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Consider an isolated statistical system specified by a coordinate x and its probability density p(x).
A functional of p(x ) called "Fisher information" can be used to measure the degree of disorder of
the system due to the spread in p(x). Fisher information may be minimized, subject to a physical
constraint, to attain a temporal equilibrium solution p(x). When the constraint is linear in the
mean kinetic energy of the system, the equilibrium solution p (x) often obeys the correct dN'erential

equation for the system. In this way, the Schrodinger (energy) wave equation, Klein-Gordon equa-

tion, Helmholtz wave equation, di8'usion equation, Boltzmann law, and Maxwell-Boltzmann law

may be derived from one classical principle of disorder. The convergence rate for Fisher informa-
tion is about that for alternative use of maximum entropy (in problems where both have the same

equilibrium solution) ~ This suggests that Fisher information defines an arrow of time. The arrow
points in the direction of decreasing accuracy for the determination of the mean, or ideal, value of a
parameter.

INTRODUCTION

In a previous paper, ' we showed that the Schrodinger
wave equation can be derived from an uncertainty princi-
ple that is suggested by classical probability estimation
theory. This is that the error in an optimal determina-
tion of mean particle position should be a maximum. No
physical basis was given for this principle, except that it
seemed reasonable on the basis of the perversity of na-
ture, and because it led to the correct answer, the
Schrodinger equation.

In this paper, we show that this uncertainty principle is
actually the statement of a new principle of statistical dis-
order, that temporally 5I (0, where I is the Fisher infor-
mation. We also formulate a consistent approach to
deriving the major equilibrium distributions of physics,
through the use of the Fisher disorder measure. This is
that the Fisher I should be a minimum, subject to a linear
constraint on mean kinetic energy.

GEDANKEN EXPERIMENT

tion, the observer tries to best infer 8. Call the resulting
estimate 8—:8(y ). How well can 8 be determined, at any
one time, and how does the expected error in 8 change
with time?

The statistical increase in disorder that accompanies an
increase in thermodynamic entropy suggests that the ex-
pected error should increase in time. Intuitively, the situ-
ation can be pictured as follows. Suppose that the parti-
cles are well localized initially, say, because they are in a
small container. Then, a measurement of positions must
be close to mean position 8. Hence an estimate 8 based
on datum y must incur small error, on average. Next, the
observer opens the walls of the container and repeats the
experiment at successive times. As time progresses, dis-
order increases, and the particles become ever more ran-
domly spread out, so that successive outputs y of the ex-
periment tend to depart ever more widely from 8. Hence
the expected error in 8 increases. Using a mean-square
error measure e,

5(e )&0.

Consider an isolated system, consisting either of many
particles or the stochastic realizations of one particle.
The system is specified by a physical parameter x. The
particles may be material particles, or photons, etc. , and
x can specify position coordinate, velocity, or any other
coordinate of interest. Let p(x) describe the probability
density for x. Assume that p(x ) is unknown, and is to be
determined.

Imagine the following gedanken experiment to be per-
formed. The observer makes one coordinate measure-
ment y, where

y =8+x .

Quantity 8 is the ensemble mean position (or velocity,
etc.). See Fig. l, which shows a two-dimensional version,
for purposes of visualization. From this single observa-
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FIG. 1. The gedanken experiment. By measuring the posi-
tion {or velocity, etc.) y of one particle, best infer the mean posi-
tion 8 (or velocity, etc.) of the ensemble. In optical and
quantum-mechanical cases, y and 8 are positions. In the
Boltzmann ideal gas problem, y and 8 are velocities. In the
latter case, 0 is the mean drift velocity, which could be due to
the container's motion relative to the observer.
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This is, of course, an average effect. Randomly, some
new particle configurations might temporarily improve
the estimate, but these should be relatively infrequent
events.

FISHER INFORMATION AND NEGENTROPY

The situation can be quantified by a powerful result
from estimation theory. ' The best possible estimator

8(y ) suffers a mean-square error e from 8 that obeys

e =1/I,
I= f dx(dp/dx) /p(x) .

(3a)

(3b)

5I~O.

That this represents a change toward increased disorder,
can be seen as follows. As p(x) becomes broader and

smoother, its gradients decrease, so that by Eq. (3b) I de-

creases [as in (4)]. For example, if p(x ) is Gaussian with
standard deviation o, then Eq. (3b) gives I= 1/o . A
broad, smooth probability law p(x ) of course represents
increased randomness in x. Hence condition (4)

represents increased randomness in x.
Physically, according to the second law of thermo-

dynamics,

5H ~0, (5)

where H is the "negentropy" [This is the negative of en-

tropy. It is convenient to use negentropy, rather than en-

tropy, in this paper, in order to facilitate comparisons be-
tween changes in I and H, which both tend to go in the
same direction if H is the negative of entropy. See Eqs.
(4) and (5).] This is the functional

H= J dx p(x )lnp(x) .

H is another measure of smoothness in p(x ). To contin-
ue the example above, if p(x ) is Gaussian then
H=c+ln(1/o ), c an inconsequential number. Hence,
once again as p(x ) becomes smoother the functional (now
H) decreases, although logarithmically (versus directly
for I).

(In this and all subsequent cases, integration limits are
from —ao to + ~ unless otherwise specified. ) The par-
ticular 8(y ) that achieves error (3) is called the "efficient"
estimator. Any other estimator must have a larger
mean-square error. The only proviso to this result is that
all estimators under consideration be unbiased, i.e., obey

(8(y) &=8.

A condition of unbiasedness is usually considered desir-

able for an estimator, just as it is for any physical ap-
paratus whose aim would be to measure 8. The quantity I
in Eq. (3b) is called the "Fisher information, " after its dis-

coverer.
The effects (2) and (3a) together imply that the change

in I should be negative,

EQUILIBRIUM STATES

With no physical constraints on x present, I will de-
crease, according to effect (4), until it reaches absolute
zero [when p(x ) = constant ]. However, with a con-
straint on parameter x, such as a fixed (x ), I will de-
crease until it reaches aconite minimum,

I= Idx(dp /dx ) /p(x ) =min . (7)

This defines a stationary (or equilibrium) state of p(x ),
and is called the minimum-Fisher-information (MFI)
principle. As we shall see, according to its constraints,
various differential equations of physics are the solutions.

