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Nonlinear pulse propagation at the zero group-dispersion wavelength is studied analytically. It is

discovered that, after the characteristic initial frequency splitting, evolution of the pulse envelope

that is shifted down to the anomalous regime is described by the nonlinear Schrodinger equation

with higher-order dispersion as a perturbation. The effect of the perturbation on the pulse is to ex-

cite radiation at a frequency inversely proportional to the small parameter P. The amplitude of the

radiation is exponentially small (~exp( —I/P)] and can be calculated only by the perturbation

method that goes beyond all orders.

I. INTRODUCTION

In recent years, many activities have been centered on
the propagation of nonlinear pulses (solitons) in single-
tnode optical fibers. The goal is to determine the feasibil-

ity of utilizing solitons in long-distance optical communi-
cation systems. The information-carrying capacity of
such a nonlinear system is estimated to be many gigabits
per second, while that of the present system operating in

the linear regime is about hundreds of megabits per
second. The idea was suggested by Hasegawa and Tap-
pert in 1973.' Taking into account the intrinsic Kerr
nonlinearity of silica, they showed that pulse propagation
in the anomalous dispersion regime of optical fiber is
governed by the nonlinear Schrodinger equation. It is
well known that the nonlinear Schrodinger equation can
be solved completely by the inverse scattering method.
Among other characteristics, the equation possesses solu-
tions whose pulse shape either propagates without distor-
tion (fundamental soliton) or changes periodically
(breathers). Such solutions, the former in particular, are
ideal information carriers of a long-distance optical com-
munication system. In the linear regime, the maximum
bit rate of a single-mode fiber is limited by dispersion.
Optical pulses traveling along the fiber would broaden
and overlap with their neighbors, and eventually become
indistinguishable at the receiver end. With solitons, this
pulse broadening dispersive effect is countered by the
Kerr nonlinearity. Much shorter pulses could be used,
and the bit rate could then be increased significantly.

Experimental verification came in 1980 when propaga-
tion of both fundamenta1 so1itons and breathers were ob-
served by Mollenauer, Stolen, and Gordon, There has
been much progress since then. For example, the con-
tracting phase of breathers is used in pulse compression
experiments, the invention of the soliton laser which em-
itted 2-breathers readily, and the use of stimulated Ra-
man scattering to periodically amplify the solitons so as
to eliminate the need for slow and expensive electronic re-
peaters. There are also a theoretical report and sub-
sequent experimenta1 observation' of soliton propaga-

tion at the zero dispersion point. In a single-mode fiber,
dispersion is adequately described by the second-order
dispersion coefficient, k "(to), in most frequencies. The
quantity k(to) is the propagation constant, and co is the
angular frequency. For pure silica, k" equals zero at
around 1.27 pm. The wavelength An at which k"=0 is
called the zero dispersion point. It divides the spectrum
into the normal dispersion regime (k")0), and the
anomalous dispersion regime (k" (0). Dispersion at Au

is of course nonzero because higher-order dispersion
effects in general do not vanish there. Pulses launched at
the zero dispersion point are reported to shift up part of
its energy into the normal dispersion regime, and shift
down part of its energy into the anomalous dispersion re-
gime (Fig. 1). The latter portion then develops into a sol-
itonlike pulse. Questions arise on whether the observed
wave packet is indeed a solitary wave, or even a soliton.
Contrary to the famed nonlinear Schrodinger equation,
the evolution equation at the zero dispersion point is not
integrable by the inverse scattering method, and one
therefore would not expect it to have soliton solutions.
On the other hand, numerical simulations indicate that
solitary solutions exist if the ratio between the pulse
width and frequency shift satisfies certain criteria.

In this paper we show that the wave packet shifted
down to the anomalous dispersion region is not a "true"
solitary wave, hence not a soliton. In fact, the high-
frequency component at a value determined by the
second- and third-order dispersion coefficient is radiated
out continuously, although its amplitude is exponentially
small. We will show that the effect of the frequency
downshift is to transfer part of the initial pulse into the
regime governed by the nonlinear Schrodinger equation
with the third-order dispersion as a small perturbation.
Therefore subsequent evolution of that portion of the
pulse can be studied by the perturbed nonlinear
Schrodinger equation. Using a perturbation method
known as "asymptotic beyond all orders*' developed by
Kruskal and Segur, "we show that the effect of the small
third-order dispersion is a radiation of a high-frequency
component with exponentially sma11 amplitude. This
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FIG. 1. Pulse launched at the zero dispersion point splits
into two peaks in the frequency domain, which then evolve in-
dependently. The dashed curve is the initial frequency spec-
trum. The solid curve is the spectrum after (=1.7. The peak
downshifted to the anomalous dispersion regime {co(coo) exhib-
its solitonlike properties.

small-amplitude radiation cannot be detected from the
first few orders of direct perturbation expansion. In fact,
we show that solitary wave solutions exist to all orders of
an asymptotic series expansion in terms of the small pa-
rameter. But this is not suflicient to determine the true
nature of the solution. Infinitesimal terms that violate
the solitary wave condition might still exist. These
corrections, if present, are certainly smaller than any po-
lynomial order terms in the series. That is why they are
described as beyond all orders. One method to recover
these infinitesimal contributions is to continue the series
solution to its singularities in the complex plane. There,
the ordering of the original equation changes, and terms
that were infinitesimal become large enough to be no-
ticed. We pick up the beyond all order corrections, and
then continue the solution back to the real axis along a
contour on which the original series is convergent. The
solution is further continued out to infinity in order to
determine the effect of the perturbation which is the
high-frequency radiation mentioned earlier.

The present paper is arranged as followed. In Sec. II
I

II. NONLINEAR PULSE EVOLUTION EQUATIONS

We first introduce the equation governing the non-
linear pulse evolution in the anomalous dispersion re-
gime, i.e., the nonlinear Schrodinger equation,

i +— +iud u=0,. Bu 1 8 u

Bs
(2.1)

where u is the amplitude of the normalized wave en-
velope, g and s represent normalized distance along the
fiber and normalized time variable, respectively. Equa-
tion (2.1) can be derived from Maxwell's equations using
the reductive perturbation method. ' ' The second term
in Eq. (2. 1) represents the effect of anomalous dispersion,
which has a positive sign relative to the nonlinear term.
In an optical fiber, the refractive index (n) depends on the
incident pulse intensity (I) as well as the frequency, i.e.,

n(~, I ) =no(co)+ n2I . (2.2)

For pure silica, n =o1.5, and n2=1.22X10 (V/m).
Equation (2.2) is known as the optical Kerr effect, and it
is represented by the last term in Eq. (2.1). The nonlinear
Schrodinger equation has a very rich mathematical struc-
ture. Here, we concentrate on a special class of localized
solutions that propagate without change in shape, i.e., the
fundamental solitons. It is given by'

we introduce the evolution equation at the zero disper-
sion point and show that it can be transformed to the per-
turbed nonlinear Schrodinger equation by a shift in the
carrier frequency of the pulse. In Sec. III we formulate
the perturbation problem, and give an asymptotic series
solution which satisfies the solitary wave condition to all
orders. We then discuss the meaning and strategy of
looking for corrections that are beyond all orders. In
Sec. IV the perturbed equation is expanded at one of the
essential singularities of the asymptotic series in order to
recover terms that are beyond all orders in the original
equation. The new equation is also solved perturbatively,
and the correction term is determined by matching the
inner and outer series solutions near the singularity in
their common region of validity. The presence of this
infinitesimal correction violates the solitary wave condi-
tion. Finally, in Sec. V, we show that this violation is
manifested in the form of high-frequency radiations.

