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Analog simulations of stochastic resonance
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The term stochastic resonance has been adopted to describe an interesting statistical property of
periodically modulated and noise-driven multistable dynamical systems: Under the proper condi-
tions, an increase in the input noise level results in an increase in the output signal-to-noise ratio.
That is, increasing the disorder of the input leads to increasing the order of the output. This curi-
ous phenomenon was first introduced as a possible explanation of the observed periodicity in the re-
currences of the earth's ice ages. The phenomenon is, however, observable in a variety of devices
ranging from lasers to electronic circuits. We present here the results of some analog simulations
based on the simplest generic nonlinearity: the quartic bistable potential modulated with an addi-
tive sinusoidal function. These results are compared to recent theories where available. Special
features of the power spectrum are observed, which are predicted by some but not all theories, and
which are observed also in recent laser experiments. In addition to measurements of the power
spectrum, upon which nearly all previous studies have been based, we introduce precision measure-
ments of the probability density of residence times for which no nonadiabatic theory exists.

I. INTRODUCTION

The statistical phenomenon, characteristic of noise-
driven, multistable systems, which has become known as
stochastic resonance, was first introduced by Benzi,
Sutera, and Vulpiani. ' It is a property most often ob-
served in periodically modulated, bistable, noise-driven
systems, whereby the signal-to-noise ratio of the response
passes through a maximum as some externally applied
noise level is increased from zero. The response is usually
defined as a switching event that carries the system from
the neighborhood of one stable state to another. In the
absence of periodic modulation, often called "the signal, "
such switching events are purely random. However, in
the presence of the modulation they become more or less
correlated with it. At both low and high intensities of the
external noise, the modulation and the switching events
are not well correlated, but at some intermediate value,
i.e., at "resonance, " they become better correlated. Obvi-
ously, such a characteristic property is of interest in anal-
yses of the generalized switching process, especially
within the context of information theory, but its first ap-
plication was to global climate dynamics.

In 1982, Nicolis and Benzi et al. suggested that sto-
chastic resonance might account for the observed period-
icity in the recurrences of the earth's ice ages. In that
view, the earth's climate is represented by a one-
dimensional bistable system, one stable state of which is a
largely ice-covered earth. The external noise is assumed
to derive from short-term fluctuations in the balance be-
tween radiative and transport processes, and the periodic
modulation is most often supposed to originate from vari-
ations in the insolation resulting from a small, observed
oscillation with a 100000-year period in the eccentricity
of the Earth's orbit. ' The first realization of stochastic
resonance in a laboratory experiment was provided in
1983 by Fauve and Heslot, who periodically modulated

an electronic Schmitt trigger while applying white noise.
This circuit behaves approximately like an idealized two-
state system. These authors measured the power spec-
trum of the output of the switch for various levels of in-

put noise intensity while the amplitude of the periodic
modulation or "input signal" was held constant. From
these measurements, they constructed the signal-to-noise
ratio (SNR), which has now become the most frequently
studied quantity, and they observed an increase of better
than a factor of 5 in the SNR at the resonant value of the
noise voltage. This experiment seems to have been large-
ly ignored until quite recently.

Renewed interest in stochastic resonance has recently
been stimulated by Vemuri and Roy who observed the
effect in a ring laser operated as a bistable system. The
bistability derives from a degeneracy in the direction of
travel of the optic wave around the cavity. As the pump
intensity passes through the lasing threshold, this direc-
tion at first switches randomly, driven by the intrinsic
quantum noise, but then settles into one of the stable
directions above threshold. The two directional states
can thus be described by two potential wells separated by
a barrier. Switching can be induced by modulating alter-
nately the depths of the wells relative to the barrier with
either noise and/or a periodic signal of sufficient ampli-
tude. In the experiments of Vemuri and Roy, this modu-
lation was introduced by means of an acousto-optic
modulator placed within the cavity. The input to the
modulator was the sum of a periodic signal and white
noise. The resulting switching events were observed by
monitoring a fraction of the beam intensity traveling in
one direction. These authors measured the SNR of the
beam switching signal as the noise intensity at the input
of the acousto-optic modulator was varied. They ob-
served all the features which had been previously ob-
served with the Schmitt trigger plus a number of new
ones. It is important to note that, unlike the theoretical
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where a, b, and c are parameters, and co is the modula-
tion frequency. When noise V„(t) is added, the corre-
sponding Langevin equation in the limit of large damping
1S

x =ax bx +c sin—(co t)+ V„(t) . (1.2)