The time required to reach the equilibrium state p(x )

may be finite, as in thermodynamics and diffusion, or
zero, as in the cases of quantum mechanics and
diffraction optics considered. In the latter cases, the
equality sign holds in disorder principle (4). The nature
of the relaxation time will be seen to have a strong bear-
ing upon which disorder principle, (4) or (5), will apply.

ENTROPY VERSUS FISHER INFORMATION

The second law of thermodynamics states that the
equilibrium probability law p(x) to a given statistical
scenario must obey

H = Idx p(x )lnp(x ) =min . (8)

This is compared with the MFI principle (7). The two
principles give, in general, different equilibrium answers

p(x ). When is each applicable?
In thermodynamical situations, where classical parti-

cles form the statistics, of course entropy principle (8)
gives the correct answer p(x ). Note that in problems of
this type, there is a finite amount of time taken for the
equilibrium state p(x) to be attained. This is commonly
called the "relaxation time. " En route, at each time in-
terval fit, the second law inequality (5) is obeyed by each
physically acceptable perturbation to p(x). This is the
statement of Boltzmann's H theorem.

By contrast, consider quantum mechanics, and in par-
ticular where (as assutned in this paper) the potential en-

ergy function V(x) is real and nontemporal. Here, the
particles are decidedly nonclassical. Also, the equilibri-
um law p(x ) is the same as the initial law p(x ) at t =0.
Hence, in effect, the equilibrium distribution is attained
instantaneously. In this scenario, there is no time inter-
val available for physical enactment of the Boltzmann H
theorem. Hence there is no reason to expect principle (8)
of minimum negentropy to be valid. Indeed, there is no
published claim to the effect that it is valid in quantum
mechanics. [That it gives wrong answers is shown at
Eqs. (51)—(54) below. ] The same argument holds for sca-
lar diffraction theory, where the equilibrium intensity law

p(x ) at any time is the law at t =0 as well.
If, in these cases, entropy principle (8) is not the ap-

propriate measure of disorder, is there an alternative? As
we shall see, the MFI principle (7) is the appropriate mea-
sure of disorder for these cases, in the sense that it gives
the correct equilibrium laws p(x ).

Moreover, even in those limited cases where entropy H
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is appropriate to use, the alternative use of Fisher princi-
ple (7} will be seen to give the same answers, making it
equally valid there [See Eqs. (26) —(36) and (D4).]

TEMPORAL EVOLUTION OF p(L )

6H = ,
' e' f dx f '(x ),—6I=e' f dx f'(x )

0 0
(9a}

to second order. In terms of the spectrum F(co) of f(x ),
these become

Consider a thermodynamic problem, i.e., one where
the equilibrium law p(x ) takes a finite amount of time to
be converged upon. At what rate is it converged upon if
Fisher principle (4) is used? Also, what is the rate if in-

stead entropy principle (5) is used?
First, suppose that Fisher principle (4) guides the ran-

dom evolution of a law p(x ): If a law p(x ) is perturbed
to a new law, the new law is acceptable only if it causes a
decrease in I. Does this define a convergent process, and
if so, how fast does it converge?

To simulate the process, we wrote a computer program
that generates a random initial function po(x ) by Fourier
series, and then perturbs po(x ) by adding random
changes to the series coefficients. The resulting law p(x )

is accepted if its I value is less than that of the initial law.
If I instead increases, a new set of perturbations is gen-
erated, etc. , until a new law is accepted. This law is now
perturbed again, etc. In this way, the law p(x ) evolves in
accordance with increasing disorder as measured by the
Fisher I.

We found that regardless of starting function po(x ),
the law evolves toward the correct stationary state for
this problem p(x)=1.0 for 0 x 1. For example, the
evolved p(x ) law after 200 trial perturbations is shown in

Fig. 2 (bold curve). For comparison, we also show the
evolved law obtained similarly by use of the second law,
principle (5) (thin curve). Both are close to the stationary
answer.

By testing with many different initial laws po(x ) in this
way, we found that principle (4) causes convergence to-
ward the stationary solution at about the same rate as
does the second law, principle (5).

This has an interesting ramification. Since the two
rates are about equal, and since in thermodynamics the
Fisher principle converges to the same (Boltzmann) law
as does the entropy principle (see below), the Fisher prin-
ciple (4) might be used to define an arrow of time. If so,
the arrow points in the direction of decreasing ability to
estimate mean particle position. Position determination
must, in an overall sense, be getting worse with time. See
further discussion of this point below.

The two curves in Fig. 2 have a curious difference in
the character of their oscillations. The entropy solution
(thin curve) has all frequencies present about equally,
while the Fisher solution (bold) appears to lack high fre-
quencies. This can be accounted for as follows. Consider
a random perturbation ef(x ), where e is small and f(x )

arbitrary, from the stationary solution p(x ) = 1. The
changes 6H and 6I from the stationary values for H and I
can be easily shown to obey
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FIG. 2. Temporal evolution study. After 200 trial perturba-
tions, an initial law po(x ) evolves, via Fisher principle (4), to the

bold curve; or to the thin curve, via the entropy principle (5).

6H= —,'e f dcoiF(co)i

5I=E f deco ~F(co)~
(9b)

Since both these quantities are being minimized [by selec-
tion procedures (4) and (5)], because of the extra factor co

in the last integral, the Fisher solution will tend to selec-
tively lose more high-frequency content, as time
progresses, than will the entropy solution. Hence, al-
though the two solutions converge toward equilibrium at
about the same rate, their oscillations about equilibrium
differ structurally.

MULTIPARAMETER SYSTEMS—ADDITIVITY
PROPERTY

It is well known that the entropy of a system is an ex-
tensive, or additive, measure of disorder. The entropy
from independent system parameters adds. Does Fisher
information have this property as well? First we have to
generalize Fisher information to the case of two or more
parameters.