q(g, s ) = 3 sech[ 3 (s —Cg —so)]exp[iC(s —Cg —so)+i-,'( A '+ C')/+i', ], (2.3)

where A is the amplitude, C is the normalized group de-
lay, and so and Po are the initial time and phase, respec-
tively. The pulse width (=1/A) is related to the ampli-
tude A, a manifestation of the nonlinear nature of the
pulse. From Eq. (2.3), we see that the pulse envelope
iq(g, s )

~
is independent of the distance parameter

hence the pulse shape is invariant. Next, we discuss the
evolution equation at the zero dispersion point which is
given by

Equations (2.1) and (2.4) are similar except that the
second-order dispersion term in Eq. (2.1) is replaced by
the third-order dispersion term in Eq. (2.4). Equation
(2.4) does not share the same mathematical properties of
the nonlinear Schrodinger equation. Namely, it is not in-
tegrable by the inverse scattering method. There are no
solitons, and no solitary wave solutions in analytic form.
However, numerical results suggest that solitary wave
solutions exist if

i, i +—iud —u=0.. Bu . 1 Bu
6 (js' (2.4) 0) ) —0.24 .0

00
(2.5)
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In Eq. (2.5), cr is the pulse width, and Qo is the frequency
shift of the pulse from the zero dispersion point. Outside
this regime, the pulse is observed to radiate continuously.
The negative sign in the inequality means that the fre-
quency shift is towards the anomalous dispersion side.

We account for the frequency downshift of the "soli-
tary" pulse explicitly by applying the following transfor-
mation to Eq. (2.4}:

1.5

q(g, s ) =u (g', s')exp(iQos' i Q—Q' /6),

where s', and g' are given by

s =(s' ——,'Qiig')/QQo,

(2.6)

(2.7)

(2.&)

0.0
-8.0 -4.0 0.0 4.0 8 ' 0

We obtain

. 8 18
Bg 2 gs2

(2.9)
FIG. 3. The same solutions as in Fig. 2 are plotted in fre-

quency domain for /=0. 0 (dashed curve), and $=5rr (solid
curve). A peak is observed at (co —coo) = 1/2P.

where the coefficient p= 1/6(Qo) . Equation (2.6)
represents a shift of the carrier frequency from the zero
dispersion value into the anomalous dispersion region by
an amount Qo. Equations (2.7) and (2.8) are scaling and
Galilean transformations. The relation between Eqs. (2.4)
and (2.9) holds as long as one is sufficiently close to the
zero dispersion point that the second-order dispersion
coefficient at the operating wavelength can be approxi-
mated by the linear extrapolation from the third-order
dispersion coefficient at the zero dispersion point. In-
spection of Eq. (2.9) shows that it is the nonlinear
Schrodinger equation with an additional third-order
dispersion term. Under the transformation in Eqs. (2.7)
and (2.8), relation (2.5) implies that solitary wave solu-
tions of Eq. (2.9) exist when Ap(0. 04, where A is the
pulse amplitude. For pulses with A ~1, the right-hand
side of Eq. (2.9) can therefore be treated as a small per-
turbation. In subsequent discussions, we shall take ad-
vantage of this and use Eq. (2.9) to analyze the solitary
wave solutions of Eq. (2.4). Equation (2.9) has been stud-

ied numerically. ' It is reported that the fundamental
soliton of the nonlinear Schrodinger equation radiates at
a frequency r0=1/2p (Figs. 2 and 3) due to the presence
of the small third-order dispersion term.

III. FORMULATION OF PERTURBATION
TO ALL ORDERS

q(g, s }=q(8)exp(ikg),

where 8=s —vg. Equation (2.9) is transformed to

kq i—v —+— + Iql q=ipBq 1 r)q z . Bq
2 B8' B8'

(3.1)

(3.2)

Our aim is to 6nd solitary wave solutions, i.e., solutions
that obey the following boundary conditions:

In this section we show that solitary wave solutions of
Eq. (2.9) exist to all orders in a perturbation expansion in
the parameter p. First, the partial differential equation is
reduced to an ordinary difFerential equation by the fol-
lowing assumption:

IqI~O as 8~+ac . (3.3)

Alternatively, we make use of the fact that if q(8)
satisfies Eq. (3.2), then q "(—8) is also a solution, to
demand the symmetry condition on a solitary wave solu-
tion of Eq. (3.2), i.e.,

q(8) =q '( —8) . (3.4)

-20 -10
I

10 20

Equation (3.4) means that Req(8} is symmetric, while
Imq(8) is antisymmetric with respect to 8. Then Eq.
(3.3) can be rewritten as

FIG. 2. The solution in time domain of the perturbed non-
linear Schrodinger equation with P=0. 1 is plotted. The dashed
curve is for /=0. 0, and the solid curve is for /=5' The soli-.
ton is observed to radiate continuously.

IqI~0 as 8~ —m,

[Req(0)]=0,a

a2

BO
[Imq (0)]=0 .

(3.5)

(3.6)

(3.7)
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Equation (3.2), and (3.5)—(3.7) are overdetermined as
written, but a well-posed problem may be defined by
dropping Eq. (3.7). We show in Appendix A that Eqs.
(3.2), (3.5), and (3.6} define q(8;P) uniquely for all real
values of P. the solution so defined need not satisfy Eq.
(3.3) as 8~+ ~. We identify the solution of Eqs. (3.2}
that obeys (3.5) and (3.6) as a solitary wave solution if it
also satisfies Eq. (3.7). Our approach is therefore to cal-
culate () [Imq(8=0)]/BO for 0&P«1. We find that it
is zero to all orders of the expansion, but will be nonzero
only if we go beyond this expansion.

For small third-order dispersion, one can develop a
formal asymptotic expansion,

q(O, P) =q ' )(8)+13q ")(8)+P q '2'(8)+

(3.8)

where higher-order corrections are defined by successive
truncation of Eq. (3.2). We also expand the parameters k
and v in powers of(()},

k —k(0)+pk(1)+p2k(2)+ (3.9)

(0)+p (1)+p2 (2)+ (3.10)

Higher-order correction terms are chosen to eliminate
the secularities in lower orders q

'"'. The solutions are
given as (Appendix B}

n+1—(n) ~ C(n) Um m
m=1

where the U 's are defined as

(3.11)

(3.12)

(3.13)

q
' '= A sech(AO)exp(iv' '8), (3.14)

and the constants C'"', m = 1, . . . , n + 1, are determined

by

2m(m +1)A C2"'+1 —2(m +1)vC2"' —(2m —3)(m +1)C2"',=d2

2m(m +1)A C(2"'+2 —(m +1)(2m —1)C2~ =d2~ .
(3.15)

The d, m =1, . . . , n+1 are calculated from q'
m =1, . . . , n —1. Since all the U 's are localized func-
tions (in a coordinate frame moving with the renormal-
ized group delay v), the series solution (3.8) represents
that of a solitary wave.

