)/g ~0. This is consistent with the
form of type I and type II diagrams which shows that the
D phase always dominates at suSciently small z in the
( p„z)plane (see Figs. 14 and 15). Equations (4.1) are val-

id for z «y (&1 (a «g(&g ). For y=z ((=a), the

divergence of these expressions for ma & 3 is prevented

by the term (1—z/y) =(1—a/g) in the free energy
(3.27). Thus, for ma &3, g minimizing 4(D, g) is of or-
der a. So, in type I and type II phase diagrams, the
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FIG. 21. (a) Length-scale-dependent free-energy densities 4
of the D and B phases at D —D coexistence, ma(3. The D
curve (thick) has two minima at y =0(z) and at y =0(1). (b)—(d)
represent, respectively, situations below, at, and above the
second order D -B transition. p, increases from (b) to (c).

tance of the order g~ was already anticipated in Sec. II B.
When it occurs at low z, the L-A transition is of the
same nature, with g=g in both phases at the transition.
Thus, to summarize, all structural length scales g at all
transitions occurring at low T (i.e. small z ) are of order
g~, except in the D phase of type I and type II diagrams
in which (=a «g~ at coexistence with other phases.

An interesting aspect of the phase diagrams we have
calculated numerically is their dependence on the
strength of steric entropy, which is inversely proportional
to p [see Eq. (2.28)]. Thus, for p/m &f(ma), type I and
type III diagrams occur with a direct B Ltransition -(see

Figs. 13, 14, and 16), while for p/m &f(ma), type II and
type IV diagrams occur in which there is no such transi-
tion since the A phase intervenes between the B and L
phases (see Figs. 13, 15, and 17). At smaller, presumably
unrealistic values of p (@&0. 1 or even smaller), there
may appear some new types of diagrams containing the C
phase in the region of a small surfactant concentration (of
the order of a few percent) characterized by g=g~ and
low interfacial tension of order Tg at low tempera-
tures. Figure 18 gives a numerical example of such a dia-
gram.

An important feature related to the steric entropy is its(c)(a)

structural length scale of the dilute phase is of order of
the short distance cutoff a at low temperatures. This re-
sults in strong first-order transitions at low temperatures
(i.e., small z} between the D phase with /=a and other
phases with g=gz »a (see Figs. 13, 14, and 15). In par-
ticular, for ma & 3 there is D -B coexistence between the
middle phase (B) ( g=g »a) and dilute phases (D ) con-
sisting of small oil droplets of radius (=a or, conversely,
of small water droplets in oil (see Fig. 20).

In addition to the minimum at (=a, 4(D, g) may have
another minimum at g=g [i.e., 4(D,y) may have two
minima at y, =O(z) and yz=O(1) as shown in Fig.
21(a)]. The D-D coexistence in type I and type II dia-
grams is the result of the competition between these two
minima [Fig. 21(a)]. The second-order D Bline -in type I
and type II diagrams is a line of transitions between the
minimum of 4(D, g) at g=g and that of 4(B,() also at

[Figs. 21(b)—21(c)]. The corresponding phase
boundary is a nearly vertical line in the ( p,„z) plane.

For m a & 3, the functions (4.1) are finite when

y =g/(~ ~0. In fact, for ma & 3 (type III and type IV
diagrams) 4(D, g) has only a single minimum at g=g
The D-B transition in these types is exclusively second
order with a nearly vertical phase boundary in the ( p,„z)

plane and g=g~ at the transition (Figs. 16 and 17). De-
tails of this transition are depicted in Fig. 22. As ma~3
from below, first-order boundaries between D and other
phases in type I and type II diagrams are depressed to
zero temperature (i.e., z =0). Thus, to summarize, coex-
istence of D with other phases (in particular, with the
middle phase) may occur only for ma & 3 (type I and type
II diagrams).

We now discuss transitions other than those in which
the D phase is involved. They are all first order (except at
some isolated points on the L - A phase boundary in types
I and III as in Figs. 13, 14, and 16). Typical structural
length scales g are of order g at the B -A and B Ltransi--
tion (See Fig. 19). The corresponding phase boundaries
are almost vertical in the (p„z)plane at small z, i.e., at
low T (when g=g~ =a/z=a exp[4~/(af')] &&a }, in
agreement with remarks given at the beginning of this
section. The physical picture of the B-L melting which
occurs when the interlamellar spacing g reaches some dis-

Z0' .5 z

D 8

0.5
I a

y
0.5~' =y

D

0.5 z

(b)

z
I

0.5
=y

FIG. 20. Length-scale-dependent free-energy densities 4 of
D and B phases (thick and thin curves, respectively) for ma & 3.
At low T (z ((1), the D curve has a minimum at y=0(z).
{a)—(c) represent situations below, at, and above the first-order
D-B transition. For y ) )z the shapes of these curves are near-
ly z independent. p, is taken to be a constant while z increases
from {a) to (c).

