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We report simulations of the velocity autocorrelation function (VACF) of a tagged particle in
two- and three-dimensional lattice-gas cellular automata, using a new technique that is about a mil-
lion times more efficient than the conventional techniques. The simulations clearly show the alge-
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tail of the VACF. We compare the observed long-time tail with the predictions of

mode-coupling theory. In three dimensions, the amplitude of this tail is found to agree within the
(small) statistical error with these predictions. In two dimensions small but significant deviations
from mode-coupling theory of up to 5% are observed.

I. INTRODUCTION

The velocity autocorrelation function (VACF) is a
function of fundamental interest in atomic fluids. Until
1970 it was generally believed to decay exponentially for
long times; however, in 1970 Alder and Wainwright'
found by molecular-dynamics simulation that the asymp-
totic decay of the VACF is slower than the exponential
decay. Their findings indicated that for times much
longer than the mean free time ¢, the VACF decays alge-
braically with an exponent D /2, where D is the dimen-
sionality. The Alder-Wainwright results caused a com-
plete overhaul of the kinetic theory of dense fluids. The
subsequent theoretical analyses of algebraic long-time
tails were either based on an extension of kinetic theory”
or on mode-coupling theory.® For a review, see Ref. 4.
In the mode-coupling theory by Ernst, Hauge, and van
Leeuwen,?® it is assumed that the long-time tail is the
consequence of coupling between particle diffusion and
shear modes in the fluid. More recent simulations of
hard-core fluids in both two and three dimensions
confirmed the existence of the algebraic tail.>® The most
recent simulation for a three-dimensional (3D) atomic
system is by Erpenbeck and Wood.” These authors ob-
served agreement between their simulation results of the
VACEF and a finite-N mode-coupling theory for some den-
sities. Nevertheless, the statistical accuracy of their data
was such that it was not meaningful to verify either the
value of the exponent of the algebraic tail or the function-
al form of the density-dependent tail coefficient indepen-
dently.

Lattice-gas models have recently been revived as an al-
ternative for simulating atomic fluids.® Because of their
simple structure, which makes it comparatively easy to
work out the consequences of a particular approximation
scheme, they are ideally suited to serve as a testing
ground for concepts in kinetic theory. Hence lattice-gas
models seem to be an attractive alternative for determin-
ing the VACF. This approach has been tried by Boon
and Noullez’ and Binder and d’Humieres'® for 2D sys-
tems. However, due to poor statistics, long-time tails
could not be detected.

In this paper we first discuss lattice-gas models in gen-
eral. In Sec. III we present a mode-coupling theory for
lattice-gas models. In Sec. IV we present a computation-
al scheme that makes it possible to compute the VACF of
lattice gases with hitherto unachievable accuracy. In Sec.
V we present the simulation results using this new
method and compare it with the lattice-gas version of
mode-coupling theory.

II. LGCA MODELS

Let us first briefly summarize the essentials of lattice-
gas cellular automata (LGCA), in order to establish the
notation that is used in subsequent sections. In what fol-
lows, we assume that the reader is familiar with the
basics of lattice-gas models. For more details on this sub-
ject the reader is referred to, for instance, Refs. 8, 11, 12,
and 13.

In LGCA models, time and space are considered
discrete. This means that the model system is defined on
a lattice and the state of the automation is only defined at
regular points in time with separation At. At every time
step particles are only allowed to be situated at lattice
nodes, with possible velocities c;, i€{1,2,...,b}. The
set ¢; can be chosen in many different ways, although
they are restricted by the constraint that

r'+cAt=r",

where r’ and r’’ are neighboring lattice nodes. In the
present paper the velocity set of the three-dimensional
model is defined by the additional constraint that |¢;| =c,
whereas in the two-dimensional model the set is defined
by l¢;/=0 and |c,|=c for i#1. We can imagine a parti-
cle at node r with velocity ¢, as occupying a link connect-
ing the node r with the nearest-neighbor node r+cA;z.
No two particles can be at the same lattice node with the
same velocity. The time evolution of the LGCA consists
of two steps:

(1) Propagation. All particles move in one time step At
from their initial lattice position r to a new position
r'=r—+c,At. For convenience we choose Ar=1.