Suppose, then, that the unknown parameter mean 8
has two components t9, and 02. The single datum y is re-
placed by a two-component vector y obeying

1/e, +1/e—:I(L, ,X ) (10)

as a measure of the quality of the estimates. The best
possible estimates have a precision

I(X, ,Xq)= f f dx, dxq

Equation (11) shows that I(L„X2) is a two-dimensional
generalization of I =I(X, ) in Eq. (3b). Hence we adopt
I(X, ,X2) as the two-dimensional Fisher information mea-
sure. The N-dimensional measure is analogous.

Next, assume that the system parameters x, and xz are
independent, so that

y;=0, +x;, i =1,2 .

Let e
&

be the mean-square error in estimating 0~, and e2
be that in 02, by use of input y. Use the precision
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p(x„x, )=p, (x()p2(x2) .

Then

p ~ p

or

I(X„X2) =l(Xi )+l(X2 ) (12)

by definitions (3b) and (11).
Hence, with statistical independence, the net informa-

tion is the sum of the component information values.
Fisher information obeys an additivity property.

NET FISHER PRINCIPLE

Principle (7) is unconstrained, as it stands, by any prior
knowledge describing the physical situation. The stan-
dard way to inject such information into a Lagrangian
problem is to add in linear constraint terms, and we do
this. It turns out that the key such constraint term is the
expression for mean kinetic energy of the system. The
expression for mean kinetic energy Ek;„allows the user to
inject the physics of the situation into MFI. The overall
principle becomes, for one-dimensional problems,

f dx p'2(x )/p(x )+ A, f dx Ek;„(x )p(x ) =min,
(13)

p'(x ):—dp(x )/dx .

The second integral is the mean kinetic energy, (Ek,„).
Function Ek;„(x ) is the kinetic energy expressed as a
function of the coordinate x in use. As the simplest ex-
ample, if x is the x-coordinate velocity of a molecule in
an ideal gas, then Ek;„(x ) is —,'mx .

It is found that the MFI principle (13) derives many of
the basic equilibrium distributions of physics, when the
following recipe is followed. When (E„;„) is known,
then parameter k is solved for, in the usual Lagrange
equality-constraint way. Also, then the normalization
constraint on p(x) is explicitly added in as another
equality-constraint term. If, however, (E„,„) is not
known, then A, becomes instead a negative weighting fac-
tor that must be properly fixed by the user. The former
case is valid in thermodynamics (see below), the latter in
quantum mechanics and diffraction optics, as discussed in
the next section.

In the special case where coordinate x is itself the ki-
netic energy, i.e., where the probability law on kinetic en-
ergy is sought, principle (13) has to be modified. See Ap-
pendix D.

The two-dimensional generalization of principle (13),

and substitution into Eq. (11)gives

p& p2+p8'2
y( „,)=f fd, d,

p&pz

After integrating out x2 in the first integral and x
&

in the
second, we get

I(X),X2)=f dx, p', /p, + f dxzpz /p2

for a law p(x,y), is given in Appendix B. It is shown
there that the solution p(x, y ) separates when the E„;„
constraints are marginal in x and y. Hence, when the
constraints are marginal, MFI predicts that the variables
x and y are independent. This has important application
to thermodynamics and diffusion, as seen below.

APPLICATION TO QUANTUM MECHANICS:
THE SCHRODINGER WAVE EQUATION

Consider the basic scenario of a particle of mass m
moving in a nontemporal, real potential field V(x ). The
system state parameter x is here a position coordinate.

In the gedanken experiment of Fig. 1, now, one particle
is present. One stochastic realization of position y is
measured, in an attempt to measure the particle's classi-
cal (mean) position 8.

Calling the total energy W(x ),

Ek;„(x ) = W(x ) —V(x ) .

The mean Ek;„ is then

(Ek;„)= f dx Ek;„(x )p(x )

= f dx [ W(x )
—V(x ) ]p(x ) .

This simplifies to

(E„;„)= f dx [ W —V(x )]p(x ),
where 8'is the mean total energy

W= f dx W(x)p(x),

(14)

d BL BL
dx Bp' Bp

(17)

with

L =p' /p+A. [W—V(x)]p .

This simplifies to'

q "(x )+Aq(x )[ W —V(x )]=0, p(x ) =q(x ) . (18)

Since p(x) is a priori unknown, (Ek,„) cannot be
known from Eq. (14). By our recipe [see below Eq. (13)],
since (Ez;„) is unknown, parameter A, becomes a weight
that must be fixed by the user. With the choice

A. = —2m /fi (19)

stationary solution (18) is the time-independent
Schrodinger wave equation. Function q(x ) then has the
familiar role of a probability "amplitude, " although here

and we used the normalization property ofp(x )

f dx p(x)=1 .

By Eqs. (13) and (14), the net Fisher principle is now

f dxp' (x)/p(x}+A f dx[W —V(x)jp(x)=min . (16)

The solution to this variational problem is the ordinary
Euler-Lagrange equation
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it is purely real. In cases V(x ) where a complex probabil-
ity amplitude is required, use of MFI and a supplemental
binary variable leads to the complex Schrodinger equa-
tion. See Appendix A.

It is satisfying that the stationary MFI solution to this
problem is the stationary Schrodinger equation. Of fur-
ther interest is that the eigensolutions q„(x) to Eq. (18)
define subsidiary minima in I over the space of q (x ) func-
tions, and that the lowest eigenvalue solution qo(x) or

q, (x ) (as the case may be) defines the absolute minimum
in I. Hence, of all possible eigensolutions to Eq. (18), the
lowest eigenvalue solution defines the state of maximum
disorder for the system. Mathematically, this follows
from the fact that the lowest eigenvalue solution is also
generally the smoothest.

Returning to our gedanken experiment, this also means
that the average or (here) classical position 8 of the parti-
cle would be most difftcult (or inaccurate) to estimate,
from one observation of position y, if the system were in

the lowest eigenstate. The lowest eigenstate of a system is

usually preferred because it is a lowest energy state. We
see now that it is also preferred because it is a state of
maximum disorder.

KLEIN-GORDON EQUATION

The MFI principle (13) also gives rise to this relativis-
tic equation, in the particular case of zero fields. See Ap-
pendix C.