FIG. 22. Length-scale-dependent free-energy densities N of
the D and B phase for ma (3 (thick and thin curves, respective-
ly). {a)—(c) represent, respectively, situations below, at, and
above the second-order D-B transition.
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influence on the typical length scale g in the middle phase
at D B-coexistence which occurs for ma & 3 (type I and
type II diagrams). Within this theor, this length scale is
of the order g~ =a/z =aexp[4n. /(a )]. Experimentally,

g is typically a few hundred angstroms —much larger
than the molecular length scale a. In type I diagrams
(Figs. 13 and 14), whose form is consistent with experi-
mental observation, D-B coexistence occurs in the tem-
perature range between the end point of the D-B critical
line and the D-B -L multiple point. In order to achieve a
realistic middle phase with (=g =a /z ))a, this temper-
ature range should occur at low f', i.e., small z. Thus it is
favorable to have the D-B-L multiple point at some
small z. This is realized, for example, in the type I dia-
gram at ma =2.64 and p/m =0.38 (Fig. 14) in which the
D -B -L multiple point is at z =0.000 25 with

g/g =0.38, P, =0.001, a/(=0. 0007 (4.2a)

in the middle phase. On the other hand, when p is un-
realistically large (i.e., when the effects of steric entropy
are small) the D-8-1. multiple point occurs in the region
of relatively high f'and large z. For example, for the case
m a =2.64, p/m =2. 8, the multiple point occurs at
z =0.018 with

g/g~ =0.44, (t, =0.06, a/(=0. 04 (4.2b)

in the middle phase. The corresponding numbers for the
case m a =2.64 and p/m =28 are z =0.075 and

g/g~ =0.48, (t, =0.26, a/(=0. 16 . (4.2c)

Thus the steric entropy with magnitude proportional
to I /p [see Eq. (2.28)] plays an important role in explain-
ing the properties of the middle phase. A realistic value
of p of order unity or smaller may ensure the existence of
a realistic middle phase with a structural length scale
which is, say, hundreds or even thousands times larger
than the microscopic length scale a.

C. Comparison with experiments

As already mentioned, type I diagrams (see Figs. 12
and 14) are consistent with the experiments on mi-

croemulsions and analogous surfactant systems,
which indicate the existence of direct first-order
transitions from lamellar-to-bicontinuous and from
bicontinuous-to-dilute phases. Trends depicted in Fig. 14
are indeed in agreement with the data of Kahlweit and
co-workers on the micoremulsions with a 1:1 oil-to-
water volume ratio taken along balanced lines. Just as
in the diagram of Fig. 14, these experiments indicate a
lamellar-to-bicontinuous phase first-order line with sur-
factant concentration P, &(z) in the bicontinuous phase
and a bicontinuous-to-dilute phase first-order line with
some ((),2(z) in the bicontinuous phase (i.e., in the middle
phase). These lines meet at a lamellar-bicontinuous-
dilute phase multiple point where $,&(z)=$,2(z)

In these experiments, the parameter
z = exp[ 4nKM(a)/(aT)] is—varied by varying the sur-
factant chain length as depicted in Figs. 3 and 6 of Ref.
30. Thus, for a surfactant with a short chain length and

thus a small bare membrane rigidity KM(a), the bicon-
tinuous phase exists in a broad range of surfactant con-
centrations ((),2(z) &P, &P,&(z). Upon increasing the sur-
factant chain length and thus increasing K~(a ), i.e., de-
creasing z, this range for P, vanishes at a lamellar-
bicontinuous-dilute phase multiple point, as it does in
Fig. 14. For still longer surfactant chain lengths, there is
only coexistence between lamellar and dilute phases, just
as in Fig. 14. Moreover, experimentally, both P, ~(z) and
ti), 2(z ) are increasing functions of a for z above the multi-
ple point for which P„(z)=((),2(z)=((), ;„,in agreement
with Fig. 14. The surfactant concentration P, ;„in the
bicontinuous phase at the lamellar-bicontinuous-dilute
phase multiple point is the smallest concentration with
which one can obtain the random bicontinuous phase (see
Fig. 14). Since the cost of any commercial microemulsion
is directly proportional to the amount of surfactant need-
ed to make it, the cheapest bicontinuous microemulsions
are those with P, )P, ;„and a 1:1 oil-to-water volume
ratio. At the end of Sec. IV B, we demonstrated that typ-
ically small values of P, ;„arean effect of steric entropy
which suppresses the lamellar-bicontinuous-dilute phase
multiple point to low values of P, and z. An unrealisti-
cally small value of 1/p yields a large P, ;„,as in Eq.
(4.2c), while a realistic I/p=O(l) yields a realistic