Moreover, since the U 's obey the symmetry condi-
tions

U (8)=U'( —8) (3.16}

for all m's, the series solution obeys the same symmetry
condition. Equivalently, Eq. (3.7) is satisfied to all orders
of the expansion in Eq. (3.8). It follows that, as P~Q,

Bq(0; )Im ' «P for all m . (3.17)

Equation (3.17) set a bound on how well the series (3.8)
approximates a solitary wave solution. Although Eq.
(3.17}holds for all integer m, we are going to show that
the solution of Eq. (3.2) does not satisfy Eq. (3.7), so it is
not a solitary wave solution, and the deviation from a sol-
itary wave is exponentially small, i.e., =exp( —1/P).
This property of the solution cannot be inferred from
asymptotic expansion to all polynomial orders. It is in
this sense that Eq. (2.9) requires analysis beyond all or-
ders.

Let us discuss in more detail what is meant by going
beyond all orders in an asymptotic expansion, and the
method to obtain the information. The asymptotic ex-
pansion provides an approximate description of q(8;P) in
its own region of validity. However, in the present prob-
lem, this description is not accurate enough to provide
the information required. It can be shown that, at large
8, Eq. (3.2) contains a mode that grows, a inode that de-
cays, and a mode that is oscillatory. Condition (3.3) as-

(}q '" (0)
BO

and

g P"Im
n=0

g2- (n)(Q)

BO

converge trivially. Thus we are able to calculate the pos-
sible infinitesimal corrections to these sums. For other

I

serts that neither of the nondecaying modes should be
present in q(O, p) as 8~+ 00. Condition (3.7) can be in-
terpreted as stating that neither of the nondecaying
modes is excited at finite 6I, so neither can be present as
8~+ ao. However, any deviation of Im[B q(Q, P)/BO ]
from zero, even something exponentially small, excites at
least one of the nondecaying modes. This explains why
Eq. (3.17) is less restrictive than Eq. (3.7). The latter ex-
cludes the existence of the nondecaying modes, while Eq.
(3.17) only bounds their initial ainplitudes. Therefore it is
necessary to go beyond all orders to determine whether
the solution of Eq. (3.2) satisfies Eq. (3.7).

In general, it is meaningless to ask for information
beyond all orders in an asymptotic expansion, because
the series diverges. However, if the series happens to
converge somewhere in its region of validity, there and
only there can one determine the difFerence between the
sum of the asymptotic series and the function represented
by it, i.e., the information beyond all orders. In the
present problem, the infinite series in Eq. (3.8) is con-
structed such that Re[(}q ")(0)/88] 0 at every order,
and we show that Im[() q (")(0)/(}8 ]=0 for all n As a.
result, both the series,
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values of 8, the series diverges, and the question is mean-
ingless.

What remains to be done is to devise a recipe to go
beyond all orders. The approach is an application of the
method of matched asymptotic expansions. The asymp-
totic series is analytically continued into the neighbor-
hood of one of its singularities off the real 8 axis. There,
the series breaks down. Terms that had been small often
become large, and the effect that had been beyond all or-
ders may become important enough to be noticed. Of
course, such a singularity lies outside the region of validi-
ty of the asymptotic expansion. In the present case, the
series breaks down in the complex-8 plane near
8=+in/2A, where Eq. (3.14) becomes singular. We re-
scale the problem with different dominant terms than
those of Eq. (3.2) in the neighborhood of the singularity.
After the rescaling, the effects that were beyond all orders
in Eq. (3.2) appear at low-order terms in the rescaled
problem. We then solve the rescaled problem to some
lower order in its expansion, and recover the term that is
beyond all orders. The solution with this additional piece
is then analytically continued back to the real-0 axis
along a path in the complex-8 plane on which the original
expansion converges. The imaginary-8 axis is such a
path. This solution is further continued out to 8=+ (x}

to determine the asymptotic behavior of the solution
which is a radiation of frequency I /2P.

Following the above procedure, we first extend Eq.
(3.2) to the complex-8 plane. In addition, we write the
equation of the complex quantity q(8) as two coupled
differential equations,

kR —.B—R + 1 8 R +R2S='PB R'
a8 2a8' ' a8''

(3.18)

where the constant D is determined a posteriori, and A, 2 is
the solution to the polynomial

PA.
' —

—,'A. —vA. —k =0, (3.20)

such that Im(A2) &0. Equation (3.18) is well-posed (Ap-
pendix A), its solution is analytic in 8 wherever it is
defined, and by definition, R(8)=S (8) on the real-8
axis. Thus, by analytical continuation, we obtain that

R *(8,P) =S(8*,P),
wherever R (8,P) and S(8,P) are defined on the 8 plane.

IV. BEYOND ALL ORDERS

(3.21)

—kS+' +— +S R = —lP
2 88 88

where R =q(8) and S=q "(8) when 8 is real. The
boundary conditions are chosen as

~R exp( —iA.28) ~, ~S exp( —ik, 28) ~
~D

as Re(8)~ —~, Im(8) =0,
(3.19}

BR (0)Re
8

zeroth-order equation, q
' I = A sech( A 8), has simple

poles on the complex-8 plane at 8„=+i(2n+1)n/2A,
where n is a positive integer. Therefore the series solu-
tion Eq. (3.8} has an essential singularity at 8„. We do
our analysis around 8=in/2A .Since we want to investi-
gate the behavior of the solution around the singularity,
we apply the following scaling transformations to Eq.
(3.18):

A 8=i n /2+PAz,

R =R/P,
S=S/P .

(4.1)

In addition, we shall take v' '=0 without loss of generali-
ty. After substitution of Eq. (4.1) into Eq. (3.18), we ob-
tain for the inner expansion,

. r}R 1 BR+R S .
~

r}R
'BZ3 2 az2

' 'az

+S R + 'P —P kS .
Bz 2 Bz az

(4.2)

The boundary conditions for Eq. (4.2} are determined by
matching its solution to that of Eq. (3.18), which is given
approximately by Eq. (3.8), i.e.,

R,S~—— as Re(z)~ —~ .
z

(4.3)

A sech(A8)= —i —P z+P z +1 A 37A
Pz 6 360

(4.4)

The scaling in Eq. (4.2) is different from that in Eq.
(3.18); the third-order derivative term is now the same or-
der of magnitude as the second-order derivative term.
Our goal is to compute 8 Imq(8=0;P)/B8 . We shall in-
tegrate Eq. (4.2) and Eq. (4.3) from Re(z) = —oo to
Re(z)=0, along a line on which Im(z)=const. We then
continue this solution down along Re(z) =0 [i.e.,
Re(8)=0] to 8=0 in order to calculate 8 Imq(8
=0;P)/B8. The imaginary-8 axis is chosen because
along Re(8)=0, the series 8 ImR/88 and 8 ImS/B8
are trivially convergent. This is due to the fact that Eq.
(3.18) is purely real along the imaginary-8 axis. It is also
understood that the path of integration is chosen to lie
below any singularities of Eq. (4.2) on the complex-z
plane. Since only the asymptotic behavior of the solution
of Eq. (4.2) and Eq. (4.3) as z~~ (Pz~0) is required, it
can be obtained directly from Eqs. (3.8)—(3.15). Expand-
ing the hyperbolic secant function near its singularity at
8=in. /2A and expressing the results in the variable z,
one has