In addition, in Ref. 7 an idealized two-state model was
considered, wherein the dynamics given by Eq. (1.2) was
Altered in such a way that the only relevant output infor-
mation is the well wherein the trajectory is found. In this
paper, we shall call this the filtered two-state dynamics.
Moreover, in the analog simulation of Ref. 12 some data
for a damped oscillator were presented. Most theoretical
studies have considered Gaussian noise in the white noise
limit [see, however, Ref. 12(b)],

( V„(r)V„(r +s) ) =2D5(r —s), (1.3)

where D is the noise intensity.
Equation (1.1) represents a bistable potential whose

barrier height in the absence of modulation, c:—0, is
b U =a /4b and where the potential minima are located
at xo =+&a /6. When c & 0, the potential is "tipped" at
the modulation frequency such that each potential
minimum is alternately raised and lowered relative to the
barrier height. Bistability is destroyed for
c ~(4a /27b)', and in this and all referenced works
only the bistable regime is considered.

The phenomenon of stochastic resonance can be under-
stood as follows: When the classical dynamics is confined
to the bistable regime, and when the noise is zero, no
switching between minima is possible. The state of the
system will be confined to one well or the other depend-
ing on initial conditions. If we define the output signal to
be one or more switching events, then for V„=O no sig-
nal appears at the output. It is important to note, howev-

treatments and the simulations described below which
were carried out for simple one-dimensional systems, the
dye laser is at least two dimensional. Stochastic models
of such higher-dimensional systems present problems
which are not yet satisfactorily solved analytically.
Therefore Vemuri and Roy compared their experimental
data with digital simulations of the two-dimensional
semiclassical laser equations. That their data were in
quite good agreement with the digital simulations stands
as a unique and possibly quite stringent test of these laser
equations, since the application of wide-bandwidth noise
stimulates virtually the entire range of possible dynamical
behaviors. Moreover, the periodic modulation introduces
a known time scale against which the inherent, charac-
teristic times, as they appear in the equations, can be
clocked.

The demonstration of stochastic resonance in the ring
laser stimulated a large amount of recent theoretical ac-
tivity " and two analog simulations. ' ' Nearly all of
these studies focused on the simple, one-dimensional,
bistable potential

U(x)= — —x + —x —cx sin(co t), (1.1)
a p b 4

2 4

er, that x(t)%0 or a constant in this case. Because the
modulation also induces a periodic variation at the same
frequency in the location of the potential minima, the
response of the deterministic system, i.e., the solution of
Eq. (1.2) with V„=O, will be of the form

xo(t) =e sin(co t +P)+h, (1.4)

where h represents higher harmonics, E and P are nor-
mally small (compared to a, b, c, and 2m) but depend on
these parameters and co, and where xo(t) is confined to
the close neighborhood of one or the other minimum.
This "zero noise" dynamics is not the main interest here
but will be necessary later. Instead, we note that for
V„)0 there will always be noise-induced switching at
some rate. Thus an increase in the noise intensity results
in an increased switching rate. In the absence of modula-
tion, the switching rate is given by the well-known Kra-
mers formula'

a 25U
R = —exp

77 2
(1.5)

With modulation, 6U becomes a time-dependent quanti-
ty b U~b, Uo+u sin(co t) The. refore the switching rate
becomes modulated at the frequency co . The output sig-
nal is therefore correlated with the noisy modulation, or
input signal, and this correlation has been induced purely
by the additive noise. ' The power spectrum of the out-
put therefore shows a strong peak at the modulation fre-
quency. In this and previous work, the SNR of the out-
put is defined as the ratio of the maximum amplitude of
this peak to the amplitude of the noise background at the
signal frequency co . It is easy to intuit then that increas-
ing the noise intensity at the input, i.e., decreasing the in-
put SNR, leads to a larger SNR at the output. This is
true only over a limited range. With increasing noise in-
tensity the output SNR passes through a maximum, and
for higher levels of noise, the correlation between input
and output becomes increasingly washed out. The max-
imum SNR evidently occurs when the noise-intensity-
dependent escape time, averaged over the changing po-
tential, becomes comparable to the half period of the
modulation. This behavior has given rise to the some-
what misleading term resonance.