;„=O(1%)as in Eq. (4.2a). Thus, the possibility of
having reasonably priced microernulsions is in a sense
the result of the effects of steric entropy. In the absence
of these effects, the price would be more than a hundred
times larger, as can be seen by comparing Eqs. (4.2a) and
(4.2c).

Throughout our discussion, we have considered a, m,
and p as phenornenological parameters and have studied
the sensitivity of phase diagrams to their values. These
values are largely uncertain, as explained in Sec. II. The
actual value of the product ma is of importance for un-
derstanding why the coexistence regions of dilute with
other phases exist in reality. We found that these regions
are present only for ma & 3 (see Fig. 12). In the follow-
ing, we present a simple and crude argument for a partic-
ular ma & 3. Consider a spherical oil droplet of radius g
immersed in a water background. Within the framework
of our approach, its bending energy is given by Eq. (2.48).
On the other hand, from Eqs. (2.23) and (2.24) this energy
1s

8nKM($)+4mKG(g) =(2a —a')ln(g /g) .

By matching this equation to Eq. (2.48) and using a=3
and a' = —',0 (see Sec. II B ), one obtains

ma=2+ —a'=8/3 ( 3,

which ensures the existence of first-order transitions be-
tween dilute and other phases. The above argument is in-

teresting from another point of view. The model pro-
posed here is a single bending constant approximation
since Eq. (2.36) is postulated. On the other hand, the ap-
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FIG. 23. (a) Schematic representation of a typical type I
phase diagram of balanced microemulsion at equal volume of
oil and water. It has a region of four-phase coexistence between
the critical end point e and the critical point e. An alternative
to (a) is the diagram shown in (b) with a tricritical point t.
(c)—(e) give schematic ternary oil-water-surfactant phase dia-
grams corresponding to values z =z&, z&, and z3 which are indi-
cated in (a) and (b). For simplicity, we depict only equilibria be-
tween uniform phases. Two-phase equilibria are indicated by
tie lines, while one-, three-, and four-phase regions are indicated
with numbers 1, 3, and 4. Various critical points are indicated
by dots.

proach used above to derive a realistic estimate ma=
3

indicates that it might be possible to account for the
effects of nonzero Gaussian curvature rigidity by making
a suitable choice for the parameter m a entering our sin-
gle bending constant model.

We now proceed to discuss in more detail the phase
equilibria between uniform phases. We recall that these
phases are the ferromagnetic and paramagnetic phases of
the model. Three typical situations are depicted in Fig.
23. At small z (i.e., large reduced rigidity), e.g., z =z, in

Figs. 23(a) and 23(c), one has regions of two- and three-
phase coexistence of the type that have been discussed
previously. ' There are two critical points which occur at
two phase coexistence regions. At a larger z, e.g., z =z3
in Figs. 23(a) and 23(e) there is simple two-phase coex-
istence with a single critical point, entirely analogous to
that occurring in the standard Ising ferromagnet. Both
kinds of phase behavior obtained from the theory have
been observed by Kahlweit and co-workers. ' Howev-

er, these experiments have not observed behavior such as
that at z=zz in Figs. 23(a) and 23(d) in which there is
four-phase coexistence among four ferromagnetic phases:
two oil-rich phases characterized by different structural
length scales and surfactant volume fractions (see Sec.
IVB) and two water-rich phases related to the oil-rich
phases by the oil-water, i.e., by the Ising up-down, sym-
metry. The experiments of Refs. 29 and 30 on ternary
oil-water-surfactant systems, as well as microscopic mod-
els of microemulsions, suggest the possibility of a simpler
scenario, depicted in Fig. 23(b}, for interpolating between
Figs. 23(c) and 23(e). There, a standard tricritical point
(t) joins the coexistence loop and the second order line be-
tween the ferromagnetic and the paramagnetic phases.
However, experiments of Bennet, Davix, and Scriven on