In this section we shall examine the nature of the
singularity of the series Eq. (3.8}. The solution of the

Substituting Eq. (4.4) into Eq. (3.8), the solution for Eq.
(4.2), as z ~~, while Pz remains small, i.e., Pz &&0, is
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3 +21i.2 .3

A+ +P i z+ . +
6

S( )
i —

+ 3 21i
Z Z2 Z3

(4.5)

+ ~ ~ ~

+ ~ ~ ~

z2 —24iz —3+
z2 —24tz —3+ .

l/z —3/z +
. A+ +P i z+ +

6

3 21) CN
Z2+ Z3 ZN

R (N)
0 z

4.6( )

(N) l + 3 + 21l + ND

z z z z
where C)v and Dz are constants. The corrections for
each of these truncations are obtained by solving the ap-
propriate linearized equations, i.e., by substituting

o o

~ (N) +,I,~0 inner ~ 0 inner .+ inner

into Eq. (4.2), where (P, f)' satisfies

3 2~ 0 +2R (Jv)S (N)y+R ()v)2q
0 0 0

(4.7)
3 2

+2R (N)S (N)y+S ()v)2y
z2 2 &z2 o o o

Equation (4.7) is then solved asymptotically for large z
and the solutions, (P, P )', j=1, . . . , 6, can be shown to
be

Contrary to Eq. (3.18), Eq. (4.2) is regular in the limit
P-+0. Thus the asyinptotic series in Eq. (4.5) represents
a regular perturbation expansion. The infinitesimal
correction term that we seek is dropped by the series ex-
pansion in Eq. (4.5) to all orders. We shall show that it
can be recovered by examining the corrections to a trun-
cated series. Moreover, the leading term (in P) is
sufficient for our analysis in this region. Truncation of
the series in Eq. (4.5) at order N (¹horder in z, and
zeroth order in P} yield, for large ~z~, an approximate
solution of Eq. (4.2), which we denote by R o '(z) and
S (N)(z)

1/z —3/z +

04

44

1/z —6i/z —63/z +
1/z +6i/z —63/z +

T

0s
=exp(iz/2)

45

=exp( iz /—2)

4/—z +54i/z + 1302/z +
1 8i—/z —64/z +

1+8i/z —64/z +
4/—z 54i—/z +1302/z +

(4.8}

Among the six solutions, ($5,$~)' and (P6, g6)' are oscilla-
tory for Re(z)%0, Im(z)=const, and the others are poly-
nomials in z. The boundary condition for Eq. (4.2) re-
quires that as Re(z )~ —ao along Im(z) =const, none of
the above solutions is present. We recall that this bound-
ary condition simply assures that the solution of Eq.
(3.18) in the inner region matches to that in the outer re-
gion. The same matching requirement applies as we try
to continue this solution along Re(z).=0, and
Im(z)-+ —~ to 8=0. The corrections can again be ob-
tained by linearizing Eq. (4.2) in a sufficiently small
neighborhood of any point in this region. We obtain the
solutions in Eq. (4.8) again, but the nature of solutions

($5, g~)' and (P6, g6)' is different. As Im(z) ~ —0(),

((})~,(}(~)' becomes exponentially large, but ((})6,g6)' be-
comes exponentially small. Therefore the matching con-
dition demands that ((I)„g))' to ($5, 1(t5)' be absent from
Eq. (4.5) but places no restriction on ((I}6,P6)' as
Im(z) —+ —ao on Re(z)=0. Usually, it is meaningless to
add the correction (P(6 ', f6 )' to (R ' ', S' ))' as
Im(z) —+ —~, because it is smaller than terms of any or-
der in the expansion. In this problem we shall see that
the presence of the infinitesimal ((()6,P6)' as Im(z) —+ —ao

violates the boundary conditions for solitary wave solu-
tions, i.e., Im(() q(0)/BO )%0. Adding ($6, iT6)' to the
series, we have to /th order,

R

inner

T

1+8i lz —64/z + .
S' ' —4/z —54i/z +1302/z + . (4.9)

where I is a constant to be determined by numerical in-
tegration.

In order to calculate Im(B q(0)/BO ), we rnatch the
inner and outer expansions of Eq. (3.18}along Re(8)=0.
The inner expansion is obtained above in Eq. (4.9). The
outer expansion can be calculated as follows. We define a
real variable y along the imaginary axis by

Substitution into Eq. (3.18) gives

(4.11)

3 2
PB R 1 8 R +R S—' '~R k' 'R, —

By 2 By
3 2

By 2 By By

O=iy . (4.10)
Along Re(8) =0, the series solution in Eq. (3.8) is purely
real, hence it does not provide any information about the
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imaginary part of (R,S)'. In other words, the imaginary
part is trivially convergent as discussed in Sec. III. Let
us assume

A sec(Ay)+

R (y) =R„(y)+~'P(y),

s(y) =s„(y)+~'g(y),

(4.12)

(4.13)
f2=

1
A sec( Ay )tan( Ay ) + .

where R„(y), S„(y), P(y), and P(y) are real functions of y.
The real part, R, and S„are given by

R, =S„=A sec( Ay )+

[ Ay sec( Ay )+sin( Ay )]+

1
f4=

1 [3Ay sec( Ay )tan( Ay )+sin( Ay )tan( Ay )

(4.16}

k (o)y

3
1 a2

p = ——
2

+2R „S„p+S„p+v' '

By 2 By

(4.14)

Equation (4.14) has six solutions, which are given approx-
imately by

P(y)

g( )
=y a, r (y),

outer
(4.15)

where a; are constants and f;(y) are given by

and the imaginary parts P(y) and g(y) approximately
satisfies a linear equation

a3 1 c}2—P ~ = —— ~+2R„S„y+R2q v"~ ~—
3 2 By

2 By

+2 sec( Ay )]+
1 0

f5= 0 exp(y/2p)+, f6=
1

exp( —y/p)+
L

and k' '= A /2. The boundary conditions in Eqs. (3.19)
and (3.21) on the imaginary-8 axis are given by

BR Bs
(0) =0, Im (0) =0 .

By
'

By
Im

In addition, since the phase factor is arbitrary in (R,S),
we require that R be real at the origin, i.e.,

Im[R (0}]=0 . (4.18)

Substituting Eqs. (4.17} and (4.18) into the solutions in
Eq. (4.15), we have, for the outer expansion,

Re[R (y)]=Re[S( —y) ], Im[R (y)]= —Im[S( —y)],
(4.17)

=a
outer

1 1 1
sec( Ay ) —

1
A sec( Ay )tan( Ay)+

exp(y /2P)
—exp( —y /2P) (4.19)

z=it, (4.20)

therefore, from Eq. (4.9) the imaginary part in leading or-
der of 1/z is given by

R
Irn (4.21)

1nner

1
=ImI exp(t/2)

From Eqs. (4. 1), (4.10), and (4.20), we have

y = rt/2 A +Pt, t & 0 . (4.22)

Using Eq. (4.22), R =R /P, and S=S/P, we obtain from
the outer expansion in Eq. (4.19), to leading order in P,

R 1
Im — =ap exp(m /4A p+t/2) 0 . (4.23)

outer

where a is a constant to be determined by matching with
the inner solutions in their regions of common validity
[i.e., Re(z) =0, Im(z) & 0, ~z~ )) 1, P~z~ && 1].