4277 ©1990 The American Physical Society



4278

(2) Collision. The particles at all lattice nodes undergo
a collision that conserves the total number of particles
and the total momentum at each node.
rules may or may not be deterministic.

The collision

The state of the automaton at time (point) ¢ is completely
given by s,(r,t), which is equal to 1(0) if a particle is
present (absent) on node r with velocity c;.

Provided the lattice has sufficiently high symmetry, the
equation that governs the time evolution of the distribu-
tion function of such a lattice gas becomes equivalent to
the Navier-Stokes equation for an incompressible fluid if
the flow velocity is much less than the speed of sound,
and all spatial variations in the system occur on a scale
that is large compared to the mean free path of the
lattice-gas particles. In this respect LGCAs model atom-
ic fluids.

The models under consideration are the two-
dimensional Frisch-Hasslacher-Pomeau model with seven
possible velocities on a triangular lattice (generally denot-
ed as the FHP-III model), and the three-dimensional
face-centered hypercubic (FCHC) model.'""!3 The FHP-
III is discussed extensively elsewhere,!""!? but the 3D
FCHC model that we use will need some comment. In
this lattice there are 24 possible velocities, so a collision
would require a 2%*-word lookup table, which requires a
very large shared memory.'* In the algorithm used in the
present paper the 24-bit state is split into two 12-bit sub-
states, !> which requires only a small 12-bit lookup table.
This splitting can be done in six different way, one of
which is chosen randomly at every collision. The param-
eter Re7* measuring the effectiveness of the collision
rules is about two, similar to Hénon’s isometric rules. !
Much higher values for Re™* can be achieved.!*!
However, for the present simulation a high value of
Re 7 is not necessary; hence we employ the simple 12-
bit rules. An explicit expression for the kinematic viscos-
ity and the diffusion coefficient that follows from the
Boltzmann-Enskog equation for this 3D model is given in
Appendix A.

III. MODE-COUPLING THEORY FOR LGCA

The extension of mode-coupling theory to lattice gases
was first presented by Kadanoff et al.'® Here the more
intuitive derivation by Ernst!® is given, which is based on
the Ernst-Hauge-van Leeuwen (EHVL) theory for con-
tinuous systems.> In addition to s;(r,?), we define n,(r,?)
which is the occupation number of a tagged particle. The
VACEF is then given by

(v, t)>—2222c0xc,x(n 10,0)n;(1,2)) .
ro 10 r
(1
Note that the initial value is equal to
1
2 0 __ 2
(v2(0)) bV?;C”" )

where V is the number of lattice nodes.
values that will be useful are

Some average
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(nio(ro,O)S,-(r,O)> (%1% iig rrObV

’
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b

where p is the average number of particles per site. Fol-
lowing EHVL, we now introduce the special nonequilibri-
um (NE) ensemble average { )yg, which is equal to the
equilibrium ensemble under the constraint that at =0
the phase coordinates of the tagged particle are (rg,ij)
and is written in terms of the equilibrium ensemble aver-
age as

(n; (15,0) 4;(r, 1))
(n; (£5,0)) ’

(A,-(r,t))NE= 4)

where A,(r,t) can be any dynamical variable. Then the
VACEF can be written as

2222(:1 xczx(n (I' t)>NE

l'0 io

2222% i (5)

1'0 IO r

(v, (0, (1))

where fNE(r,t) the NE distribution function of a tagged
particle. In the spirit of the EHVL method we coarse
grain over cells, containing many sites, and replace the
lattice sum over sites by a lattice sum over cells. We now
use the EHVL assumption I that the NE distribution
function approaches the local equilibrium (LE) distribu-
tion function quickly compared with the rate of decay of
the VACF. With this assumption the local tagged parti-
cle current density can be approximated by

S S e M= 3 P(r,u(r,t), (6)
where
P(r,t)=3 fNE(r,1) (7)

is the density of tagged particles in the NE ensemble, and

ux(r,t)ziZC,»x(s,-(r,tHNE (8)

1

is the average fluid flow velocity, where p is the average
number of particles per site in the equilibrium state. In-
troducing the Fourier transforms, we can write (6) as

SISl nD=—7 3 ug (DP_g(1)

qGIBZ

~fqemz F a(DP_g(t) . (9)

Here 1BZ denotes the first Brillouin zone of the recipro-
cal lattice corresponding to the lattice of cells. N, is the
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number of lattice nodes per unit volume in the reciprocal
space and D is the dimensionality of the system. For the
FHP lattice and the FCHC lattice, N, is %\/3 and 1, re-
spectively. Note that the course graining has removed
the largest q modes from the summation. To determine
the long-time behavior of (9) we use the solution of the
diffusion equation for the tagged particle density,

-Doqzt

P, (0), (10)

P (t)=e q

q

and the hydrodynamic modes for u 4, (), namely,
U (=G, u (1) +q xug(e) .