APPLICATION TO DIFFRACTION OPTICS:
THE HELMHOLTZ WAVE EQUATION

Consider the situation of light entering a medium of
known refractive index profile n (x ). The system state pa-
rameter x is again a position coordinate. We now use the
semiclassical treatment of radiation to find the kinetic en-

ergy of a typical photon within the medium.
By the semiclassical approximation, a photon is treated

as a "particle" in a field V(x ) =0, where

Ek,„(x ) =P (x )/2m, (20)

Also, of course

A.ov = v (x ) =c /n (x ), (22)

where ko=k, o(x ) is the light wavelength at a general posi-
tion x within the medium, v is the frequency, U(x ) is the
velocity within the medium, and c is the speed of light in
vacuo. Combining Eqs. (20) through (22), we get

Ek;„(x ) = (h /2m )v n (x )/c

The net Fisher principle (13) is now

f dx p'(x )/p(x )

(23)

+k(h /2m)(v /c ) fdx n (x)p(x)=min .

where P(x ) is the particle's momentum at a general posi-
tion x, and m is its mass. Use DeBroglie s hypothesis,
wavelength

(21)

Since the photon is being treated as a semiclassical parti-
cle, we make the same choice for A, , Eq. (19), as in the
quantum-mechanical case. The result is

f dx p' (x)/p(x) —(cu/c) f dx n (x)p(x)=min,

(24)

67 = 2'GATV .

Using the Euler-Lagrange equation (17), the solution" to
problem (24) is a difFerential equation

q"(x)+(co/c) n (x)q(x)=0, p(x)=q(x) (25)

This is the Helmholtz wave equation, governing scalar
diffraction. Probability p(x ) is, here, the local intensity.

An interesting aspect of solution (24) is its lack of
dependence upon a phase function P(x ) supplemental to
the amplitude q(x ). Evidently, diffraction intensity
effects can be completely described without the need for
the concept of phase. Phase is a useful, but artificial, con-
cept. This is discussed further in Ref. 8.

APPLICATION TO THERMODYNAMICS:
THE MAXWELL-BOLTZMANN LAW

Consider an ideal, monatomic gas not subjected to a
field of potential. The container holding the gas may be
in motion, with unknown velocity 0. See Fig. 1. Let x,y,
and z be the components of velocity for a randomly select-
ed atom. The gedanken experiment is now the measure-
ment of one atom's velocity.

Note that a value 0 represents the special case n =1 of
the root-mean-square velocity among atoms taken n at a
time. We will use this fact later.

Let the system be subjected to a constant temperature
T. The principle of equipartition of energy states that
when an equilibrium state p(x ) is attained the average ki-
netic energy associated with each degree of freedom (x,y,
or z) has the same value,

{Ez,„):—f dx( ~ mx )p(x)=kT/2, (26)

+p f dx p(x) —1 =min . (27)

Using the Euler-Lagrange equation (17) for Lagrangian

L =p' /p+ —,'A.mx p+pp,
we have a solution

where k is Boltzmann's constant. This is an equality con-
straint, so that the E4„ term in principle (13) is now a

Lagrange equality-constraint term. Hence parameter X
will have to be solved for, not assigned as in previous ap-
plications.

This is a case of three marginal constraints (26).
Hence, by Appendix C, p(x, y, z) separates and it is
sufficient to solve a one-dimensional MFI problem (C7).
We arbitrarily choose the problem in x. Inserting, as
well, the equality constraint of normalization [see discus-
sion beneath Eq. (13)] yields an MFI principle

f dx p'(x)/p(x)+A. f dx —,'mx'p(x) kT/2—
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2
d I

2 ~ + ~ —
—,max' —p=o.

dx p p
(28) p(u ) =&2/~

kT

3/2

u exp( —mu /2k T), (36)

It is convenient to now define an auxiliary function

h (x ) =p'(x )/p(x ) . (29)

the Maxwell-Boltzmann law. This is the correct result.

Solution 2 (higher-order)

Equation (28) becomes

2h'(x )+h (x )
—

—,'m Ax —p, =0, (30)

The integral is here an indefinite one, and A is an arbi-
trary constant.

Solution 1 (lowest-order)

a Riccati equation. The plan is to solve this equation for
h(x), and then substitute the solution into Eq. (29) to
yield p(x },according to which

p(x )= A exp f dx h(x ) (31)

Because the MFI principle (13) has generally a
differential equation as its solution, multiple solutions to
any one problem may be expected. This is usually
beneficial. For example, any principle that is to imply the
Schrodinger equation must be capable of multiple solu-
tions. In fact, the MFI solution to the present problem
leads to a second solution, found next.

Instead of the trial solution (32), try

h(x ) =bx+c/x, (37)

where b and c are constant, in Eq. (30). This is found to
work, providing c=2. Hence, by Eq. (31), the solution
p(x ) is of the form

Riccati differential equations are commonly solved by
trial power series, setting the coefficients of successive
powers of x equal to zero. In this way, it is found that
the trial solution

p(x)= A exp(bx /2+21nx),

or more simply

(38)

h(x ) =a+bx, (32)
p(x ) = Ax exp(Bx ) .

p(x)=A exp(Bx'), (33)

where 3 and B are constants. Back substituting solution
(33) into the two constraint equations allows A and B to
be solved for. The result is

' 1/2

p(x)=
2vrkT

exp( —mx /2kT), (34)

the one-dimensional Boltzrnann distribution law.
As we noted, the marginal laws p(y ) and p(z ) for the y

and z components of velocity may be found in the same
way, and give the same form of solution (34). We also
found that x, y, and z are independent. Hence

p(x, y, z) =p(x )p(y)p(z),

so that

a, b constant, works in Eq. (30). In order to satisfy the
two constraints in Eq. (27), it turns out that a =0. Then
by Eq. (31) the solution is of the form

Comparing this with the prior solution (33), we see that
an extra factor x- now multiplies the Boltzmann solution.

Back-substituting solution (39) into the two constraint
equations leads to solutions for 3 and B. The result is

3/2
l 3m

(40)x exp( —3mx /2kT) .