Now, we evaluate the inner expansion along the
imaginary-z axis. Note that the series solution in Eq.
(4.5) is real when

Comparing Eqs. (4.21) and (4.23),

ImIa = exp( —m. /4 A P) .

Substituting this into Eq. (4.19), differentiating and re-
verting to the original variables gives, as P~O,

R
Im Sae

exp( —m. /4AP)( —A +1/4f3 )

X (4.24)

Hence, to leading order,

Im ' = exp( —m/4AP) .B q(0; } ImI
BO 4P

(4.25)

It is clear from Eq. (4.25) that ImB q(0)/B6} is nonzero if
ImI is not zero. To calculate Imt, we do not integrate
Eq. (3.2) directly because the perturbation term is singu-
lar as P~O. Instead, we first reduced Eq. (2.4) into an or-
dinary differential equation by a traveling-wave assump-
tion, and then integrated it numerically. The derivative
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We have shown in the preceding section that the solu-
tions to Eqs. (5.2) and (5.3) deviate from true solitons by
an exponentially small term. Thus we can assume that

q(g, s ) =q, ((,s )+Q„(g,s ), (5.4)

where q, (g,s) is the series solution to Eq. (5.3),
q„(g,s ) is a radiation component (i.e., it does not decay at
infinity). The principal result of the preceding section is
that 1m[a/(s =0)/as ]NO, but q(g, s } approaches
g, (g, s) to all orders as s approaches positive infinity.
Hence the radiation component q„(g,s ) must be
infinitesimally small and it satisfies approximately

10 Ail

FIG. 4. The constant ImI is plotted against AP. The circles
are numerical results and the solid line is a third-order polyno-
mial fit to the data Th.e extrapolated value of ImI' at A@=0 is

13.24.

a „1a . a'
~i —koq, +—,+21q, l q„+q,q „"=i'

The boundary conditions in Eq. (5.2) become
Im[g„(s =0)]=0,

(5.5)

In this section we determine the effect of the
infinitesimal violation of the solitary wave condition. We
show that radiation of frequency I/2P is excited. The
magnitude of the radiation is exponentially small. This
explains the robustness of the fundamental soliton under
third-order dispersion perturbation. ' The method we
use is again that of matched asymptotic expansion: the
solution at large s is obtained by matching it to that
solved near zero. We begin with Eq. (2.9) and substitute

q(g, s ) =q(g, s )exp(ikon) (5.1)

in order to remove the explicit phase dependence of
q(g, s ), so that we can assume q(g, s ) satisfies the follow-
ing boundary conditions:

Im[q(s =0)]=0,
aq(s =0)

Bs
(5.2)

Imi3 q/i)8 at 9=0 is calculated with the help of Eqs.
(2.6)—(2.8). We use a fourth-order Runge-Kutta method
and double precision in a CRAY-2 computer for different
values of A P. The range of A P is from 0.0204 to 0.05. It
is found that the results approximate Eq. (4.25) very well.
The constant ImI is plotted against AP in Fig. 4. The
circles are numerical results and the solid line is a third-
order polynomial fit to the data. By extrapolating the
solid curve to zero, the constant ImI as AP~O is es-
timated to be 13.24. Thus the series solution Eq. (3.8)
does not satisfy the solitary wave condition, although the
discrepancy is exponentially small as P approaches zero.
Equation (4.25) is an analytical expression for the devia-
tion of the numerical solutions in Ref. 9 from a solitary
wave in the limit P~O.

V. RADIATION

aq„(s =0)
Re =0, (5.6)

a q, (s =o)
Im exp( rr/4 A P—) .

as 4p

Next, we try to solve Eq. (5.5}approximately by assuming

g„(g,s ) =ti}(k,s)exp(ikg)+ g'(k, s)exp( ikg) —. (5 7)

Equation (5.5) is transformed into a set of coupled equa-
tions given by

1 8 a3—(k+k )P+ — +2IJ, I P+q, g=iP
2 Bs Bs

(5.8)

1 a a3
(k k, )q+ —, +2l q, I—'q+"q,"y= ~P

as as
Our aim is to obtain an expression for q, (g, s ) at large s so
that we can estimate the rate of loss of the main peak
through the radiation channel. The strategy here is again
that of matched asymptotic expansions. The s axis is di-
vided into three regions, the inner region (I) near s =0,
the intermediate region (II), and the outer region (III) for
s~ac. Equation (5.8) is solved in each region and the
solutions are matched at their respective common region
of validity.

In region I (s =0), which has a role similar to a bound-

ary layer, we apply the following stretching transforma-
tion:

t=s

to Eq. (5.8). We obtain

1 a a3
'{k+k,)~+ — ++~'~~I ~'I'++~

2 Qg2
(5.9)

aQ(s =0) Iml
Im exp —

m /4A
as 4p

L

We obtain

i ~ =kog+ —~+IQIQ+iP
ag Bs

(5.3)

1 a a3
p'(k k, )y+ , +20—'I q, I'0+—0'0,"0= i, , —

2 Qt~

At order zero, the set of linear equations is decoupled.
For kAO, solving Eq. (5.9), and reverting to the s vari-
able, one obtains
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g„((,s ) = I Ct exp( —is/2P)+Czexp[+2(k +ko )s ]+C3exp[ —+2(k +ko)s ])exp(ik()

+ ID, exp(is/2P)+D2exp[+2(ko —k )s ]+D3exp[ —+2(ko —k )s ] Iexp( i—kg), (5.10)

where the C;,D, , i =1,3 are constants. The boundary conditions in Eq. (5.6) should be satisfied by all k modes, but the
last equations in Eq. (5.6) show that only the k =0 mode is driven by the main peak. Thus one only need to consider
this mode in the subsequent analysis. In this case, we have f=P' R.epeating the above calculations for k =0, and sub-
stituting into Eq. (5.6), we obtain

g„(s)=C& exp( is—/2P) i —s —1
. 1

2

C& = — exp( —m/4AP) .
ImI

(5.11)

1

1
A sech(As)tanh(As)+A sech( As )+

In region II, we solve Eq. (5.8) with k =0. A similar problem was worked out in the preceding section; hence, we
have to leading order in P, the following six independent solutions:

~'

1

[ As sech( As )+sinh( As)]+
1

[3As tanh(As)+sinh (As) —2]sech(As)+ (5.12)

1 0
exp( is /—2p)+,

1
exp(is /2p) +

where ko = A /2. To first order, the solution of Eq. (5.5) is given by

Q„(s)=E,exp( is /2P—)+E2sech( As )+E3sech( As )tanh( As )

+E4[ As sech( As )+sinh( As )]+E5[3As sech( As )tanh( As ) +sinh( As )tanh( As ) —2 sech( As }], (5.13}

where the E~'s, j = 1, . . . , 5, are constants. The matching to Eq. (5.11) is done by expanding Eq. (5.13) for small s, and
one has

E) =C),
E3 +2E4 = iC ) /2—A p

E2 —2E5 = —C) .