The first component decays as a sound mode. The second
term decays as shear mode:

Lpoy, Y08t Loy, Yol
ug(t)=e u (0)=e (8ax =90y U q,(0) . (11)

q q
Here D, is the “bare” or Boltzmann-Enskog diffusion
coefficient, and v, is the “bare” kinematic viscosity. The
initial values of (7) and (8) are, with the use of (3), equal
to 6"0 and c,ox(l—p/b)S,,O, respectively. Consequently

the Fourier components at t=0 are

P (0)=1, (12)
iga
el 0=~ [1—% , (13)
Cioa
ug(0)=—"—(80,—q48,) |1- & (14
p b

Insertion of (10)-(14) into (9) yields

No  —(py+vyg? S
q D€
(2m) p

? 2,’ e f TR = fqe BZ, d

— Sy
X (8. mx)[l b]

D1 Cidl=p/bIN,
=~ 577 - (15)
D pl4m(Dy+vy)t]

Inserting this expression into (5) yields

D —1 No(1—p/b){v}(0))
D pl4m(Dy+vy)t]P"?

_d§(v}0))  d,

tD/2 = tD/2 ’ (16)

(v (0, (1)) =

where d§ is the normalized tail coefficient. Note that this
expression differs by a factor (1—p/b) from the continu-
ous expression. This factor is a consequence of the Fermi
statistics and guarantees that the state occupied by the
tagged particle contains no fluid particle. The values of
the parameters b, (vf(O)_), and N, in formula (16) are, re-
spectively, 7, 3, and 1V/3 for the FHP-III model and 24,
4, and 1 for the FCHC model.

4279

IV. COMPUTATIONAL TECHNIQUE

In this section we discuss our new technique to calcu-
late the VACF of a tagged particle in a simulation. We
wish to stress that the present form of this method is only
applicable to the calculation of the correlation function
of one tagged particle and is not, for instance, suitable for
calculating the stress correlation function.

In the techniques used thus far*®7 a single tagged par-
ticle is followed along its classical trajectory. An esti-
mate of (v, (0)v (¢)) is then obtained as an average of
v, (0)v,(t) over different time origins in this trajectory,
different particles, and different initial conditions. To ob-
tain reasonable statistics with these ‘brute force”
methods, one needs lengthy simulations on large systems.
For discrete systems”'% these methods could not be used
to calculate the VACF in the region ¢t >>t, with enough
accuracy to observe any algebraic tail at all.

We will now present a method, the moment-
propagation (MP) method, that is about a million times
more efficient and easily implemented on vector comput-
ers. The basic idea will be given in three steps.

First, let us consider one tagged particle, say a “blue”
particle, in a lattice with other, but identical “red” parti-
cles. We now make use of the fact that in LGCA a parti-
cle loses its identity in a collision. So in a collision with a
blue particle involved, it is not possible to tell which one
of the postcollisional outgoing particles was the incoming
blue particle. We now choose our stochastic collision
rules such that any outgoing particle is equally likely to
be the blue particle. So instead of one defined path of the
particle, there are now a lot of possible paths, each asso-
ciated with a certain probability. We can compute this
probability as the product of the scattering probabilities.
The average of v, (0)v,(¢) of the blue particle is the sum
over all paths of v,(0)v,(t), each path contribution
weighted with the appropriate probability factor. Note
that only v, (7) is “path dependent.”

Second, we do not need to know which specific path a
particle has followed; as a matter of fact, we are only in-
terested in the probability that the blue particle arrives at
time ¢ on site r, because all the paths going to (r,?) will
result in the same v,(¢). This site probability is clearly
constructed as the sum of the probabilities of all paths
ending at this site. This makes things much easier, for
now we can just transport at every time step this proba-
bility to the neighbor sites multiplied by the probability
that the tagged particle would go that way. Note that at
t=0 the site probability for the “‘starting” site is equal to
one, and for all the other sites equal to zero.