The two laws {36)and (41) are plotted in Fig. 3. Quan-
tity v is in units of (kT/m)'~, and p(u) has arbitrary
units. It is also interesting to compare the U values at
which each law has a maximum. Differentiating d/du
the law (36) and equating this to zero gives

Again forming p(x, y, z) as the product of three laws of
form (40), transforming by Jacobian to spherical polar
coordinates (u, 0,$), and integrating out 8 and P, we find
a law

p(v)=(, '~4)(27/2ir)'~ (m/kT) v exp( —3mv'/2kT) .

(41)

p(x, y, z}= m

2~kT

' 3/2

exp — (x +y +z-)
2kT

(35)

v, =(2kT/m )' '-=—1.414(kT/m )'

Doing the same operations on law (41) yields

ui =(8kT/3m )' =—1.633(kT/m )'

(42a)

(42b)

Finally, we seek p(v ), where

U =(x '+y'+z')'"2

This is easily accomplished by Jacobian transforming the
law (35) in terms of {x,y, z) to a law p(u, 0, $) where 9
and P are the usual polar and azimuthal angles in spheri-
cal polar coordinates. Then p(v, H, Q) is integrated out
over 8 and P to yield

The two values are surprisingly close. But, what can the
distribution (41) physically represent?

The probability law for the root-mean-square (rms) ve-
locity v over n atoms is

2 3n/2
p(U)= U e3n —

1
—nv /2a

I"(3n/2) (V2~) "

o =kT/m . (43)
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FIG. 3. Curve 1 is the Boltzmann solution (36) for the proba-
bility p(v ) of particle velocity v in a monatomic gas. Curve 2 is

alternative solution (41), describing local rms velocity (and pres-
sure) fluctuations due to three atoms. Velocity v is in units of
(kT/m )' '; p(v ) is in arbitrary units.

General solution

Solutions to differential equation (27) are generally the
squares of parabolic cylinder functions, ' of which the
two lowest order are (34) and (40). These solutions have
the general form of a Gaussian function times the square
of a polynomial of finite order. The order of the polyno-
mial defines the order of the solution.

As before, each term of the polynomial gives rise to a
factor u multiplying a Boltzmann exponential. Hence,
by Eq. (43), it represents the MFI solution to the problem
of estimating the rms velocity 8 among n = ( m + 1 ) /3
particles.

Hence each MFI solution represents the solution to a

[This may readily be derived by noting that v is the sum
over 3n squared, Cartesian component velocities, each of
which is an independent, Boltzmann degree of freedom.
Then u 'is a y -random variable. ' Jacobian transform-
ing from the y law for u to that for u gives the result
(43).] With n =1, law (43) becomes the MFI solution (36),
while with n =3, law (43) becomes the higher-order solu-
tion (41}.

This essentially solves the problem of interpretation.
Solution (36) represents the scenario where unknown pa-
rameter 8 is the rms velocity over particles taken one at a
time; while solution (41) corresponds to the problem 8 for
particles taken three at a time. In the latter case, data
value y in the gedanken experiment of Fig. 1 is now the
empirical rms mean velocity over the three observed ve-
locities. Hence the solutions (36) and (41) correspond to
different problems. Denote these as probleins 8(1) and
8( 3 ), respectively.

It is interesting to find, by Eqs. (3b) and (12), that the
information I for problein 8(1) is 3m/kT while that for
8(3) is 27m /kT, considerably larger. In the next section,
we discuss this effect.

The average pressure on the walls containing the given
gas, and the temperature T, are proportional to the first
moment of the law (43), with n large. " Therefore law
(41) has the added significance of defining local pressure
fluctuations due to three atoms.

different problem 8=8(n ). It is important to note that
each is consistent with the Maxwell-Boltzmann law, since
(a) Eq. (43) derived from the law, and (b) because the
solution (36) for 8(1)is the Maxwell-Boltzmann law.

We noted, for the case 8(3), an I value that much ex-
ceeded that for 8(1). In general, I should increase with n.
First of all, by direct use of Eq. (43) in definition (3b), I
increases with n F.unctionally, this is because p(v) be-
comes more sharply concentrated about its mean as n in-
creases (see the curves in Fig. 3}. Hence the gradients in-
crease and (3b) gives a larger output.

But perhaps the more interesting reason for the effect
is from the standpoint of estimation. Parameter 61 is here
the theoretical rms mean velocity over n particles, while
data value y is the empirical rms mean over n randomly
selected particles. As n increases, the two means must
approach one another, since (as we noted) p(u ) becomes
more sharply concentrated about its mean 8. Hence an
estimate of 8 based on data y must suffer less error e, so
that by Eqs. (3a) and (3b) I increases.

It is interesting to compare the MFI and minimum
negentropy approaches to this problem. MFI gives a
number of solutions, representing various estimation
scenarios 8(n). Minimum negentropy, by comparison,
gives just one solution, the most probable one, for the
problem 8(1). The two approaches agree in the principal
solution n =1, but approach the problem from different
vantage points and hence make different kinds of predic-
tions about the phenomenon. MFI outputs relate to the
ability to estimate, while entropy outputs relate to the
probability of the distribution.

DIFFUSION EQUATION

Let a typical particle in the ideal gas previously dis-
cussed be described by position (now) x at time t We.
seek the joint law p(x, t ) defining maximum disorder for
the gas, in the Fisher sense. For simplicity, assume that
the particles move in a frictionless, nonviscous medium.

Denote a particle's position at time t =0 as xp. Then
after time t, its position x is

x =xp+ Ax (44)

hx = t'Au t'
0

(45)

where hu is the particle's random velocity fluctuation at
time t' We show n. ext that, by the MFI principle, hu(t')
does not correlate with hv(t"), t'Wt", so that by (45) b,x
obeys the central limit theorem and must be Gaussian.

