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A mechanism is presented and analyzed that accomplishes the unification of a number of experi-

mentally observed one-parameter sequences of dynamical behavior as parts of a continuous spec-

trum that ranges from the U sequence to Farey sequences. Farey sequences, by which we mean

one-parameter sequences whose periodic windows correspond to Farey series of rational numbers,

have generally been associated with motion on a state-space torus. The mechanism analyzed here

does not involve a torus.

I. INTRODUCTION

Analyzed in this paper is the transmutation of U se-
quences into Farey sequences. We are motivated by the
existence of a collection of experimentally observed one-
parameter sequences, qualitatively distinct and until now
without established relationships, that can actually be ar-
ranged on a continuous spectrum of behavior. This spec-
trum runs from the well-known and widely observed U
sequence' through intermediate types of sequence which
have also been observed, including re-merging
period-doubling cascades, to sequences resembling
phase-locking scenarios on a torus. ' We call the last
type Farey sequences because of the correspondence be-
tween the set of periodic windows and Farey series" of
rational numbers. The model presented here, a family of
continuous two-extremum maps of the interval, generates
the entire spectrum of behavior. The Farey sequences in
this model have nothing to do with phase lockings on a
torus.

Our analysis takes the following form. In Sec. II we in-
troduce a family of two-extremum maps, which incor-
porates a parameter by which the steepness between the
extrema can be adjusted and made arbitrarily large. We
relate this map to examples obtained from experimental
data. The full spectrum of one-parameter sequences re-
ferred to above is illustrated with orbit diagrams corre-
sponding to a number of values of the steepness parame-
ter. (A U sequence is obtained at low values, a Farey se-

quence at high values. ) In each case, we cite similar ob-
servations in experiments andlor differential equations.
We then present two-parameter "phase-diagrams" which
show how these changing sequences arise as cuts through
parameter-plane structures that are qualitatively un-
changed by the variation of the steepness parameter.
These diagrams show that it is rather the quantitative
evolution of the geometries and positions of these struc-
tures that is responsible for the differences among the se-
quences. In Secs. III and IV we examine the parameter-
plane structures in detail, and explain their character, ar-
rangement, and evolution. Section III is devoted to those
aspects which are essentially independent of the steepness
parameter: the qualitative form of the structures and

their qualitative arrangement; and Sec. IV addresses the
things which do change as the steepness parameter is
varied.

That a mechanism such as the one described here is re-
sponsible for some experimentally observed or observable
Farey sequences is strongly suggested by the continuous
representation of the spectrum of behavior in experimen-
tal observations. In Sec. V, in order to guide the attribu-
tion of mechanism when a Farey sequence is observed ex-
perimentally, we contrast the Farey sequences of two-
extremum maps of the interval with those associated with
motion on tori.

II. MAP Z AND ITS PHENOMENOLOGY

A. Map Z

The family of maps we use to illustrate evolution from
U sequence to Farey sequence is the following:

x„+,=Z(x„),
where

Z(x)—:(c+ax)R, (x)+(d+bx)R,+(x)

(la)

(lb)

and

R,+—(x)= —,
'+

—,'tanh(sx) . (lc)

R,—(x) are smoothed step functions between 0 and 1,
which "turn off and on" the affine functions they multiply
as x changes sign. Thus the map Z approximates a
straight line with slope a for sx large and negative, and a
straight line with slope b for sx large and positive, and
switches between the two in the vicinity of x =0. As s
becomes progressively larger, the switching is effectively
confined to a smaller and smaller interval of x. Figure 1

shows the graph of Z for s =2, 5, 10, 20, 50, and 1000, at
fixed a, b, c, and d.

At low s the map Z exhibits the gentle undulation of
the two-extremum prototypes, the cubic' ' and super-
critical sine' ' maps. On raising s towards infinity, Z
approaches a piecewise-linear limit that has been studied
previously. ' '
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FIG. 1. Graphs of y =Z(x) for various values of the parame-
ter s. a =1.4, b =0.25, c =1, d = —0.4. The line y =x is in-
cluded in (a). The scales are the same in all elements, and the
ranges are —1. 1 &x & 1.5. At low s, Z resembles a gently vary-

ing cubic polynomial map; at high s it can mimic a monotone
map of the circle.

To connect the map Z with experimental systems and
differential equations, we refer the reader to several ex-
amples of derived maps in the literature. Systems exhib-
iting gently varying two-extremum maps, represented in
Z at low s, are commonly observed ' arising generical-
ly in the vicinity of homoclinic orbits of saddle-focus type
as described in Refs. 23 and 24.