In this paper, we present the results of an analog simu-
lation of Eqs. (1.1) and (1.2) in the form of high-resolution
measurements of the power spectrum, from which the
SNR's are obtained, and the probability density of
residence times. Because our resolution is higher than
previously reported digital or analog simulations, we are
able to test unequivocally certain predictions of the
theory as outlined below. In particular, we observe (i) a
very clear sequence of peaks in the power spectrum at
odd multiples of the modulation frequency; (ii) a similar
sequence of peaks in the probability density of residence
times located at odd integer multiples of the half period;
(iii) the appearance of a sequence of peaks at even integer
multiples of the modulation frequency when the symme-
try of the unmodulated potential is destroyed; and (iv)
that the total power of the noise plus the signal in the
power spectrum is a constant to within a small uncertain-
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ty resulting from the finite measurement bandwidth.
(The last result, however, is not true for the general dy-
namics but only for the filtered-two-state dynamics. )

In Sec. II we review the main results of the modern
theories. " In Sec. III we briefly review the analog
simulation technique, outline those modifications specific
to this simulation, and display some sample data. Section
IV presents our tests of the main theoretical predictions,
in particular, the two predictions [see items (a) and (b) in
Sec. II below] which have not yet been tested experimen-
tally or in any simulation. In addition, we present some
data on colored noise for which a recent theoretical esti-
mate and a simulation has been given in Ref. 12(b). Fi-
nally, we make some concluding remarks in Sec. V.

II. SUMMARY OF PREDICTED RESULTS

A hint of this latter remarkable result, obtained analyti-
cally in the McNarnara-Wiesenfeld two-state theory, was
also found earlier in the data of Fauve and Heslot. A for-
mula for the SNR is obtained, which, except for the larg-
est noise levels, is well approximated by

Q 26U
expD2 D

(2.1)

where

The challenge for theorists is that Eq. (1.2) cannot be
solved exactly because the potential is not time indepen-
dent, and hence the probability densities are not station-
ary. Standard Fokker-Planck techniques for obtaining
the probability flows of one-dimensional systems cannot
be used, and consequently the Kramers formula no
longer gives quantitative values for the transition rates.
An obvious approach is to make an adiabatic approxima-
tion by restricting the modulation frequency to low
enough values that the potential changes only quasistati-
cally. This means that the modulation frequency must be
small compared to the unmodulated Kramers rate, or
co &&R, and the probability densities are then assumed
to be quasistationary. This general approach was origi-
nally elucidated by Caroli et al. ' and first applied to the
stochastic resonance problem, specifically to the ice-age
model, by Nicolis. ' Later applications of the adiabatic
technique to modulated bistable systems' and specifically
to the stochastic resonance problem have been given by
McNamara and Wiesenfeld and by Marchesoni and his
co-workers. " The adiabatic approximation has been
avoided by an essentially two-dimensional theory due to
Jung and Hanggi and Jung. ' We briefly outline here the
main predictions of the two modern theories only.

The main results of the adiabatic theories can be sum-
marized as follows: (i} The power spectrum consists of
two parts: a Lorentzian noise background centered on
co=0 and a single 5 function located at co contributed
by the signal; and (ii) the sum of the total powers in the
signal and the noise is a constant. Thus increasing the
signal power input results in an increase in the signal
power output accompanied by an equal decrease in the
output noise power.

x =ax bx —+c sin[co t +P(t)]+ V„(r), (2.3)

where P(t) is a random function, uniformly distributed on
[0,2m] with density (2m) . Following the techniques
developed in Ref. 14(a}, a two-dimensional, stationary
probability density IV„(x,8), with 8=co t+P(t), was
obtained from matrix continued fraction expansions.
Two specific predictions are of interest here: (a) The
asymptotic autocorrelation function of the output x (t)
contains undamped oscillations,

S(r )=(x)'+ g a„cos(neo r),
n=1

(2.4)

at integer multiples of the modulation frequency. This
implies, via the Wiener-Khintchine theorem, that the
power spectrum, and hence the SNR, of the output must
contain 5 functions and (b) the even numbered
coefficients a„vanish, so that a sequence of 5 functions
are to be expected only at odd multiples of co