Finally, we now think of every particle in the lattice as
a starting particle. We can just add the contribution of
all particles to the site probability, under the condition
that the initial site probability of the starting particles is
weighted with their initial velocity v, (0). Note that this
procedure corresponds to propagating the v, velocity of
the particles. The correlation function v, (0)v,(£)) is
now equal to the sum over all sites of this site probability
at time ¢, multiplied by the average site velocity at that
time, i.e., we propagated the first moment of the single-
particle velocity distribution function. More generally,
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we can propagate any moment of the single-particle dis-
tribution function.

The method is conveniently summarized by the follow-
ing equations: Let us define the number of particles N as

N=3 73 s5(r,0)
r i
and the average site velocity,

()= s;(1,t)
Uy r,t —; zsj(r’t)cix
J

The sum over all tagged particles of the probability to
find one individual tagged particle at site r weighted with
its initial velocity is denoted by W(r,t), and evolves in
time as

s;(r—c;,t)
Wit +1)=3 |W(r—c;,t

_, ¥
- )zsj(r-—c,-,t) r
J

where the initial value W (r,1) is given by

Wi(r,1)= 3 s;(r—c;,0)c; .
The VACEF at time ¢ is now simply given by

(0, (0, ()=~ 5 W (E,00,(5,1)

Note that the averaging is all possible paths of one tagged
particle and in turn over all possible particles. At ¢ time
steps, the number of possible paths of one particle is of
the order p’, where p is the average number of particles
per site. As a result, the averaging is over approximately
Np' different events, although not totally uncorrelated.
Nevertheless, this greatly improves the statistics, with the
convenient effect that the accuracy increases with in-
creasing t, which makes the method extremely useful for
calculating the VACF for longer times. The only addi-
tional averaging is over different time origins, and over
different initial conditions in order to estimate the statist-
ical error. In our simulations using this new technique
we observed statistical errors of the order of 10~ in both
two and three dimensions. Compared with the only
known simulation results for two-dimensional LGCA us-
ing conventional techniques,”!© this corresponds to a
gain of 10° in computer time. This method allows us to
calculate the VACF with enough accuracy in the region
t >>t, to serve as a serious test of mode-coupling theory,
without making use of any other approximations than
those within the LGCA framework.

V. SIMULATION

A. General aspects

The simulations were carried out on systems of up to
500X 500 Ilattice points in two dimensions and
60X 60X 60 lattice points in three dimensions. In all
cases correlations were only computed for time intervals
less then the shortest time in which any particle could
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cross the periodic box. This in contrast to corresponding
simulations of long-time tails in atomic fluids,®’ where
time intervals up to five times the acoustic wave traversal
time had to be used. In the present simulation the VACF
is calculated for different densities varying from d=0.05
to 0.90, where d is defined as the average number of parti-
cles per link per node (d =p/b). In order to estimate the
statistical error of the VACF, five to ten independent
simulations per density were performed. All calculations
were performed on a NEC-SX2 supercomputer.

B. Results and discussion

We will give here the simulation results and compare
them with the theory. All results shown are related to
correlation functions normalized to one at t=0. The
three-dimensional case will be discussed first and in most
detail, whereas for two dimensions only the main result
will be shown. For more details, see Ref. 20.

Figure 1 shows the VACF of a tagged particle in the
3D lattice at a density d=0.10. Both the simulation data
and the theoretical prediction are shown, and as we see
the agreement is quite good. Initially the decay is ap-
proximately exponential, and after about ten collision
times the algebraic tail is clearly observed. We note that
characteristic decay time f, of the exponential part is
about 1.1 for this density. We also observe a decreasing
statistical error with increasing time, as expected. Note
that the error is of the order 107

For higher densities the statistics is even better as
shown in Fig. 2, where we show the VACF for d=0.75
from simulations only. After about ten collision times
the function decays as t“ with a = —1.516+0.005, which
should be compared to the value a = — 1 that is predicted

1 T

FCHC lattice
107! d=0 10 4
-2
10
. |
=
> -3
Z 107 .
107* 4
-5
10 Soe |
Og0g 050,
107® s =
1 10! 10°
time t

FIG. 1. Log-log plot of the normalized velocity autocorrela-
tion function of a three-dimensional lattice-gas cellular automa-
ton on a FCHC lattice for density d=0.10. The time is in units
of the unit time step AT of the LGCA. The solid line is the pre-
diction of mode-coupling theory; the crosses are the simulation
data. Note that the estimated error (open squares) decreases
with increasing ¢ to a value of order 107¢.