In anticipation of the matching with region III, we also expand Eq. (5.13) for large positive s

q„(s)~E,exp( is /2P)+2—(E2+E3—
2E5 )exp( —As ) +2( E2~ +3E5 ) As exp( —As }+—,'(2E4+E5 )exp( As ) .

(5.14)

F) =E]=C)

F3 = —2(1+i /2A p)C),

E2 = —C„E3= i C, /2 A p- ,

E4 =E5 =0 .

(5.16)

Finally, in region III, when s approaches positive
infinity, we can neglect the potential terms in Eq. (5.8).
Similar to region I, the equations becomes decoupled and
can be easily solved. Hence, we find the radiative com-
ponents q„(s}to be

q„(s)=F
~
exp( is /2P)+Fzexp( As )+F—3exp( —As ) .

(5.15)

Again, the F s, i = 1, . . . , 3, are constants. Since g, (g, s )

approximates q(g, s) to all orders as s~+ ~, F2=0.
Matching with the solutions in region II, and using Eqs.
(5.11) and (5.14), we obtain

(5.17)

This radiation has a frequency given by 1/2P, which
agrees with the resonant frequency observed numerically
in Ref. 15. The group delay of this radiation is I/4P.
The direction of propagation of the radiation is deter-
mined by the sign of P.

Equation (5.18) represents the loss of the main peak by
channeling through this frequency mode. We estimate
the radiation rate by calculating the rate of change in the
quantity,

I) = p ds (5.18)

Recall that q(g, s) approaches zero at —ao but not at

We thus find that at large positive s, the radiation com-
ponent is

q„(g,s ) = — exp( n. /4AP)exp( —is/2P+ikog) .—ImI
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+ ~, hence we define

ari a
lim f [q('ds .

L ~+ aa —oo

Using Eq. (2.9), (5.4), and (5.18) we have

BIi (ImI )

ag 4p
exp( —m/2AP) .

(5.19)

(5.20)
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APPENDIX A: WELL-POSEDNESS

The "solitary" wave packet of Eq. (2.4) is losing its power
at a rate given by Eq. (5.21). For example, at A/=0. 04,
the radiation rate is

Since QD is of order unity, the radiation rate is very small.

VI. SUMMARY AND DISCUSSIONS

In this paper nonlinear pulse propagation at the zero
group-dispersion wavelength is studied analytically.
Pulses launched at the zero dispersion point are known to
exhibit spectral splitting. Part of the initial pulse is shift-
ed up into the normal dispersion regime, while the other
is shifted down to the anomalous dispersion regime. It is
found that the downshifted portion can be described by
the nonlinear Schrodinger equation with third-order
dispersion as small perturbation. We obtain a series solu-
tion to the perturbed equation in terms of the small pa-
rameter. The series satisfies the solitary wave condition
to all orders. However, using a perturbation method that
allows us to recover correction terms that are beyond all
orders, we show that an infinitesimally small radiation is
excited by the third-order dispersion. As a result, the
true solution is not stationary although its decay rate due
to this radiation is negligible. The calculated deviations
from solitary wave behavior agree with the tolerance used
in the numerical solutions reported in Ref. 9. Moreover,
the frequency of the radiation (1/2P) is consistent with
that observed from previous numerical studies. '

The above analysis can also be considered as an analyt-
ical study of the effect of perturbation on the solitons of
the nonlinear Schrodinger equation. The results indicate
that the solitons are destroyed (albeit very slowly) by the
small third-order dispersion term even though the per-
turbed equation itself is Hamiltonian. Moreover, it is ob-
vious that order-by-order perturbative studies are not
sufhcient to determine the true nature of the solution.
This is because the perturbation effect is singular, i.e., it
does not remain small throughout the domain of interest.
In fact, its strength approximates that of the second-
order dispersion when co = 1/2P, and dominates at higher
frequency. This reversal in ordering at co=i/2P mani-
fests itself as radiations at that frequency. The effect of
this radiation on fundamental solitons in optical fibers is
negligible when compared with other non-Hamiltonian
perturbations such as attenuations, and Raman self-
frequency shift. However, the perturbation readily
breaks up the breather solutions (bound state of solitons)
into their constituent solitons as observed in Ref. 15.

In this appendix we show that the following equation
define (R,S) uniquely for real, nonzero P:

PR"'+iR "/2+vR' ikR—+iR S=O,
PS"' iS"—/2+vS'+ikS iS —R =0,

(Al)

where the constant D is determined a posteriori, and A, 2 is
a solution to the polynomial

PA, —
—,'A, —vA. —k=0, (A3)

and Imk2 &0. In the following, we solve Eqs. (Al) and
(A2) on the real axis. We then analytically continue the
solution to the complex-8 plane. To solve the equations,
we construct a Green's function for the linear operator in
Eq. (Al). Using this Green's function, Eq. (Al) is con-
verted to a nonlinear integral equation. We then use the
method of successive approximations to show that the in-
tegral equation has a unique solution.

On the real-t9 axis, we consider the following equations:

PG"'+iG" /2+vG' ikG =5(—8—8'),
PH"' iH" /2+ vH'—+ikH =5( 8 8' ), — (A4)

where G(8, 8') and H(8, 8') are the Green's functions.
The boundary conditions are

G(8, 8')=H(8, 8')=0 if Re(8 —8'}&0 . (A5)

Notice that Eqs. (A4) are decoupled and linear. To solve
Eqs. (A4), we assume that A, „A.2, and A, 3 are the roots of
the polynomial in Eq. (A3), with A.

&
real, and

A.2=A, 3
=a ib (b )0}. E—quation (A3) has complex roots

if

[ —,', +P(v+6Pk)] ) —", ( —,', +Pv)

For small p, Eq. (A6) reduces to

(A6)

k) —,'v +O(P) or k & —0(P ) .

It can then be shown that

(A7)

where the prime denotes derivatives with respect to the
variable 8. The boundary conditions are chosen as

~R exp( —ik28)~, ~S exp( —ik28)~~D

as Re(8)~—&x, Im(8) =0,
(A2)

Re =0,BR
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H(8, 8') =

exp[ —Ri(8—8')] exp[ —ik2(8 —8')] exp[ —i A3(8 —8')]
p(~i —~i)(& —&, ) p(A, ,—x, ) A,,—A., ) p(A, ,

—A., (A.,—A, , )

exp[ —iA, ,(8—8')] exp[ —iX2(8 —8')] exp[ —
ikey(8

—8')]
+ ' + ' e(e 8 ),

p(A2 —
A, , )(A. ,

—Ai) p(A2 —
A, , )(A3 —A2) p(A, ,

—Ai)(A3 —A2)

(A8)

where the X, 's, j=1, . . . , 3 are solutions to the polyno-
mial

R„(8),S„(8)&g„(8) for all 8 (A14)

PA, +-,'A, —vA, +k =0, (A9)

1, x)0
e(x)= 0' &0 (A 10)

and they are defined similar to the A, s. The function
e(x) is the Heaviside function defined as

and then deduce the analyticity of {R„I, {S„I from that
of {(„I. The relevant properties of {g„] we will use are
as follows.