III. SIMULATOR AND EXAMPLE DATA

The principles of our analog simulations have been pre-
viously reviewed in Ref. 14(b), Vol. 3, and therefore will

not be reiterated here. The construction of an analog
model of Eqs. (1.1)—(1.3) is straightforward. The only
special consideration is related to the stability of the sig-
nal generator for the modulation term in Eqs. (1.1) and
(1.2}. We have mentioned before that the width of a fre-
quency bin in the measured power spectrum is deter-
mined by the bandwidth of the measurement apparatus,
and further that drifts in the frequency of the modulating
signal generator comparable to the width of a bin can
lead to large errors in determinations of the signal ampli-
tude. ' This effect, called the "scalloping loss, " was also
discussed by McNamara and Wiesenfeld. In order to
overcome this limitation, we used a precision frequency
synthesizer (Comstron, model 1013) with a resolution of
0.1 Hz and a stability of less than 1 part in 10 per day.
We found that the signal peak in the power spectrum was
then always confined to a single bin. The amplitude of
the signal peak was therefore determined solely by the
bandwidth of the measuring apparatus, which was con-
stant throughout the simulation. The measured SNR
data shown below exhibit considerably less scatter than
either those we previously reported in Ref. 13 or the data
from the laser experiment of Ref. 6. In the case of our
simulations, this improvement was the result of replacing
the ordinary signal generator with the synthesizer.

Fluctuating output voltages from the electronic circuit
simulating x ( t) in Eq. (1.2) were digitized with an
analog-to-digital converter board (Data Translation,
model 2821-6) in a PC-AT computer. Using Asyst

(2.2)

and % represents the SNR.
An essentially two-dimensional approach to the

Fokker-Planck equation analogous to Eqs. (1.2) and (1.3),
which avoids the necessity of making an adiabatic ap-
proximation, has been realized by introducing the time-
dependent phase p(t} into Eq. (1.2},which now readss'
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software, the digitized data were fast-Fourier
transformed and the resulting power spectral densities
were averaged. Depending on the application typically
10 to 40 million digitized data points were assembled into
the final results. The power spectra were measured by di-

gitizing either 2048 or 4096 points of x(t) into a time
series, then pausing to calculate the transform and do the
averaging, then opening the digitizer to obtain the next
sample of x (t). As many as 10000 such samples contrib-
uted to the final average. We have also made high-
resolution measurements of the probability density of
residence, or "sojourn, " times, that is, the times between
barrier-crossing events which mark the entrances and es-
capes from a single well. As shown below, this quantity,
like the power spectrum, is also very sensitive to correla-
tions between the output and the modulation and hence is
complimentary to it.

In this experiment, we set the well parameters
a =b =1.0 for simplicity and so that our x(t) output
would range around +1 V. The unmodulated barrier
height was then AU =

—,', with the potential minima locat-
ed at +1 V. The simulator was operated over a 50-kHz
bandwidth with a characteristic time (the integrator time
constant) of r; = 1.0 ms. In order to simulate white noise,
the output of our 200-kHz bandwidth, Gaussian noise
generator (Quan-Tech, model 420) was passed through a
linear filter with a time constant of 7„=100ps, then ap-
plied to the circuit. The dimensionless noise correlation
time was thus w=r„lr; =—0. 10 for most of the results
presented below. The noise correlation function after
filtering is

tor must therefore eliminate the intrawell motion. We
accomplished this by passing the output of the simulator
through a comparator circuit which executed the follow-

ing logic: comparator output is +1.0 V for x(t)~~0.
Since the barrier maximum is located at x =0 V, the
comparator state is changed only on barrier-crossing
events, and consequently its output should approximate
the filtered two-state model. A digitized sample of the
comparator output is shown in Fig. 1(b). In the sequel,
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O
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which for t~s becomes D =r( V„). Since the mean-

square noise voltage after filtering is a measured quantity,
this formula serves to define the experimental values of
the noise intensity D. Electronic simulators are not, how-
ever, as quantitatively accurate near the white-noise limit
as compared to their accuracy at longer correlation
times. Specifically, our measured values of D are always
underestimates caused by clipping of the wings of the
Gaussian noise by the finite range (+10 V) of the elec-
tronics, an effect which becomes more pronounced as
~~0. No attempt has been made here to correct for this
inaccuracy.