41 LONG-TIME TAILS OF THE VELOCITY AUTOCORRELATION ...
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FIG. 2. As in Fig. 1, but for density d=0.75. Only the simu-
lation data are shown. Note that after an initial rapid decay,

the VACF approaches a power-law decay with an exponent
—1.516.

for hydrodynamic long-time tails. To our knowledge this
is the most accurate verification of the exponent of the
algebraic long-time tail of the VACF of a 3D fluid. A
more convenient representation of the algebraic long-
time tails is shown in Fig. 3, where we plotted the VACF
multiplied by ¢3/2, for different densities. We expect
these functions to approach a constant value as t— .
Such behavior is indeed observed. This in itself may not
be surprising, but it is reassuring as it has been argued
that the hydrodynamic long-time tails observed in com-
puter simulations on continuous systems may be due to a
propagation of numerical errors.?! In the present simula-

0.006
(a)
N (b)
(o2}
-
*
JAY
-
N (c)
2
8 4
o (d)
Vv
(e)
===(f)
0.000 . L .
0 50 100 150

t/to

FIG. 3. Velocity autocorrelation function multiplied by 3
for different densities: (a) d=0.2, (b) d=0.3, (c) d=0.5, (d)
d=0.6, (¢) d =0.7, () d=0.8. The time is in units of mean free
time ¢,.
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tion the discrete dynamics of the lattice gas is solved ex-
actly; hence propagation of numerical errors is ruled out
as a factor affecting the power-law tails.

Next we look at the tail coefficient d defined in for-
mula (16), as a function of the density. In Fig. 4 both the
prediction of mode-coupling theory and the simulation
data are shown, where the latter are the plateau values of
Fig. 3 supplied with the results for some other densities.
As can be seen from Fig. 4, we find agreement between
theory and simulation within the estimated statistical er-
ror. We wish to stress that the theoretical and simulation
results were obtained completely independently and that
we did not make use of any adjustable parameter. The
comparison is shown more clearly in Fig. 5, where we
plotted d§ divided by d'/2, to divide out the leading non-
analytic part in the density dependence of d§ in formula
(13) as d —0. The dashed curve in Fig. 5 is a third-order
polynomial fit to the simulation data. As we see, the
agreement with the theoretical curve is almost perfect.

In two dimensions the results are qualitatively similar
and details are published elsewhere.?’ For now we shall
only present dj as a function of d, both simulation re-
sults, and theory (see Fig. 6). As we see, mode-coupling
theory overestimates the amplitude by at most 5% in two
dimensions. This small deviation cannot be due to a
trivial numerical factor because in the exponential regime
the VACEF agrees with the theory within the estimated er-
ror, which is only of the order of 0.19%. At present we
have no explanation why the agreement between simula-
tion and mode-coupling theory is worse in two dimen-
sions than in three (where theory and simulations are
essentially indistinguishable).

It might be argued that we should have used the true
transport coefficients D and v in Eq. (13), rather than the
bare coefficients D, and v, In three dimensions the
correction to the bare diffusion constant D, can be es-
timated by numerical integration of the VACF obtained
in our simulations. This yields a value of D that is at
most one percent larger than the Enskog value D,. Simi-

0.006 T T T -

0.000 - . L
0 02 04 06 08 1
density d

FIG. 4. Normalized tail coefficient d§ for the three-
dimensional system as a function of the density [see Eq. (16)].
The solid line is the prediction of mode-coupling theory; the
points are the simulation data. The density is in units of aver-
age number of particles per link.
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FIG. 5. The normalized tail coefficient for the 3D system di-
vided by d!/2. The solid curve is the theoretical curve; the
dashed curve is a weighted fit to the simulation data.

larly, the difference between v and v, proved to be very
small.?? Of course, in two dimensions the true transport
coefficients D and v diverge. Hence, we cannot make the
same comparison in that case. However, an earlier study
by Frenkel and Ernst® suggests that in the time regime
studied in the present simulations, the corrections to the
VACEF due to the divergence of the transport coefficients
themselves are still relatively small. Another factor that
might influence the mode-coupling prediction is the pres-
ence of spurious invariants. It is known that many
LGCA models have spurious ‘“‘unphysical” conserved
quantities that are related to the discrete nature of the
model and may couple to the hydrodynamic modes.?’
However, none of the known invariants in either the
FHP-III model or the FCHC model has the right symme-
try to affect the results of the lowest-order mode-coupling
theory [Eq. (16)].