First estimate a law p(x, y), by the MFI principle,
where x is velocity component hu at time t' and y is ve-
locity component Au at a different time t". Assume, as
usual, that the velocity distribution law in Au has
reached its equilibrium state at both times t' and t".
Then, the spatial auerage of —,'m hu„at t' must equal that
at t". Assuming also that ergodicity holds, these aver-
ages ( —,'mb, u„) must equal kT/2 as well. In summary,
we seek the law p(x, y), x =hv„(t'), y=hv„(t") obeying
the marginal Ek;„constraints
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f f dx dy —,'mx p(x,y)=kT/2,

f f dx dy —,'my p(x, y)=kT/2 .
(46)

A.f f dx dy [ IV —V(x )
—

—,
' my ]p(x,y )

—Af dx V(x)p, (x) —
A. f dy ,'m—y p2(y),

Using these as constraints in the two-dimensional MFI
principle (Bl), by result (B5) the law p(x,y) separates.
Hence iI),u„(t') is independent of bu„(t"), as was to be

proven.
Equivalently,

(bu(t)bu(t')) = 5(t t')—, (i)tu(t)) =0 . (47a)
kT

Then by Eqs. (45) and (47a)

where p, (x ) and pz(y ) are the marginal probabilities. A
term in 8' is dropped because it is independent of p and
hence does not affect the minimization of I.

Hence the one constraint becomes a sum of marginal
constraints. Therefore, by Appendix C, the solution
separates,

p(x, y)=p)(x)p2(y) .

This is the correct result. '

(gx ) =0, (hx2) =at, a =kT/m . (47b)
DISCUSSION

pa, (x)= l.
e

—x /2a&

&2m. ta
(4&)

Position value xo, in Eq. (44), is a random number that
depends on hu values at times prior to interval (O, t).
Therefore, by independence effect (47a), xo must be in-

dependent of hx. Then the probability law for their sum
x obeys a convolution'

p(x)=p(x, t)= f dy po(y)
1

e (x y) l2at

(2~at)'" (49)

Direct partial differentiation of this equation shows that'

Also by Eqs. (45) and (47a) b,x is eff'ectively the sum of
many independent random variables b,u(t'), so that by
the central limit theorem' Ax is Gaussian in its statis-
tics. ' This holds true regardless of the probability law

obeyed by b, U, so that it is true for any of the MFI solu-
tions to (27). Combining this with result (47b), the proba-
bility density pa„(x ) for b.x obeys

Minimum negentropy is often used nowadays as a
method for estimating an unknown probability law p(x)
in the presence of insufficient information. Specifically,
the principle is'

fdx p(x )ln[p(x )/h (x )]
N

+ g A,„ fdxp(x)k„(x) —I „=min, (51)

where data [K„) and constraint kernels [k„(x)] are
known. Also, the "prior probability law" h(x) must be
known. With these provisos, the solution p(x ) to princi-
ple (51) is actually maximum probable. ' Let us use this
principle under the same constraint information as for the
MFI principle, i.e., when E„;„(x)is a known constraint
kernel k(x ). Accordingly, in analogy with the MFI prin-
ciple (13), form a principle

f dx p( x)1n[p( x) /h( x)] +kf dx E ())px( )x= im.n
Bp( xt) a (3p(x, t)

Bt 2 (Ix
(50) (52)

The position of the particle obeys the diffusion equation.
We observe that the key to this derivation was estab-

lishing the independence effect (47a). This followed be-
cause of the propensity of MFI to deduce that variables
are independent when their only constraints are marginal
(nonjoint). Another application of this useful effect fol-
lows.

The Lagrangian is here

L =p ln(p /h )+ RE),;„(x)p .

The Euler-Lagrange equation (17) here simplifies to
dL/Bp =0, or

1+lnp —lnh +XEk,„=0,
with solution

JOINT PROBABILITY LAW FOR POSITION
AND VELOCITY IN IDEAL GAS

Let x denote the x-component position of a particle,
and y denote its x-component velocity. We are interested
in establishing p(x,y ) for particles in an ideal gas which,
additionally, is subjected to central potential energy func-
tion V(x ).

Obviously the mean kinetic energy obeys

(,my') = W —( V(x ) ),
where W=kT/2 is the mean total energy (15). Hence
the MFI principle now has a constraint term

P( ) h( )
—1 —XW+A, V(x) (54a)

P(x ) h(x )e
—

1 Kn (x)— (54b)

E a constant. Surprisingly, the estimated solutions do
not have to obey differential equations. This is clearly in-
correct for general V(x) and n(x) functions. Nature

P(x ) =h(x )e

How often is this the correct physical solution?
In the Ek;„cases (14) and (23) of quantum mechanics

and diffraction, respectively, the solutions (53) are direct-
ly
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does not give simple, exponential answers to the general
problem in quantum mechanics or diffraction.

In thermodynamic applications, it was found that MFI
solutions are Boltzmann solutions to a class of problems
denoted as 8( 1 ), . . . , 8(n ). We showed this for velocity
distributions, but similar results hold for energy distribu-
tions as well. For example, when mean kinetic energy
E is constrained by (26) once again, the MFI solu-

tion for p (E ) is the ordinary exponential la to

(,E) 'exp( E/(E—)). The latter follows because the
unconstrained MFI solution on the interval O~x ~ is

an exponential law with a free mean. See Appendix D.
The mean is then fixed by the ( E ) constraint.

SUMMARY

Fisher information, an outgrowth of classical estima-
tion theory, is a physically meaningful measure of disor-
der for many physical problems. This is in the sense that
its use implies the correct equilibrium distributions for
such problems.

The equilibrium solution p(x ) is defined as that which
minimizes the Fisher information subject to a constraint
on mean kinetic energy. In this way, the Schrodinger
wave equation, ' Klein-Gordon equation, Helmholtz
wave equation, and diffusion equation may be derived. In
the case of thermodynamic equilibrium under constant
temperature, the equilibrium Fisher I solution for a

monatomic gas is either the usual Boltzrnann law, or al-
ternative laws consistent with the Boltzmann law (the
squares of parabolic cylinder functions). The alternative
laws are the laws of mean-square velocity fluctuation due
to finite numbers of atoms.

Attempts at estimating distributions p(x ) using
minimum negentropy in place of minimum I, with the
same prior knowledge of (E„;„),do not lead to correct
laws p(x), except in thermodynamic cases. Hence the
Fisher measure of disorder applies to a much broader
range of phenomena than does the entropy measure.