(1) {g„ I is a bounded nondecreasing function of n

(2) g„(8)& 3(o(8)/2 if 8&X(D;P).
(3) Bg„/88~ bg„.

R o( 8)=D exp( ik28), So( 8 ) =D exp( i Xze),

R„+i(8)=Ro i f —de'G(8, 8')R„(8')S„(8'),

S„+,(8)=S +oi f de'H(8, 8')S„(8')R„(8') .

(A12)

If the mapping in Eqs. (A12) has a fixed point, then it
satisfies Eqs. (A 1 1). One can verify by direct
differentiation that it satisfies Eqs. (Al).

The next step is to show that the sequence of functions
defined in Eqs. (A12) is uniformly bounded, and analytic
if 8&X, for some X. We prove that by using a sequence
{g„(8)Idefined as

Using Eqs. (A8), one can turn Eqs. (Al) into a set of in-
tegral equations

R(8)=D e px(iA82) , i f—de'G(8, 8')R (8')S(8'),
(Al 1}

S(8)=D exp(iX~8)+i f de'H(8, 8'}S (8')R(8') .

We postulate the following sequence of successive ap-
proxirnations:

By construction, we have

IRol ISol &0o .

Furthermore, we note the following:

l~, —~, l=l~, —~, l
+b,

IA,,—X, l
=2b,

lexp[ i~ (8—8')]I = lgo(8)/go(8'}I

3g„(8)
2$„(8')

Using Eqs. (A16), one can establish that

exp[ i A, ( 8—8' ,)]-
p(12 —ki)(ki —k3) pluri

—~gib
'

exp[ i k,(8 —8'), ] —
I 3$„(8)

p(k~ —A, , )(A3 —A2) 2plA, ,
—A2lb 2$„(8')

exp[ —i Aq(8 —8')] 1 3(„(8')
p(&, -&,)(&,-&, ) 2pl&, -x, lb zg„(e)

(A15)

(A16)

(A17)

go=D exp(be) )0,
0.+i=Co+&'. /~

where cr=pb IA, ,
—A.2I. We want to show that

(A13)
Notice that in the limit p~0, A, ,~ 1/2p, a ~—v,
b~(v 2k)', and p—lki —

A2I —+ —,'. The coefficients in
Eqs. (A17) remain finite when p—+0. We then assume
that IR„ I, IS„ I

& g„, hence

IR.+il & (o+ f '
lde'I IG(8, 8')

I IR. I' IS. I

r

3(„(8) 3(„(8')
pb X, —X2 o 4 „(8') 4 „(8)

= o+ 2
„'(8)

48pb'lxi —x, l

"

& go+, g'„(8)=g„+,(8) .
Pb A, ,

—Ai

(A18)

Similarly, S„+,(8} g„+,(8). By induction, we have shown that Eqs. (A12) define a set of uniformly bounded sequence
of functions. Analyticity can also be established.
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(A19}

We now prove that the sequence of functions defined by Eqs. (A12) converges to a fixed point by showing that Eqs.
(A12) define a contraction map. We define a norm for the functions by

IIR„(8)—R,(8) II
=—f der IR„(cr ) —R, (cr ) lexp( 5—b R«),

where 5 is a parameter to be determined. Since

IR„(cr) Rp(cr}l &Cig —i &C2(0&C3exp[3b Re(cr)],

where the C, 's, i = 1, . . . , 3 are constants, Eq. (A19) is well defined if 5 & 3, as cr ~—ao. From Eq. (A19), we have

IIR„+i(8)—R„(8)ll & f do exp( 5b R—eo )f d8'IG(cr, 8'}IIR„S„(8') R„—,S„,(8')I

= f d8'f do exp( 5b R—ecr)IG(0, 8')IIR„S„(8')—R„,S„,(8')I .

The last relation is obtained by interchanging the order of integration. We note that

IR„S„(8') R„ i—S„ i(8')
I

= l(R„—R„ i )R„S„+(R„—R„ i )R„,S„+(S„—S„ i )R„ I

&2g'. IR. —R. il+g'. Is„—s„,l

& ( —,", ) go(2IR„—R„,l+ IS„—S„ il)

»'pb'I ~, —~, l' (2IR„—R„,I+Is„—s„,l) .
11'X27

Moreover, one can show that

(A20)

(A21)

(A22)

I G(cr, 8')I &
2

[1+exp[b(cr 8')]—/2+exp[ b(cr ——8')]/2) .
pb'I&, —&, I

Substituting Eqs. (A22) and (A23) into Eq. (A21), one obtains

IIR. +i —R. ll& f d8'J(8')(2IR. —R. il+Is„—s„ il),

J(8')= f do [ 1+exp[b(cr —8')]/2+exp[ b(cr —8'—)]/2] exp( 5bcr ) . —122b e

11 y27

(A23)

(A24)

It can be shown that, for 5 ) 1, APPENDIX B: ASYMPTOTIC SERIES

In this section we establish an asymptotic series solu-
tion to Eq. (2.9) and show that it satisfies the solitary
wave conditions to all order. We restate the problem
here for convenience in subsequent discussions. The
equation of motion is

(A25)—:r(5)exp( 5b8') . —

Hence we have

i
q +— q + Iql'q =iP. a 1 a a'

ag 2 as2 as3
(B1)

IIR. + i
—R. II

& «5}(2IIR.—R.- ill+ Ils.

J(8') & —+ + exp( 5b8')—12 1 1 1

11~X27 5 2 5 1 2(5+1)

and similarly, for the sequences S„(8},

(A26) where p«1. One can develop a formal asymptotic ex-
pansion,

q(g, s;p)=q' '(g, )+spq"'(g, )+sp q' '(f,s)+
s„+,—s„ll &.(5)(2lls„—s„,ll+

(A27)

The criterion for a contraction map is that both the ei-
genvalues of the matrix in Eqs. (A26) and (A27} are less
than l. In terms of r(5), they are given by r(5) & 1, and
r(5) & —,'. Solving for 5 numerically, we found that if

(B2)
where the higher-order corrections are determined by
successive truncation of Eq. (Bl). For example, at order
zero, we have the nonlinear Schrodinger equation,

+— q + Iq"'I'q"'=o
(0) 1 g2 (0)

as'

The fundamental soliton solution is given by
(A28)1.13(5(3,

q' '= A sech(A8)exp(iv8+ikg), (B4)

where 8=s —vg, and k=(A +v )/2. At order p, we
have

then Eq. (A12) is indeed a contraction map. Hence they
converge to R (8) and S(8). The uniqueness property fol-
lows from the contraction property.
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(1)
1 g2 (1)

L( (1)
(

(1) )» )
— 'q + 'q +2~(q(0) )2~q(1)

(}g 2 (is 2

q(g, s)=q(8)exp(ikg) .