An exam~le digitized time series x (t) is shown in Fig.
1(a) for &D =0. 127 V, which is somewhat below the res-
onance condition (D„„)' =0.3 V. Noisy motion within
the wells (intrawell motion) located near +1.0 V and
noise-induced switching between wells is evident. What
is not so evident in Fig. 1(a) is that a significant harmonic
component at the modulation frequency is contained in
the intrawell motion as mentioned in Sec. II. In the limit
as D ~0, this motion becomes dominant and, since the
switching rate between wells approaches zero, it
represents the largest contribution to the SNR. None of
the contemporary theories take into account the intrawell
motion, though McNamara has made a workable mod-
el. In order to be comparable to the theory, the simula-
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FIG. 1. (a) A measured time series from the analog simulator
of Eqs. (1.1)—(1.3). (b) A measured time series from the simula-
tor of the filtered two-state dynamics. All intrawell motions
have been filtered out, leaving only the barrier-crossing transi-
tions. (c) A measured power spectrum for F =500 Hz, D =0. 1

V2, and c =0.35 V.
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%=101og,+ . (3.2)

Figure 2 shows the result of this data reduction pro-
cedure where the SNR and the noise N are separately
plotted versus D. The asterisks are our measured results
for b, = 1 Hz, c =0.35, f =498.0 Hz, and r=0. 1. The
solid line is a fit of Eq. (2. 1) to the data with Q =60. 1

V s, 6U =0.054 V, and with D replaced by D0+D,
where D0 =0.224 V presumably represents an
unaccounted-for internal noise ' (a correction which the
authors of Ref. 6 also found necessary). In spite of this,
the qualitative agreement with the theory is satisfactory.
We have tested this relation before' and so will not fur-
ther examine the SNR's here except to present some data
for colored noise in the next section.
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FIG. 2. The measured signal-to-noise ratio {SNR}shown by
the asterisks and the noise alone shown by the plus signs in deci-
bels as a function of the noise intensity D. The solid curve is the

theory of Ref. 7 as given by Eq. {2.1).

the power spectra were always obtained from the com-

parator outputs. The resulting SNR's approach zero, in-

stead of infinity, when D~O. An example power spec-
trum is shown in Fig. 1(c). Note that the vertical scale is

logarithmic, and the units are V /Hz. This represents
the true power spectral density of the output voltage if it
were dissipated in a 1-0 resistor. This power spectrum
shows a strong peak at the modulation frequency ~, in

this case 500 Hz, and a weaker peak at 3' -=1.5 kHz su-

perimposed on a Lorentzian noise background. Small

peaks at the power line frequency and its fifth harmonic,
and a somewhat stronger one at its third harmonic, are
also evident. As we show below, the amplification of odd
harmonics is a signature of the stochastic resonance sys-

tern.
The SNR's were obtained by extracting the amplitudes

of the fundamental signal peak S and the noise back-
ground N at the frequency co from the measured power
spectra. Since we used the ultrastable frequency syn-
thesizer, the complete signal feature is located within one
bin of width 5 in the power spectrum, and its amplitude
represents the total signal power, unlike the noise power
which is distributed over the entire bandwidth. In these
simulations, 6 was usually 1 or 2 Hz. The ratio
R =(S+N)/N was formed, and the value of R in deci-
bels was defined as the SNR

IV. RESULTS QI' THE SIMULM'IQN

The theory outlined in Sec. II makes some interesting
predictions, especially regarding the appearance of peaks
in the power spectrum at odd harmonics of the modula-
tion frequency, and the constancy of the total output
power in the presence of increasing input signal power.
In this section we present data which support these pre-
dictions and the results of some measurements for which
no theory currently exists.

Figure 3(a) shows a power spectrum measured for a
relatively low modulation frequency f =49.8 Hz and

high noise intensity D =0.1 V . The predicted sequence
of peaks at odd multiples of f is clearly evident up to
5f . The usual small spikes at the power line frequency
and its second harmonic are also evident. There is also a
very small peak at 2f —= 100 Hz which, as we shall show

later, is probably caused by a small residual asymmetry in
the unmodulated potential. The sequences at odd multi-

ples persist also for larger frequencies as shown by Fig.
3(b) for f =400 Hz. In both cases, the modulation am-

plitude was c =0.35 V, which is very close to the critical
value of c =0.385 V which destroys bistability. We have
observed that the higher odd-harmonic peaks decrease
rapidly as c is decreased. McNamara and Wiesenfeld did
not see the higher harmonics in their digital simulations,
we suspect, because they only simulated small values of c.
Their theory is, after all, based on an expansion of the in-