quasiquater nary systems, as well as some results of
Kahlweit and Strey (see Ref. 31, Sec. VI), are consistent
with the scenario in which a narrow four-phase region
occurs. These two scenarios in Figs. 23(a} and 23(b) can
be joined in a continuous manner. The critical point c
and the critical end point e can merge continuously into a
single tricritical point t and the region of four-phase
coexistence shrunk to zero as a function of some control
parameter. We have found that this four-phase region
can be made smaller by choosing smaller values of mu
than those used in calculating diagrams in Figs. 14—18.
Then one can produce phase diagrams with a very small
region of four-phase coexistence and thus approximating
very closely a tricritical point. An example of a phase di-
agram with this close to tricritical behavior was calculat-
ed in Ref. 2 (see Fig. 2 of Ref. 2). There the value of
m a =2 was used and steric entropy effects were neglect-
ed. Steric entropy only weakly influences the free energy
of the dilute (ferromagnetic) phase and phase equilibria
between uniform phases, as discussed in Sec. V in more
detail.

Four-phase regions were studied experimentally by
Bennet, Davix, and Scriven in quasiquaternary systems
with oil, brine, surfactant, and alcohol (cosurfactant) as
components. Our model, however, describes ternary or
quasiternary systems. Thus, the four-phase region ap-
pears as a trapezoid in the ternary phase diagrams [see
Fig. 23(d}]. For a quaternary system, this region is a
tetrahedron in the quaternary phase diagram. Experi-
ments, however, typically indicate narrow four-phase
regions and a four-phase tetrahedron which is almost de-
generate, i.e., nearly planar, and can be described approx-
imately as a trapezoid in Fig. 23(d). Thus the quasi-
ternary description could be appropriate, and four-phase
coexistence regions observed in experiments could be re-
lated to those obtained from our model. It is interesting
to note that the model predicts four-phase regions to
occur even in truly ternary systems. For these systems,
volome fractions of phases in the four-phase region are
not uniquely determined by the position of the mixing
point within the four-phase trapeziod (since the number
of phases, 4, exceeds the number of components, 3, by l).
In practice, these volume fractions would be fixed by
small amounts of impurities, which are components in
addition to the three dominant ones. This might make
the observation of the four-phase region in an approxi-
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mately ternary system difficult. Experimentally, the be-

havior observed in ternary systems is interpreted as tri-
critical, ' as in Fig. 23(b). We believe that the existence
of a four-phase region even in these systems cannot be ex-
cluded. As discussed in the preceding paragraph, the
four-phase region can be small (e.g. , for ma & 2), and the
overall behavior might only resemble that of a tricritical
point. Moreover, relative volume fractions in the four-
phase region might be strongly influenced by small
amounts of impurities, which might further complicate
the observation of a four-phase region in practice. Four-
phase regions are more easily observed in quaternary sys-
tems in which the amount of the fourth component is
not small. To understand fully these realistic four-phase
regions, one needs further extensions of the present
theory which explicitly account for the presence of the
fourth component in quaternary systems (e.g. , cosurfac-
tant) or for the effects of small amounts of impurities in a
nearly ternary system.

An interesting theoretical finding of our work is that
periodic "antiferromagnetic" and columnar phases in ad-
dition to the lamellar phase may appear in systems with a
1:1 oil-to-water volume ratio as shown in Fig. 13. In the
realistic type I diagram (see Figs. 13 and 14), this occurs
in the same range of surfactant concentration P, in which
the lamellar phase occurs, but at larger values of z, i.e., at
smaller values of the reduced rigidity KM(a )/T, for phys-
ical reasons discussed at the end of Sec. III A. An experi-
mental check of this result is, in principle, possible, e.g.,
in the systems studied in Ref. 30, by adding cosurfactant
and thus decreasing the rigidity below the values already
studied.

Finally, we stress that the model developed here is ap-
propriate to the random surface systems with short-range
repulsion, e.g. , for nonionic surfactant monolayer or bi-
layer systems. Systems with unscreened Coulomb in-
teractions, which dominate over the Helfrich entropic
repulsion, can have a significantly different phase behav-
ior (see, e.g., Ref. 16). If the electrostatic interaction is
screened by adding brine, the screening length may be
taken as the microscopic short-distance cutoff of the
present theory, and the phase behavior could be traced by
using the results of the present work. In fact, experimen-
tal results of Safinya and Roux, Ref. 16, support this idea.
It would be interesting to study this problem in more de-
tail.