Equation (Bl}is then transformed to

(B6)

+ (q(0) )2(q (1))»

~2 (0)

( )
(B5)

kq-—"+ ''—q+~q~'q=)P' ' .
2 882 (}83

(B7)

The operator L(q'", (q'")*) is the linearized nonlinear
Schrodinger equation. In Eq. (B5), if the inhomogeneous
term i(} q' '/Bs contains a term iP"' such that (}}'"
is a solution of the homogeneous equation,
L((I}(",((I}")}'}=0,then q'" has a secular term.
That is, q("=gP'"+u"', where u"' is given by
L(u'", (u"')')=i(} q' '/t3s i(t)—'" T.he term iP(" is
usually called the resonant term. For the fundamental
soliton, the resonant terms are given by q' ' and
iraq( )/Bs, which are due to the shifts of the frequency
and the group delay of the soliton, respectively. In order
to avoid the secular solution, one should eliminate the
resonant terms in the inhomogeneous part of Eq. (B5) by
renormalizing the frequency and the group delay of the
soliton. We use the following procedure to eliminate the
resonant terms of Eq. (Bl).

We first reduce the partial differential equation to an
ordinary differential equation by the following assump-
tion:

the reduced nonlinear Schrodinger equation. The funda-
mental soliton is now written as

q '0'(8) = A sech( A 8)exp(iv' '8), (B10)

where k' '= [ A +(v' ') ]/2. So far we have only restat-
ed previous results. At order p, we obtain

Besides expanding q(8) as in Eq. (B2), we also expand the
frequency k and group delay v in terms of P,

k=k' '+Pk"'+P k' '+
)+p( +p ()+. . .

where the higher-order correction terms are chosen to
eliminate the secularities in q

'"'. At order zero, we have

—(0) 2- (0)
LVk(o) (o) . (o) q + q +I —(0)12-(0) ()

B8 2 (}82
i q

(B9)

g- (1)
1 g2- (1) g3- (0) g- (0)—k' ' "'—' ' ' +— +2lq' '~ q"'+( ' ') (q'")'=i +k'" ' '+' "'

B8 2 (}8' (}8' 88
(B1 1)

The term i8 q
' '/88 can be shown to be

g3- (0)
i = —2v' '[A +(v' ') ]q' '

BO

g- (0) ~- (0)
+&[A 3( (0)}2] q 6 (~(0)~2

a8 (}8

(B12}

g- (0)—(1)(8)—6v(0)- (0)+ 31' (B14)

If, for simplicity, one assumes v' '=0, then one obtains
k"'=0, v' = —A, and q "'(8)=3i()q ' '/(}8. The pro-
cedure can be repeated to any order. For example at or-
der P, we have

To eliminate the resonant terms in Eq. (B12),k'" and v"'
on the right-hand side of Eq. (B1 1) are chosen to be

k(2) —0
~(2) 0

'"(8)=21q' ' —39A'~q' '~' ' '/2 .

(B15)

k 2v(o)[ A + ( v' ')

(1) [ A 2 3( (0))2]
(B13) In general, at order P", we have

g(q (n)
(
—(n)}»}—~(n)( —(n —1)

(
—(n —1)}»

Thus the frequency and group delay of the soliton are re-
normalized to first order in p. The deformation in shape
is obtained by solving Eq. (Bl 1), which gives where the operators X and %(")are defined as

(B16)

g- (n)
1 g2- (n)

~(—(
(
—( )) )

— k( )—( ) (0) 'q + q +2~ — — +(—()) (
—( ))»q, q = —

q iv—
38 2 A@2

q I q q q

~3- (n —1)
~(n) —~ ~ q=l

BO

n n g- (n —i)
+ y ki (n —i)+ ~ y (-i)

BO

—(i)- (j)- (k)

i +j+k =n, i,j,k&n
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n+1
q
—() ~ C()U

j=1
(B17)

To obtain the solution of Eq. (B16),we try the ansatz parent rank of n + 1 [hence Eq. (B17)], and the operator
X has an apparent rank of 2. Let us return to Eq. (B16).
Its inhomogeneous term %'"' has an apparent rank of
n +3. It can be expressed in terms of the U 's as

where the U 's are defined as

—
l ~

I 0)( 8 ) l
2j~ (0)( 8)

n+3
d'-"' U

j=1
(B21)

—(0)

U2, +2 = i
I q '"(8)I"

(B18)

g2- (0)
=[A'+(v"')']U +2v"'U —2U .

BO
1 2 3 (B20)

The right-hand side of Eq. (B20) contains terms of rank 1,
2, and 3, respectively. Therefore, for reducible terms, it
can be represented by U 's of rank equal to and lower
than its apparent value. The quantity q '"'(8) has an ap-

and the C,'"', j = 1, . . . , n + 1, are constants to be deter-
mined later.

We observe that the U 's are closed under
differentiations, i.e., any derivatives of the U can be
represented as a finite series of the U 's alone. More im-

portant, they are closed under the operator X:

XU,, +, =2j (j +1)A'U, , +, —(2j —1)(j+2)U2J+3
(B19)

XU2i+z=2J(J +1)A U2q+2
—2(j+2)v' 'Uzj+3

(2J'+ 1 }(J+2)Up

Therefore the U 's form an independent base for the solu-
tions of Eq. (Bl). Equation (B17) is a solution of Eq.
(B16) if we can determine the coefficients C'"'s,
j=1, . . . , n+1. The argument goes as follows. First,
we introduce the idea of rank of the U 's. Let us assume
that the quantities q

' '(8), (q ' ')'(8), and r}/88 are all of
rank 1, and the ranks of the U 's are the sum of that of its
constituents. Hence the U, 's are of rank j. For reducible
expressions such as r} q

' '/r)8, it has an apparent rank of
3 (1 from q

' '(8), and 2 from r}/r}8). However, it can be
written in term of the U 's in the form

The d, j= —1, . . . , n + 1 are known constants because
they can be determined from the q

' ', j =1, . . . , n —1.
As discussed earlier, the parameters k'"' and v'"' are
chosen to eliminate the secular terms q

' ' and i r}q
' '/B8

(i.e., U, and U2) in R'"'. One thus has d, and do equal
to zero. The term %'"' contains only U 's of rank from 3
to n +3. For the left-hand side of Eq. (B16), using Eqs.
(B19), it also only contains expressions of ranks from 3 to
n +3. Consequently, Eq. (B17}, when substituted into
Eq. (B16), forms a closed set of equations. Equating the
coefficients of each rank on both sides of Eq. (B16), we
obtain n + 1 linear equations in n + 1 unknowns, C'"',

j =1, . . . , n+1. They are

The C'"'s can then be calculated recursively once the

tedious task of determining the d. 's is performed. This

shows that the expansion (B2) can be carried out to all or-
ders in P. Since all the U 's are localized functions (in a

frame moving with the renormalized group delay v), the
series solution (B2) represents that of a solitary wave.

Moreover, since the U 's obey the symmetry conditions,

UJ(8) = U'( —8), (B23)

for all j's, the series solution also obeys the same symme-
try condition.

2'( '+ l)A C'"', —2(j+1) 'C'"'

—(2j —3)(j+ 1)Cz",', =d2,
(B22)

2j(j +1)A C2"'
2
—(2j —1)(j+1)C',",'=d, ,
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