As we noted, minimum negentropy applies as a princi-
ple of disorder only in cases where classical particles are
present, and where equilibrium is attained after a finite
amount of time. By contrast, in cases of real, nontern-
poral potential V(x ) in quantum mechanics, and in
diffraction theory, the solution after finite t is the same as
for t =0. Hence there is no time span available for relax-
ation phenomena such as the Boltzmann H theorem and
minimum negentropy. They do not apply, and this is
why they give incorrect results p(x ) in these cases.

In thermodynamic cases, where minimum negentropy
does apply, as we saw the use of the Fisher I gives the
correct results anyhow. This is in the form of the
Boltzmann energy distribution and the Maxwell-
Boltzmann law. In addition, higher-order Fisher outputs
p(x) describe the correct laws for rms velocity, or pres-
sure, fluctuations due to finite numbers of gas particles.
The Fisher approach has the added benefit of giving the
answers p(x) to many problems simultaneously. The
problems are ranked according to level of disorder.

The sense in which the Fisher equilibrium solution to
(13) is attained should be addressed. In thermodynamic

problems, the equilibrium solution has the usual sense-
as time progresses the empirical p(x ) law over the parti-
cles evolves in shape, through many intermediary shapes
p(x ), toward an equilibrium shape. By contrast, in quan-
tum mechanics ( for real, nontemporal potentials) and
diffraction theory, we saw that the solution at any time is
the same as that for t =0. Here there is no temporal evo-
lution of p(x) through intermediary shapes. In what
sense, then, is the solution p(x) to (13) an equilibrium
solution? In this case, perhaps the word "equilibrium"
should be replaced by the more accurate term "station-
ary, " since the solution to (13) is always a stationary one,
by definition. Only virtual (infinitesimal) changes in p(x )

are considered, during an infinitesimal time interval dt
frotn time t =0. In this sense (13) resembles d'Alembert's
variational principle of virtual work.

An important distinction between the two measures of
disorder is their physical manifestations. Whereas H
connects the concept of disorder with that of heat, I con-
nects disorder with the ability to estimate, i.e., to know in
a quantitative sense.

It was found that both the Fisher I and negentropy
cause convergence to thermodynamic solutions at about
the same rate. This suggests that 5I might provide a use-
ful alternative measure of the direction (arrow) of time.
If so, the inescapable conclusion seems to be that, due to
the inexorable increase in disorder, the ability to estimate
must be decreasing with time.

As an example, consider an apparatus for measuring
the speed of light c. Suppose that the apparatus-
estimation rule combination is unbiased (as we required).
Then, as time progresses, the accuracy in estimating the
mean (true) value c must be decreasing. Basically, be-

cause of the second law of thermodynamics, the com-
ponent parts of this apparatus wear out and contribute to
ever-more faulty estimates.

This is a universal effect which can be reversed locally,
e.g., if the apparatus is physically improved by replacing
worn out parts. However, as with entropy, any local gain
in the ability to estimate must be offset somewhere else by
an even greater loss: the radiant heat caused by making
the replacements will perturb other apparatuses, and
hence decrease their accuracies.
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APPENDIX A: COMPLEX AMPLITUDE CASES

In order to allow complex solutions to the quantum
MFI Eq. (18), the system must require now two parame-
ters for its description. One is x, as before. The other is
an internal state variable i, which can only take on two
values I', = l, 2. Let
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p(x, i)=p, (x), i =1,2 (A 1)

denote the joint probability of x and i. Since states 1 and
2 are disjoint, the overall p(x ) obeys simply'

(A2}p(x}=p,(x)+p2(x) .

The total Fisher information over both states obeys

2I= g f dx p (x)/p;(x) (A3)

=I)+I2 . (A4)

d r}L

dx Qp.
(A6)

We can now combine results. Using, again, a principle
of minimum Fisher information constrained by (Ek;„),
by Eqs. (A2) and (A3) we get

f dx p i'(x ) /p i (x )+f dx p, (x ) /p, (x )

+ dx p) x +p~ x W —Vx =min. A5

Now, p, (x) and p2(x) are two analytically distinct
functions, so that they separately minimize (A5). Hence
use the two Euler-Lagrange equations

solution. Hence, for general problems, MFI supplement-
ed by binary complexity allows for complex solutions.

APPENDIX B: MARGINAL CONSTRAINTS

8 dL 8 t}L

Bx t}p„ t}y Bpy

Using

dL

Bp
(B2)

Consider the case of two system parameters x and y,
and given marginal constraints (Ek;„,(x ) ) and

(Ek,„2(y)). By Eq. (11) the MFI principle then becomes

2+ 2

f fdx dy
"

+A,
& f f dx dy Ek;„i(x)p(x,y)

p

+X2f fdx dy Ek;„2(y)p(x,y)=min,
(Bl)

Bp Bppx=
~ py

Under these constraint conditions, principle (51) of
minimum negentropy is well known to give a separable
solution p(x,y)=p, (x)p2(y). We show next that MFI
likewise separates under these conditions.

The Euler-Lagrange equation for this two-parameter
problem is'

with L the Lagrangian for Eq. (A5). These give solutions
(18), (px +py ) /p +~1Ekin1 (x }p +~2Ekin2(y )p (B3)

q;"(x )+Aq, (x )[W —V(x )]=0,
p;(x)=q, (x), i=1,2 .

(A7)

(A8)

from Eq. (Bl), gives the differential equation

2p /p +2p /p p /p p, /p

Since the two Schrodinger equations (A7) are linear in
their q(x ) functions, they may be added (after multiply-
ing the i =2 equation by &—1) to give one Schrodinger
equation in a combined quantity

By substitution, the trial solution

p(x, y ) =p i (x )p2(y )

2(y ) =0 (B4)

(B5)

g(x )=q, (x )+jq2(x ), j=&—1 . (A9)

This is the usual complex Schrodinger equation. Finally,
by Eqs. (A2) and (A8)

p(x ) =q, (x )+q2(x ),
and by (A9) this results in

p (x ) = i g(x ) i
(Al 1)

q;"(x }+kq, (x }Ek;„(x)=0,
p;(x)=q, (x), i =1,2

p(x)=q, (x)+q2(x) .