V. SUMMARY AND DISCUSSION

We constructed a simple coarse-grained model for mi-
croemulsions which is a qualitative improvement with
respect to previous phenomenological models' ' of Tal-
man and Prager, de Gennes and co-workers, Widorn, and
more recently of Safran and co-workers. We demonstrat-
ed here that there is necessarily an entropic contribution,
missing in all previous theories, to the coarse-grained free
energy whose origin is the same as that of Helfrich's en-
tropic repulsion' ' stabilizing lamellar multimembrane
phases. The inclusion of this steric entropy in the previ-
ous phenomenological studies is essential if they are to be
used in the study of periodic phases in microemulsions
and analogous surfactant systems. Thus our model en-

ables us to obtain the global phase diagram containing
both uniform and periodic phases of microemulsions and
analogous surfactant systems. ' ' This is a significant
improvement with respect to previous phenomenological
studies which were applied consistently only to uniform
phases.

We demonstrated also that inclusion of steric entropy
is essential to explain the existence of the middle phase
microemulsion with a structural length scale g much
larger than the molecular scale a. In the absence of
periodic phases, one may have such a middle phase even
in the absence of steric entropy [i.e., if p in Eq. (2.28) is
infinite]. However, once the periodic phases are included
in the theory, the temperature range and, consequently,
the value of g in the middle phase are limited by the pres-
ence of the coexistence regions of the dilute with periodic
phases. We have shown that steric entropy of a realistic
magnitude may suppress these regions to sufficiently low
temperatures and thus that g is necessarily much greater
than a in the middle phase.

Within the phenomenological approach, steric entropy
is generated naturally by coarse graining. For g=g~ its
effect is quantitatively comparable to the effects of entro-
py of mixing and bending rigidity considered in Refs.
1—3. The simple formula we use to include steric entro-
py, Eq. (2.28), underestimates somewhat its magnitude
when g «g, while it is qualitatively correct when g - (~.
To see this, consider, e.g. , fluctuations around the mean
surface configuration corresponding to the presence of a
passage in the lamellar phase (Fig. 5). The entropy de-
crease due to steric effects is in general' of the order L,
per unit area. The average distance, L&, between col-
lisions of the membrane with fictitious hard walls is relat-
ed to g by Eq. (2.18) only for straight sections of the
lamellar phase which are far from the passage. On the
other hand, in the region of the passage, we expect L

&

=g
rather than L, =([KM(L, )/T)' as given by Eq. (2.18).
The condition g=L, =g which implies K~(L, )=T, is
fulfilled at various phase transitions that we find in Sec.
IV so that the use of Eq. (2.28) is qualitatively correct.
In general, use of Eq. (2.28) underestimates steric entropy
when mean interfaces are heavily curved and g «(~ [so
that KM(L

~
) ))T ]. However, in these cases, the contri-

bution of the steric entropy is subdominant to that of
bending rigidity. Thus, our way of including steric entro-
py via Eq. (2.28) is a reasonable one if one wants to con-
sider phase equilibria.

Within our theory, the structural length scale g is
determined by the variational principle Eq. (2.15). When
the equilibrium state is a perfectly ordered lamellar
phase, this variational principle reduces to that of a re-
cent theory' for steric stabilization of lamellar systems.
Here, the concept of steric entropy is extended to states
which could be far from any ordered structure. g is typi-
cally of the order g at a variety of phase transitions, ex-

cept in dilute phases coexisting with other phases (e.g. ,
the rniddle phase) in type I and type II diagrams when
/=a «g . In fact, the existence of these coexistence re-
gions crucially depends on this property of dilute phases
which is realized if ma & 3 (see Sec. IV). An interesting
generalization of our theory would be to allow for spatial
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fluctuations of g around the variationally determined
length scale. This may give some insight into polydisper-
sivity effects which were recently addressed by Huse and
Leibler in Ref. 4.

Let us compare the present theory with previous phe-
nomenological studies of Safran and co-workers. ' . The
most significant difference is that we have included the
effects of steric entropy whereas the previous studies did
not. This enabled us to study phase equilibria involving
periodic as well as spatially uniform phases. Steric entro-

py, however, has only a weak quantitative effect on the
free energy of the dilute phases of the model when they
coexist with other phases. In this case, the steric term of
the model only provides a short-distance cutoff' to g of or-
der a. For a & g «g, the steric entropy contribution to
the free energy of the dilute phase is subdominant to that
of the bending term. Thus, our estimate for this free ener-

gy is basically the same as that of the model of Refs. 1—3.
As a consequence, all aspects of phase equilibria involv-

ing the dilute phase discussed in Sec. IV [e.g. , the
different nature of transitions for ma & 3 and m a & 3, the
validity of Eq. (4.1), the appearance of four-phase coex-
istence, etc.] are common features of our model and that
of Refs. 1—3. However, only a particular value of ma
(ma =2) was considered in Refs. 1—3.

