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Dynamic phase transition in the kinetic Ising model
under a time-dependent oscillating field
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We analyze within a mean-field approach the stationary states of the kinetic Ising model de-

scribed by the Glauber stochastic dynamics and subject to a time-dependent oscillating external
field. We have found that the magnetization of the system oscillates in time around a certain value

that is zero at high temperatures or large field amplitudes and nonzero at low temperatures and

small field amplitudes. The transition from one regime to the other, which corresponds to a spon-

taneous symmetry breaking, is found to be continuous for sufficiently small values of the field ampli-

tudes. For higher values the transition becomes discontinuous and the system exhibits a dynamical
tricritical point.

I. INTRODUCTION

The time evolution of nonequilibrium states of a ther-
modynamic system can be studied by establishing an ap-
propriate stochastic dynamics that will drive the system.
This approach is suitable for certain lattice systems, such
as the Ising model, that have no deterministic dynamics.
Stochastic dynamics are capable of describing not only
the approach to equilibrium states' but also nonequili-
brium states and dynamic phase transitions of in-
teracting lattice systems.

In this paper we analyze an interacting lattice system
with a stochastic dynamics subject to a forced oscillating
field. More precisely, we have studied, within a mean-
field approach, the kinetic Ising model described by a
Glauber dynamics' in the presence of a time-dependent
oscillating external field. For high temperatures or large
field strength, we have found that the system follows the
oscillating field with a delay. At low temperatures and
small field strengths, however, a spontaneous symmetry
breaking sets in and the system is not able to accompany
the oscillating field anymore.

The transition from one regime to the other is found to
be continuous for sufficiently small values of the field am-
plitude. For higher values the transition becomes discon-
tinuous and the system exhibits a dynamical tricritical
point.

E, =—g 0 +H(t) .
J

j(WI )

(4)

From the master equation associated to the stochastic
process it follows that the average (0, ) satisfies the fol-
lowing equation:

7.—( cr, ) = —( cr, ) + ( tanh(PE; ) ) .

When the thermodynamic limit N~(x) is taken, the
quantity QJ~~;,o'~/N approaches, by the law of large
numbers, the average (0; ) which is supposed to be in-

dependent of i In this . case E; =J(cr; )+H(t) and Eq.
(5) is reduced to the simple equation

(o, ) = —(cr;—)+tanhIp[J(o. , )+Hocos(cot)]], (6)
d

which involves only the average (cr, ). This equation is
written in the form

The system evolves according to the Glauber stochastic
process' at a rate of 1/~ transitions per unit time. Let
u7;( [o j ) be the probability per unit time of fiipping the
ith spin at time t. The Glauber prescription gives'

ut, = [I—0;tanh(PE;)],1

27

where

II. THE MODEL

We consider a kinetic Ising system with N spins de-
scribed by the ferromagnetic mean-field Hamiltonian

%=——g o, cr, Hgo, ,
—J

17J

where o; =+1,J &0, and H is a time-dependent external
field given by

H (t }=Hocos(cot) .

cjfpl 10 = —m+tanh —(m+h cosg}
dg T

where m = (o, ), (=cot, and T, h, and 0 are dimension-
less parameters defined by T=(PJ) ', h =Ho/J, and
0—Q)'T.

III. RESULTS

We are concerned here with the analysis of the station-
ary solutions of Eq. (7) when the parameters T, h, and 0
are varied. It is clear that for h =0 the usual mean-field
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equation for a ferromagnet is recovered. In this case it is
well known that a symmetry breaking takes place at
T =1. We shall see that for a nonzero value of h the sys-
tem also exhibits a symmetry breaking as long as h ( 1.

The stationary solutions of Eq. (7) will be a periodic
function of g with period 2'; that is, m (g+2vr) =m (g).
Moreover, they can be one of two types according to
whether they have or do not have the property

m(g+~)= —m(g) .

A solution with this property is called a symmetric or
paramagnetic solution. It occurs at high temperatures or
at large values of h. The magnetization m (g) oscillates
around the zero value and is delayed with respect to the
external field. Examples of this type of solution are
shown in Figs. 1(a) and 2(a).

By decreasing the temperature at constant h the sym-
metric solution becomes unstable and the symmetry given
by Eq. (8) is broken as long as h ( l. A new type of solu-
tion is then obtained which we call a nonsymmetric or
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FIG. 1. The solid lines represent the steady-state solutions of
Eq. (7) for 0/2+=0. 1, h =0.25, and T=0.9 (a) and T=0.85
(b). In (a) only the symmetric solution exists and is stable, and
in (b) only the nonsymmetric solutions are stable. The dashed
lines correspond to the input field h cosg.

FIG. 2. The solid lines represent the steady-state solutions of
Eq. (7) for 0/2m =0.1, h =0.55, and T =0.395 (a), T =0.39 (b),
and T =0.385 (c). In (a) only the symmetric solution exists and
is stable, in (c) only the nonsymmetric solutions are stable, and
in (b) the symmetric as we11 as the nonsymmetric solutions are
stable. The dashed lines correspond to the input field h cosg.
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ferromagnetic solution. In this case the magnetization
does not follow the external field any more, but instead
oscillates around a nonzero value, as can be seen in Figs.
1(b) and 2(c). There are always two independent solu-
tions of this type. If we denote them by m+(g) and
m (g) we see that they are related to each other by the
property

m+(g+~)= —m (g) .