In summary we have presented a new technique that
allowed us to calculate the velocity autocorrelation func-
tion in a simulation with sufficient accuracy to give a
quantitative estimate of the amplitude of the hydro-
dynamic long-time tail. In this way we could test the pre-

0.04 T v T T

0.00 . \

0 02 04 06 08 1
density d

FIG. 6. Like Fig. 4, but for the two-dimensional system.
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diction of mode-coupling theory for the density depen-
dence of this amplitude. In two dimensions, such a com-
parison showed small deviations of up to 5% with the
simulation results. In three dimensions the comparison
indicated that, for all densities studied, the coefficient of
the algebraic long-time tail is predicted by mode-coupling
theory within the (small) statistical error. This finding
strongly supports the validity of the basic assumptions of
mode-coupling theory for 3D atomic fluids in general.
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APPENDIX A: VISCOSITY AND DIFFUSION
COEFFICIENT OF THE THREE-DIMENSIONAL LGCA

In this appendix we give the explicit expressions for the
kinematic viscosity v, and the Enskog diffusion

TABLE I. Coefficients C, and A4, determining, respectively,
the kinematic viscosity and the Enskog diffusion coefficient. p is
the number of particles.

p G 4,
1 0 1
2 4 11
3 78 77
4 718 385
5 4170 1463
6 17296 4389
7 54 828 10659
8 137952 21318
9 280756 35530
10 465708 49742
11 630920 58 786
12 698 148 58 786
13 630920 49742
14 465708 35530
15 280756 21318
16 137952 10659
17 54 828 4389
18 17296 1463
19 4170 385
20 718 77
21 78 11
22 4 1
23 0 0
24 0 0
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coefficient D, from lattice-gas theory for the three-
dimensional FCHC model used in the present paper.

Hénon?* showed that in the Boltzmann approximation
the kinematic viscosity in three dimensions is equal to

Vo= o (A=), (17
where
_}%:% l(s,—s,’)d” ((1—d)pr!
b
> SJCOSZQU (18)
j=1

Here A(s,s’) is the collision matrix, p =3°_,s, is the
number of particles of a one-node state s, d is the density
in particles per link (d =p/24), and 6,; is the angle be-
tween c; and c¢;. The summation 3, ;- is over all possible
input and output states. From (18) we can collect terms
with the same number of particles p and write (17) and
(18) in the form (with ¢>=2 and b=24)
24 -1
=1 |2 Gd’ =P —1. (19)
p=1
The coefficients C, for the lattice-gas model studied in
the present paper are given in Table 1.
For time discrete systems the Enskog diffusion
coefficient is given by

Dy=1{v2(0)+ 3 (v, (0, (n)) . (20)
n=1
In the Enskog approximation this may be written as

Do=1(v}(0)) +(v}(0)) T [Zy(1)]"
n=1
Zy(1)
=1(v} 2(0)y N1
1{v3(0)) +(v(0)) =z’

with Z (k) the normalized correlation function
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FIG. 7. Kinematic viscosity (solid line) and Enskog diffusion
coefficient (dashed line) for the 3D model as calculated from the
formulas (19), (21), and (22), and Table I.

(v (0, (k))

Zy(k)=
N (v2(0))

In lattice gases the correlation function after one time
step is given by
-1 24— 24 siczx
Zy(H=3dP 71— P ¥ ——,
s i=1 2 Sj
J

where the summation is over all configurations with
s, =1, with the convention that c¢,, =1. This again can
be written as

24
Zy()=3 A4,d°"'(1—-d)*77, (22)
p=1
where the coefficients 4, are given in Table I. The

diffusion constant and the viscosity are both shown in
Fig. 7, with (v}(0))=0.5.
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