Finally, let us stress that our study, as well as previous
ones, ' employs a single bending constant approxima-
tion, i.e., Eq. (2.36) is presumed. Thus, possible interest-
ing effects associated with the Gaussian curvature bend-
ing constant KG are neglected. Positive KG favors
creation of passages or a fusion of a number of surfaces
into a smaller number of bigger ones as in Fig. 6. Thus,
for example, we interpreted our antiferromagnetic phase
as a crystal of oil droplets immersed in water background
and vice versa. Positive KG may favor creation of pas-
sages connecting neighboring droplets, thus transforming
the droplet crystal into a crystal-like phase made of a sin-

gle extensive surface. A further geometrical refinement
of the theory would be necessary to include some of the
realistic such phases in the phenomenological treatment.
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FIG. 24. Hard wa11 configurations discussed in the Appen-
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The ellipses in (Al) indicate higher-order terms in h(x).
However, from (Al) it is clear that to determine A (L

&
)

and K~(L, },it suffices to calculate f(g, h ( ) ) to quad-
ratic order in h(x).

On the other hand, Ref. 15 considers a more general
problem of a surface fluctuating around the mean surface
with height function u(x) between two hard walls defined

by height functions

u, (x)= u (x)—1(x)/2, u2(x) = u (x)+ l(x)/2, (A2)

as depicted in Fig. 23(b). When l(x) varies slowly around
some value l,

l(x) =1+51(x), (A3)

one can expand the free energy of the surface in powers
of 51(x) and u(x)',

APPENDIX

Here we discuss the relationship between some results
of Ref. 15 and Eq. (2.17) which gives the free energy of a
fluid membrane constrained by two hard walls m

' and w

separated by a constant distance g as in Figs. 7 and 23(a),
to fluctuate around the mean surface Ro(x) (Fig. 24). Let
us presume that the mean surface is nearly planar and
satisfies periodic boundary conditions [in this case the
Gaussian curvature term of (2.17) does not contribute],
and let us parametrize the surface by means of the height
h(x) above a base plane with Euclidean coordinates x,
i.e., Ro=(x, h(x)). Then (2.17) gives

f(g, h( )}=J d xIa(L, )[1+—'(Vh) ]

+ ,'KM(L, )(V—h ) +

(A 1)

f[1+51(.. . ), u( . )]= 1 d x Iao(1)+a&(l)51(x)+—,'az(l )[51(x)] + ,'b(1)[Vu(x)] +——,'K(l)[V u(x)] +
(A4)

with

B~ao(l )

al,. (1)=
plk

(A5)

I

Rotational invariance imposes the following relation be-
tween b(l ) and ao(l )

ao(l )
b(l ) = —1— (A6)

Bl 1
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Now we proceed to relate (A4) to (Al). Note that l(x)
in Eq. (A2) is the distance between hard walls measured
along direction 3, i.e., perpendicularly to the base plane
in Fig. 23. Thus, the situation with l(x)= const [i.e.,
51(x}=0]does not correspond to the present problem,
with constant distance between hard walls measured per-
pendicularly with respect to the mean surface [x,h(x)] as
depicted in Fig. 23(a). Related to this is the fact that Eq.
(A4), with 51(x)=0, l=g, and u(x)=h(x), is not iso-
morphic to (Al), as can be easily shown by means of (A6).
Nevertheless, one can express configurations of the walls
in terms of h(x) and g by using the following equations
following from Fig. 23(a):

u, (x—n~(x)g/2}=h(x) —n~~(x)g/2,

u~(x+nj (x)g/2}=h(x)+nl(x)g/2,
(A7)

=( —Vh(x), 1)[1+[Vh(x)] ] (AS)

From (A7) and (AS) one can find u, 2 as functions of x by
an expansion in powers of h(x). For our purpose it is
sufficient to keep terms which are O(h ) at most.
Straightforward calculation yields

u&(x)=h(x) —
—,'(I 1+—,'[Vh(x)] j+

(A9}
u2(x)=h(x)+ —,'([1+—,'[Vh(x)] ]+

By (A9) and (A2)

u(x) =
—,'[u, (x)+u2(x)]=h(x)+ (A10)