Systems showing more strongly varying maps, like the
examples of Z at high s in Fig. 1, are also reported. An
example in a truncated mode expansion of the general-
ized Ginzburg-Landau equation (which models, for ex-
ample, instabilities in shear fluid flow) is derived in Ref.
27. In observations by Coffman et al. of an oscillating
chemical reaction, one-dimensional maps constructed
from the data have two extrema (marginally, correspond-
ing to low b in Z) and a region of very steep slope in the
middle, just as our map Z has for large s. Decroly and
Goldbeter display a map with similar qualities that is
exhibited by a set of ordinary differential equations used
to model enzyme kinetics; their map also exhibits an an-
gularity which is characteristic of Z at very large s. Re-
turn maps with angularities and close-to-linear sections
have been seen in a number of electrical oscillators.

B. Orbit diagrams

In Fig. 2 we present a set of orbit diagrams for the map
Z which exhibit the spectrum of one-parameter sequences
referred to in the Introduction. In each case we cite ob-
servations of similar sequences in experiments and/or
differential equations.

We begin with the behavior seen in Fig. 2(a) which
shows a sequence occurring at s =5. This closely resem-
bles sequences seen in numerous experimental observa-
tions of forced oscillators. Reference 32, for exam-
ple, shows such a sequence in forced coupled p-n junc-
tions, with prominent states of periods 2—7 observed in

turn with increasing drive voltage. These are, in fact, U
sequences (except possibly at very fine scale). They differ
from the prototypical U sequence —that of the logistic
map —in the prominence of the windows of the low-
period states, which are the states denoted as RL
(m =0, 1,2, . . . ) by Metropolis, Stein, and Stein. We di-
gress brieQy to describe the different notation employed
in the present paper.

Any periodic orbit consists of an alternating series of
visits to the left and right sides of the fixed point of Z on
the interval where Z has negative slope (see Fig. 1). This
fixed point is represented by the curves in Fig. 2 (which
are dashed to indicate that the fixed point is unstable).
Each right-side visit consists of a sequence of monotoni-
cally decreasing iterates, and each left-side visit a se-
quence of monotonically increasing iterates. As our label
for the orbits we simply use the list of the lengths of these
visits, superscripting the left-side counts for clarity. Thus
the orbit shown in the inset of Fig. 4, for example, is la-
beled 1'1 . These labels do not always specify a unique
orbit (by unique orbit we mean a unique family of orbits
whose iterates have a specific point order on the x axis).
Nevertheless, the scheme is convenient and useful, and
the distinctions disregarded can be recovered when neces-
sary. Furthermore, it enables direct comparison to be
made with results in the literature where analogous
schemes are used. ' '

Returning to Fig. 2(a), we note that the principal
periodic states, labeled 1', 1, 1, etc. , are entered (on de-
creasing d) by tangent bifurcation and excited by period
doubling. The region between adjacent principal-state
windows is occupied by the period-doubling cascade of
the lower-period principal state, and by chaotic and
long-period states.

Figure 2(b) shows the second kind of one-parameter se-
quence, occurring on the path at s =7.5 that is otherwise
the same as that of Fig. 2(a). This sequence is quite simi-
lar to that of Fig. 2(a), except that the principal-state win-
dows are interrupted by "period-bubbling" phenome-
na, i.e., incomplete, re-merging, period-doubling cas-
cades. Such sequences have been observed in models of
magnetoconvection and of acoustically induced Quid
cavitation, and other driven systems including Duf5ng's
oscillator.

The third kind of behavior is represented by the se-
quence shown in Fig. 2(c) where s =10. [The path is oth-
erwise the same as in Figs. 2(a) and 2(b)]. The principal
windows are now entered not by tangent bifurcation, but
by period halving. Sequences with these characteristics
have also been seen in experiments and differential equa-
tions.

The remaining two parts of Fig. 2 show the establish-
ment of the Farey sequence. The sequence of Fig. 2(d)
(s =20) is similar to that of (c) but for the notable pres-
ence of new periodic windows between the principal win-
dows. The periods are the sum of the periods of adjacent
principal states, and the labels, e.g. , 1'1, are the con-
catenation of the labels of the adjacent principal win-
dows. These periodic states are the Farey mediants of
the principal states. Also to be seen in (d) is a period-3
state (2') to the right of the period-2 state (1'). This is a
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FIG. 2. Orbit diagrams for the map Z with a =1.4, c =1, b = —'(1+d/2. 5), at 6ve different values of s. The labeling of states is

explained in the text. The dashed curve represents the unstable period-1 orbit. (a) s = 5. A U sequence. The principal periodic win-