terwell transition rate in terms of a small parameter, the
leading term of which is just the modulation c sin(co t).
A small peak at 3f is, however, clearly visible in the di-

gital simulations of the laser equations of Vemuri and
Roy, as shown in their Fig. 6(b) of Ref. 6(b). Moreover,
this harmonic may also be present in their measurements
on the actual laser, as shown on their Fig. 2(b) of Ref.
6(a). In both the digital simulations and the actual exper-
iment on the laser system there was a larger peak at the
second harmonic. We show below that this can result
from an asymmetric potential. Figure 3(b), which was
measured at a low noise intensity D =0.012 V also
shows a small dip at 2f . This dip was only present for
relatively small noise intensities. It persists also at low
frequency when f is 50 Hz. In some spectra, a very
small dip could also be observed at 4f . These dips were
never observed in the spectra of the noise alone and were
not evident in our stochastic resonance simulations at
higher noise intensities. Figure 3(b) also shows small
unexplained peaks near 600 Hz and 1 kHz.

We now consider the effect of destroying the symmetry
of the unmodulated potential by adding a term Px to the
potential, with P-=0.2. We show the resulting asym-
metry with a measurement of the stationary probability
density P(x), of the unmodulated potential. Figure 4(a)
shows the result for D =0. 1 V . The well near x = —1

has become the most probable. Figure 4(b) shows the
measured power spectrum for all the same conditions, ex-
cept that we have switched on the modulation with fre-
quency f =50 Hz and amplitude a =0.35 V. Now
smaller peaks at the even multiples near 100 and 200 Hz
have appeared. This might explain the observed even
harmonics in the laser experiment; however, it is also
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possible that they result from rnultiplicative modulation
of the barrier height as elaborated by Marchesoni and
co-workers" and as suggested by our earlier simulation
with combinations of multiplicative and additive modula-
tion and noise. '

Sequences of maxima also appear in the probability
density of residence times. The residence times T, are
defined here as the times spent in one well (say the posi-

P„„(T„)=(T„)'exp( —&l(T„)) . (4.1)

However, in the presence of modulation P ( T„) becomes

tive one) as shown on Fig. 1(b). In the absence of modu-
lation, time series measured after the comparator, de-
scribed in Sec. III, are accurate approximations of the
random telegraph signal, for which the probability densi-

ty of residence times is an exponential,
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FIG. 3. (a) A power spectrum showing the sequence of peaks at odd multiples of the fundamental frequency f =49.8 Hz for
D =0. 1 V and c =0.35 V. (b) A power spectrum for smaller noise intensity D =0.012 V' and higher frequency f„=400Hz show-
ing the odd-harmonic behavior plus an unexplained dip at 2f .
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highly structured with well-de6ned peaks located at odd
multiples of the half period of the modulation. W'e show
an example in Fig. 5(a) obtained at a modulation frequen-
cy f =500 Hz (T /2=1 ms) from 40 million digitized
points (10 samples of 4096 points each). Ten such peaks
are easily visible. The same data are replotted in Fig. 4(b)
on a logarithmic scale, where the dashed straight line
shows an exponential dependence on time of the maxima.
The measured characteristic time for this decay is 1.01

ms, which can be compared to the modulation half period
of 1.0 ms (f =500 Hz) and to ( T„), which from Fig.
4(a) is approximately 1 ms. Further analysis of the prop-
erties of this decay law are in progress here.

There is no theory which can predict the shape of
P(T„) at present, however, the detailed structure shown
in Fig. 4 suggests that this quantity may be an interesting
alternative to the power spectrum for characterizing sto-
chastic resonance. Certainly, the odd multiple structure
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FIG. 4. (a) The stationary probability density P(x) of the unmodulated potential with destroyed symmetry. (b) The power spec-
trum of t e asymmetric potential for D =0.1 V' and f =49.8 Hz showing the even harmonics induced by the asymmetry.
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P (ru). In particular, we might expect some feature in the
power spectrum corresponding to, say, the second peak
in P(T„) with its maximum at T„-=3 ms. Since the
residence time is half the period, the frequency corre-
sponding to T„=3ms is f /3—= 166.6 Hz. We have been
unable to observe any such feature after careful searches
at various modulation frequencies and noise intensities.
See, for example, Fig. 1(c), measured at f =500 Hz from
40 million points.