1(x)=u2(x) —u ~(x) = (I I+ —,'[Vh(x)] ] + (All)

with n=(n~,
n

), the unit normal to the point (x,h(x)) of
the mean surface:

n(x)=(n (x), nl(x))

where the ellipses indicate terms which are O(h ). Thus,
by (Al 1) and (A3) one has

and

51(x)=—,'g[Vh(x)] + . . (A12)

(A13)

Introducing u(x), 51(xu), and 1 as in Eqs. (A10), (A12),
and (A13) into the free energy (A4) and using (A5) and
the Ward identity (A6), one obtains

f(1+51( ~ ), u( )}
= f d'&(ao(g)I+ —,'[Vh(x)] )

+—,'K(g)[V'h(x)]2+ ) . (A14)

Equation (A14) is isomorphic to (A 1) with

a(L, ) =ao(g),

Ksr(L, )=K(g) .

(A15)

(A16)

Equations (A15) and (A16) express the parameters
a(L& ) and KM(L~ ) of Eq. (2.17) in terms of the parame-
ters ao(g) and K(g) of Eq. (A4) studied in Ref. 15. De-
tailed expressions for ao(g) and K(g) are obtained in the
framework of a low-temperature theory in Ref. 15, and
the final form of a(L, ) and KM(L, ) obtained from these
expressions and Eqs. (A15) and (A16) is the one presented
in Sec. IIB. There we explained the physical origin of
these parameters.

'S.A. Safran, D. Roux, M.E. Cates, and D. Andelman, Phys.
Rev. Lett. 57, 491 (1986);J. Chem. Phys. 87, 7229 (1987).

2M.E. Cates, D. Roux, D. Andelman, S.T. Milner, and S.A.
Safran, Europhys. Lett. 5, 733 (1988).

S.T. Milner, S.A. Safran, D. Andelman, M.E. Cates, and D.
Roux, J. Phys. (Paris) 49, 1065 (1988).

4D.A. Huse and S. Leibler, J. Phys. {Paris) 49, 605 {1988).
sFor a general survey, see physics of Complex and Supermolecu

lar Fluids, edited by S.A. Safran and N.A. Clark (Wiley, New
York, 1987).

See, e.g., J. Meunier, J. Phys. (Paris) Lett. 49, L-1005 (1985).
7Reference 2 contains a survey of recent experimental studies of

surfactant bilayer systems dissolved in a single solvent. See
also D. Roux and C.M. Knobler, Phys. Rev. Lett. 60, 373
(1988).

P. Ekwald, in Advances in Liquid Crystals I, edited by G.H.
Brown (Academic, New York, 1975), p. 1; A.M. Bellocq and
D. Roux, in Microemulsions, edited by S. Friberg and P.
Bothorel (Chemical Rubber, New York, 1986); D.H. Smith,
J. Colloid. Interface Sci. 102, 1241 (1982); B. Widom, J.
Chem. Phys. 81, 1030 (1984).

The phenomenological approach to thermodynamics of mi-

croernulsions was initiated by Y. Talmon and S. Prager, J.
Chem. Phys. 69, 2984 (1978); 76, 1535 (1982); and further
developed by J. Jouffroy, P. Levinson, and P.G. de Gennes, J.
Phys. (Paris) 43, 1241 (1982); and B. Widom, J. Chem. Phys.
81, 1030 (1984).

' W. Helfrich, J. Phys. (Paris) 46, 1263 (1985);48, 285 (1987).
L. Peliti and S. Leibler, Phys. Rev. Lett. 54, 1690 (1985).
D. Forster, Phys. Lett. 114A, 115 (1986); H. Kleinert, ibid.
114A, 263 {1986);116A, 57 (1986).

' P.G. de Gennes and C. Taupin, J. Phys. Chem. 86, 2294
(1982).
W. Helfrich, Z. Naturforsch. 33A, 305 (1978). Helfrich pro-
posed several estimates for p.

~~L. Golubovic'and T.C. Lubensky, Phys. Rev. B 39, 12110
(1989).

' C.R. Safinya et al. , Phys. Rev. Lett. 57, 2118 (1986}. See also
D. Roux and C.R. Safinya, J. Phys. (Paris) 49, 307 (1988); and
F.C. Larche et al. , Phys. Rev. Lett. 56, 1700 (1986}.