(A12)

(A13)

(A14)

As before, this is the prescription for a generally complex

the standard result for the complex case.
In summary, in order to force complexity into the MFI

quantum solution, a supplementary binary variable
i=1,2 must be assumed present. State i is a correlant
with the ordinary system state parameter x. It directly
gives rise to the real and imaginary contributors to p(x ),
via Eq. (A10), as might have been expected.

The addendum of binary variable i to the general MFI
principle (13) will result, in the same way that Eqs. (A7)
and (A8) were derived, in a problem

gives two distinct equations in x and y,

2p;"/p; p k.;Ek;„,=—0, —i =1,2 . (B6)

Hence the solution separates. When the constraints are
marginal, MFI predicts that the variables are indepen-
dent. Finally, note that the solution (B6) is equivalent to
two distinct one-dimensional MFI problems

f dx;p /p;+I, ; f dx;Ek;„;(x;)p, (x, )=min,

i=1,2. (B7)

APPENDIX C: THE KLEIN-GORDON EQUATION

Quantity c is the speed of light, t is the time, x is position,
m is the particle rest mass, and A is Planck's con-
stant/2m. In this field-free case, only positive energy ei-
genvalues E,

For simplicity, consider a field-free, one-dimensional
case. Then the Klein-Gordon (KG) equation of relativis-
tic quantum mechanics is'

1 8 + d
~

m c
c2 gt~ dx2



41 FISHER INFORMATION, DISORDER, AND THE. . . 4275

E~O, (C2}

need be considered, as contrasted with the possibility for
negative E when fields are present. We use this fact
below.

Seeking a stationary solution, as usual, let '

1 2(cpm v+mc)' —mc
2m2v2

After cancellation of a factor m, and use of

(C15)

where y is the Lorentz contraction factor and v is the
particle speed relative to a reference frame. This gives

1((x,t ) =u (x )e

Substitution into Eq. (Cl) gives

(C3)
(1 2y 2) —1/2

we get simply

(C16)

E' —m'c4
Q

C 2g2
0=0 (C4) m(y+1)

$2
(C17)

as the relativistic stationary solution.
We next derive the stationary KG solution (C4) from

the Fisher standpoint. Start with the general MFI princi-
ple (13). As in the Schrodinger wave equation derivation,
let

(C5)

We thereby get a principle

f dx q' (x)+Afdx, Ek;„(x)q (x)=min . (C6)

d BL
dx Bq

BL

Bq
(C7}

with Lagrangian

L=q' +AEk;„q (x),
the solution is

(C8)

q"—XEk;„q =0 . (C9)

Compare this with the stationary KG Eq. (C4). They
will be identical for the particular choice of A,

(E —m c )

Ek;„c A
(C10)

This choice of A, does not outwardly resemble the nonre-
lativistic choice Eq. (19). However, we shall see next that
it does, in fact, closely resemble (19).

Use

Since there are no fields, we anticipate that
E„;„(x)=E„,„, a constant. Using the Euler-Lagrange
equation

A positive square root was taken in (C15},since E„,„m ust

be positive by Eq. (C2).
Compare the relativistic choice (C17) of A, with the

nonrelativistic choice Eq. (19). We see that factor 2 in
Eq. (19} has been generalized to factor (y+1) in Eq.
(C17). As a check, by Eq. (C16), (y+1)~2 as v ~0, so
that the two results are consistent.

In conclusion, the MFI solution (C9}with the parame-
ter choice (C17) is the stationary KG free-space equation.

Note that we have restricted attention to the free-space
case. This is for reasons of consistency with MFI. In
free-space cases, ~g~ retains the interpretation of a prob-
ability law, since it is then positive definite. However,
in cases where finite electromagnetic (or other) fields ex-
ist, g~ in general goes negative and hence cannot be
interpreted as a probability law. On the other hand, the
MFI principle (13) is restricted in scope to the derivation
of probability laws. Therefore it would not make sense to
attempt to derive by MFI the KG equation when finite
fields can exist.

It is serendipitous that, in the field-free case, the Dirac
relativistic equation is equivalent to the KG equation.
Hence, in this sense, the Dirac equation has also been de-
rived by MFI principle (13).

In the usual derivation of the KG equation, the eigen-
values of a squared energy operator E are sought. This
is usually regarded as unsatisfactory, on the grounds that
linear operators are preferred. It is interesting that the
MFI route to KG used, in fact, a linear expression in en-
ergy, Eq. (C6).

APPENDIX D: UNCONSTRAINED MFI
SOLUTION OVER (0, 00 )

and

Egin E mc (Cl 1) Consider the problem

f dx p' (x)/p(x)+A. f dx p(x) —1 =min .
0 0

(D 1)

E =cP+mc

P /A

(c P +m c )'~ —mc
(C13)

Now eliminate P through

P=ymv, (C14)

in Eq. (C10), where P is the particle momentum. Equa-
tion (C10) becomes

By the Euler-Lagrange equation (17), the solution obeys

q "(x ) =Aq(x ), p(x ) =q(x )

Of course, the general solution is

q(x ) = Ae '+Be

(D2)

(D3)

All parameters 3, 8, and &A. must be real so that
p(x ) =—q2(x ) remains real. In order for p(x ) to obey nor-
malization over the infinite interval, necessarily 3 =0.
Then enforcing normalization gives the unique solution
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(D4)

When x =Ek;„, the kinetic energy, the solution is the or-
dinary Boltzmann law.

Notice that the variational principle (Dl) is not of the
general form (13). It lacks a constraint term on (Ek;„).
This is because the constraint term is now inconsistent

with the Fisher (first) term in (13). In the gedanken ex-
periment of Fig. 1, the mean 8 is to be unknown, and this
gives rise to the first term in principle (13). But here 8 is

(Ek;„), which is known, by equipartition law (26). It
would be inconsistent, then, to include both terms in (13).
Hence the constraint term is dropped, giving principle
(D 1).
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