The spontaneous breaking of symmetry (8) is described
by the order parameter mp(g) defined by

1.0

0.5—

mp(g) =
—,'[m (g)+m(g+n )] . (10)

For a paramagnetic solution mp(g) vanishes identically.
Instead of dealing with mp(g), which is actually a mul-

ticomponent order parameter, we will make use of one of
its Fourier components, namely the component M given

by

M= f m(g)dg,

which is just the mean magnetization. Figures 3 and 4
show the behavior of M as a function of temperature for
h =0.25 and 0.55, respectively. In the first case M van-
ishes continuously as the temperature is increased. In the
second case, however, M behaves discontinuously and

jumps from a nonzero to a zero value. In this case there
is a range of values of h where the symmetric as well as
the two nonsymmetric solutions are stable. An example
of such a case is shown in Fig. 2(b).

The stability of a solution may be verified by calculat-
ing the Liapunov exponent A, . If we write Eq. (7) as

0 =F(m, g), (12)

-0.2
0.375 0.385 0.395

FIG. 4. The component M of the order parameter and the
Liapunov exponents A, , and k„are shown as a function of tem-

perature for h =0.55 and Q/2m=0. 1. Notice that M jumps
from a nonzero value to a zero value at a temperature where
k„=0.

(13)

If A. & 0 then the solution is stable.
Let us call the paramagnetic (ferromagnetic) region of

the (T,h) plane the region where the symmetric (nonsym-
metric) solution is stable. If we denote by A,, (A,„) the
Liapunov exponent associated to the symmetric (nonsym-
metric) solution then the boundary of the paramagnetic
(ferromagnetic) region is given by A,, =0 (A, „=O). In the
paramagnetic region we have also M =0 whereas in the

then the exponent A, is given by
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FIG. 3. The component M of the order parameter and the
Liapunov exponents A., and A,„are shown as a function of tern-
perature for h =0.25 and 0/2+=0. 1. They all vanish at the
same temperature.

FIG. 5. Phase diagram in the (T,h) plane for 0/2m. =0.1.
The paramagnetic (P) and ferromagnetic (F) regions overlap in

the region indicated by P+F. The dot represents the tricritical
point. The inset shows the jump in the order parameter along
the boundary of the ferromagnetic region.
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where 4 is such that tanb=O. Around the static critical
point we expect x to be small so that the right-hand-side
of Eq. (14) can be expanded in a power series of x. By re-
taining up to the third-order term in x we obtain

0 =(1—T)x — +h(1+0 )' cos((+$) . (15)
dg 3

The Liapunov exponent k is then given by

f [(1—T) x]—d( .2' 0
(16)

For a fixed value of 0 and for T sufficiently close to 1,
that is, for ~1

—T,'&&A, the symmetric solution of Eq.
(15) in first order of approximation in h will be

0.25—
x =—(1+0 )' sin((+P)h

0
from which we get

(17)

Q,k,. =(1—T)—
2A

(18)

FIG. 6. The same as Fig. 5 for 0/2' = 1. The transition line A., =0 will then be given by

(19)

ferromagnetic region MAO. The behavior of A. , and A.„
as a function of temperature at constant h is shown in

Figs. 3 and 4 together with M.
For small values of h we have found that the boundary

lines of the paramagnetic and ferromagnetic regions coin-
cide. For large values of h, however, they are distinct
and the two regions overlap as can be seen in Figs. 5 and
6. The phase diagram exhibits then a tricritical point, the
point where the two boundary lines merge.

The tricritical point is present for any value of Q. For
small values, however, the overlapping region becomes
very narrow. Our results indicate that, in the limit
Q~O, the width of this region vanishes and the tricritical
temperature approaches the static critical temperature.

IV. BEHAVIOR AROUND T = 1, A =0

The behavior of the transition line around the static
critical point T =1 and h =0 is given by h -(1—T)'~ .
This result is obtained as follows. Let us define the vari-
able x by x =m +h cosg. Equation (7) can then be writ-
ten as

= —x+tanh —+h(1+f1 )' cos(g+P), (14)
dg T

V. CONCLUSION

We have analyzed within a mean-field approach the ki-
netic Ising model under a time-dependent oscillating
field. The time evolution of the system was described by
a stochastic dynamics of the Glauber type. We have
found that the system exhibits a continuous-phase transi-
tion for sufFiciently small values of h. For higher values
the transition becomes discontinuous and the system
shows a dynamical tricritical point. We point out that
the mean-field approach is usually valid for high dimen-
sions. It would then be important to see whether the re-
sults found here persist for low dimensions. In this case a
Monte Carlo simulation on a Bravais lattice would be
useful. To our knowledge, however, such a simulation
has not been performed yet.

Finally, we remark that the stochastic approach makes
it necessary to assume that the number of spin flips
occurring in a period of the oscillating external field is
large. Since the number of spin flips per unit time equals
1/r, the results reported here or any result coming from
Monte Carlo simulation should be compared to real sys-
tems whose relaxation time is small when compared to
the period 2'/co of the oscillating field.
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