7D. Sornette, Europhys. Lett. 2, 715 (1986).
' See, e.g. , V.L. Pokrovsky„A. L. Talapov, and P. Bak, in SolE'-

tons, edited by S.E. Trulinger, V.E. Zakharov, and V.L.
Pokrovsky (Elsevier Science, New York, 1986), p. 71; M.E.



4366 LEONARDO GOLUBOVIC AND T. C. LUBENSKY 41

Fisher and D.S. Fisher, Phys. Rev. B 25, 3192 (1982); F.D.M.
Haldane and J. Villain, J. Phys. (Paris) 42, 1673 (1982).

' See, e.g. , B. Dubrovin, A. Fomenko, and S. Novikov, Modern

Geometry Methods and Applications (Springer-Verlag, New

York, 1987), Vol. 1. A surface embedded in three-

dimensional space can be specified by a three-dimensional

vector field R(x), which is a function of a two-dimensional

coordinate parametrizing the points on the surface. The

geometry of a surface is reparametrization invariant, i.e., in-

variant with respect to x~y(x), where y(x) is an arbitrary
invertible two-dimensional mapping.

K. Fujikawa, Phys. Rev. D 23, 2262 (1981).
'Real membranes are allowed to merge or divide into smaller

ones. The requirement of the strict, hard-core self-avoidance
is in fact imposed to ensure that the trace operator Tr~&

I
is

J
well defined sum over sectors with fixed numbers of surfaces.
W. Helfrich, Z. Naturforsch. 30C, 841 (1975). See also, W.
Helfrich and R.M. Servus, Nuovo Cimento 3, 137 (1984}.
W. Harbich, R.M. Servus, and W. Helfrich, Z. Naturforsch.
33A, 1013 (1978).

24L.D. Landau and E.M. Lifshitz, Statistical Physics (Pergamon,
Oxford, 1969). We stress that —o is simply a chemical po-
tential coupled to the extensive membrane area equivalent to
the surfactant chemical potential of Ref. 1. This quantity
should not be confused with the surface tension of the inter-
faces between coexisting bulk phases at first-order phase tran-

sitions between them.
See Ref. 4 for a discussion of possible effects of the Gaussian
curvature bending energy. See also, T. Hofsass and H.
Kleinert, J. Chem. Phys. 86, 3565 (1987).

2sNote that the value of BG( [p, j ) is independent of the details

smoothing process, since the Gaussian bending rigidity ener-

gy is a topological invariant. See Ref. 25.

27M. Schick and W.H. Shih, Phys. Rev. Lett. 59, 1205 (1987);G.
Gomper and M. Schick, ibid. 62, 1647 (1988}. A different lat-
tice model is considered in K. Chen, C. Ebner, C.
Jayaprakash, and R. Pandit, J. Phys. C 20, L361 (1987); and

Phys. Rev. A 38, 6240 (1988)~

See, e.g. , R.P. Feynman, Statistical Mechanics (Addision Wes-

ley, Reading, MA, 1972)~

M. Kahlweit, R. Strey, and D. Hasse, J. Phys. Chem. 89, 163
(1985).
M. Kahlweit, R. Strey, and P. Firman, J. Phys. Chem. 90,
5239 (1986).

'M. Kahlweit and R. Strey, J. Phys. Chem. 91, 1553 (1987).
M. Kahlweit and R. Strey, J. Phys. Chem. 91, 5239 (1987).
In Ref. 30, the bare rigidity constant K~(a ) is varied by using
surfactants with different chain lengths. This allows phase di-

agrams to be studied over a broader range of values of bare
reduced rigidity KM(a )/T than could be studied by varying
temperature (or our parameter z) alone. The balanced mi-

croemulsion case, considered in our paper, can be realized as
in Ref. 13 by choosing the appropriate temperature for which

asymmetry between oil and water disappears. In Figs. 3 and
6 of Ref. 30, this isotherm corresponds to the structure called
"fish" by the authors. Moving along this line by varying P, at
a 1:1 oil-to-water volume ratio is the same as moving along
the constant f' or constant z line of our phase diagrams in

Figs. 13—18.
See K.E. Bennet, H.T. Davix, and L.E. Scriven, J. Chem Phys.
86, 3917 (1982).

The continuous transition from critical end point to tricritical
behavior exists in the mean-field theory of models for
metamagnets which are similar to but simpler than the model
considered here. See, for example, J.M. Kincaid and E.G.D.
Cohen, Phys. Rep. C 22, 57 (1975).
