We turn now to the interesting prediction of the ideal-
ized two-state model regarding the output power:

'30
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FIG. 6. (a) Two power spectra measured for D =0. l V-'. The
dotted results are the noise only (c =0), and the solid curve is
the same noise intensity plus the modulation with c =0.2 V and

f =49.8 Hz. (b) The integrals of the data shown in (a) where
the noise alone is shown by the dashed curve and the noise plus
modulation by the solid curve. The convergence of the two
curves indicates that the total power of each of the two spectra
shown in (a) is nearly equal. (c) A similar set of two integrated
spectra measured for the same conditions except f =400 Hz.

specifically that increasing the power in the narrow-band
output signal suppresses the power in the broadband
noise background by an equal amount. Figure 6(a)
shows a spectrum measured for co,„=49.8 Hz and
D =0. 1 V indicated by the solid line. The spectrum of
the noise only, measured under the same conditions, is
shown by the dotted curve. Clearly, the Lorentzian-
shaped noise background is suppressed by the appearance
of the signal peaks. Figure 6(b) shows the integrals of
these two spectra. The noise integral is shown by the
dashed curve, and the two curves converge demonstrat-
ing that the total power in the noise-plus-signal spectrum
is approximately equal to that in the noise alone. They
could be exactly equal only for a measurement system of
infinite bandwidth. This characteristic is also preserved
at higher frequencies, as shown by Fig. 6(c), for the same
conditions but with co =400 Hz. Note that integration
of the data does a considerable amount of smoothing.
Also note that the spectral density in Fig. 6(a) is plotted
on a logarithmic scale while the total power is displayed
on linear scales. The amplitude of the signal spike in the
density is two orders of magnitude larger than the spike
at the first odd harmonic, which consequently is not visi-
ble on the scale of Fig. 6(b) or 6(c).

Finally, it is worth noting that the scales of Figs. 6(a)
and 6(b) are consistent. This means that the strength
S(f) shown as the magnitude of the discontinuity in 6(b)
is numerically related to the amplitude P (f), of the peak
in the density in 6(a) by S (f ) =P (f„, ), since all the
power is in one frequency bin. The results, used in the in-

tegral in Fig. 6(b), were obtained by fast-Fourier trans-
forming 2048 point time series into power spectra with a
frequency range of 2.5 kHz. The width of a bin was
0.456 Hz. From Fig. 6(a), P(f )=—0.330 V Hz '. This
compares favorably with S(~ )=0.336 V taken from
6(b). Moreover, the asymptotic value of the total power
in 6(b) P„,—=0.92 V is in good agreement with measure-
ments of ( V ) =0.925 V made with an ac voltmeter at
the output of the circuit.

We emphasize again that the constant total power
property is true only for the filtered two-state dynamics,
as shown in Fig. 1(b). All the power associated with the
intrawell motions, both periodic and stochastic, has been
filtered out so that the only output information is con-
tained in the barrier-crossing events. The power spectral
density represented by these events is constant with the
role of the modulation being simply to rearrange the
crossing times by correlating them but not to alter the
mean crossing rate. By contrast, Jung has demonstrated
a mean-crossing-rate enhancement with increasing modu-
lation amplitude for the full dynamics. '

Finally, we present some data on the measured SNR's
for colored noise. In this case the experiment was per-
formed exactly as before, except that the dimensionless
noise correlation time was increased. Figure 7 shows
some data measured for three values of ~=0. 1, 1, and 4.
We note that simply increasing ~ leads to more rounding
of the graph and a shifting of the maxima toward larger
noise intensities. We have not made a detailed analysis of
these data, but note that they are in good qualitative
agreement with both theoretical and experimental results
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inant features predicted by the two recent theories: those
based on the adiabatic approximation and the two-
dimensional generalization with matrix-continued frac-
tion solutions. We have observed the property that the
total power in the output is a constant independent of
modulation amplitude as predicted by the former, and
the sequence of peaks in the power spectra at odd multi-
ples of the modulation frequency predicted by the latter.
In addition, we have shown that peaks at even multiples
result when the unmodulated symmetry of the potential
is destroyed. Finally, we have introduced high-resolution
measurements of the probability density of residence
times as an alternative to the power spectrum for charac-
terizing stochastic resonance.

obtained by Marchesoni and co-workers, as given in Ref.
12(b).

V. SUMMARY

We conclude by noting that for the filtered two-state
stochastic resonance system, we have observed the dom-
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