dows are entered (right to left) by tangent bifurcation and exited by period doubling. (b) s =7.5. A sequence similar to that in (a) but
exhibiting the period-bubbling phenomenon. (c) s =10. A sequence in which the principal periodic windows have period-doubling
boundaries on both sides. (d) s =20. Similar to (c) but with the appearance of Farey intermediate states. (e) s =1000. Two well-

developed Farey sequences, one going each way from the 1' window.
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To obtain a broader perspective on the sequences of
Fig. 2, we show in Fig. 3 two-parameter phase diagrams
corresponding to three of the s values sampled in Fig. 2.
The paths of Fig. 2 are shown as dotted lines. These
phase diagrams display the regions of the (b, d) parame-
ter plane (hatched) where periodic orbits of interest exist
and are stable. We refer to each of the stability regions as
the "body" of the corresponding orbit.

The body of the 1'1 orbit is selected for detailed
description and labeling in Fig. 4. The curves that define
the body are loci of tangent and period-doubling bifurca-
tion. They are computed by solving the following equa-
tions (for a period-p orbit):

Z~(x) =x,
dzu + l for tangent bifurcation

—1 for period-doubling bifurcation(x)= '

(2)

existence boundary Itangentl
l

-1.0-

102

.5

FIG. 4. The region of stability, or body, of a periodic orbit
(1'1 at a =1.4, c =1, s =10). Iteration of the map at a
representative point within this region is shown in the lower in-

set. In the main figure and the enlargement, thick solid and
dashed curves denote tangent and period-doubling bifurcation
loci, respectively. Along the thinner solid curves a superstable
(eigenvalue zero) orbit exists. The hatching indicates the region
where a stable orbit exists. The internal tangent bifurcation
curve corresponds to the folds of a pleat in the surface in
(state)X(parameter) space on which the orbit exists; in the
diamond-shaped region that is stippled in the enlargement two
orbits are simultaneously stable. Orbits that arise as the dou-
blings of others have a period-doubling bifurcation as their ex-
istence boundary, rather than a tangent bifurcation, but their
bodies are otherwise qualitatively the same.

by which the mechanisms may be established for behav-
ior of this kind to be observed in future experiments is
discussed in Sec. V.

C. Phase diagrams

using standard numerical continuation techniques. In
the case shown, the existence boundary is a locus of
tangent bifurcation; for orbits which arise as the doubling
of another, the existence boundary is a period-doubling
bifurcation locus (of the other). This is the only respect
in which bodies of the periodic orbits di6'er qualitatively
one from another. Everywhere on one side of the ex-
istence boundary (the lower right in the figure) there ex-
ists at least one orbit of the period and point order under
consideration. The two curves meeting in a cusp form
the "internal" tangent bifurcation locus; they constitute
the folds of a pleat in the surface in (parameter) X(state)
space on which the orbit exists. The two dashed curves
are period-doubling bifurcation loci. The hatching shows
where at least one stable orbit exists. In the diamond-
shaped region that is stippled in the enlargement, two
versions of the orbit are simultaneously stable. We will
refer to the narrow parts of the hatched region as the
"arms" and "legs" of the orbit's body, and to the rest as
its "torso."

Also shown within the body in Fig. 4 are loci of singly
superstable orbits (SSO's) with eigenvalue zero. These
are the two curves on which a periodic orbit exists that
includes one of the turning points of the map; one curve
is associated with the left turning point, the other with
the right turning point. At one of the points where the
two curves cross (the one on the right in Fig. 4), which
we call the bi-SSO, two singly superstable versions of the
orbit coexist. The other intersection of the two curves is
the location of a doubly superstable orbit (DSO): a
periodic orbit that includes both turning points of the
map. The representative orbit shown in the lower inset
is, in fact, doubly superstable.

Figure 3(a) contains the path of Fig. 2(a), shown by the
dotted line. The prominent bodies marked 1', 1, 1, etc.
through which this path cuts correspond to the principal
periodic windows of the sequence of Fig. 2(a). These bo-
dies, which have one arm in the unshown negative-b re-
gion, have tangent bifurcations as their exterior bound-
ary. Thus a path that intercepts these principal orbits'
bodies in the manner of Fig. 2(a) enters each (top to bot-
tom) through a tangent boundary, and leaves through a
period-doubling boundary. As mentioned earlier, these
bodies correspond to the orbits denoted as RL
m =0, 1,2, . . . , by Metropolis, Stein, and Stein. Bodies
of other U-sequence orbits are also shown: doubled 1'
(RLR) orbits, and the period-5 orbits RLR and RL R
(two of each, one associated with each extremum).

Figure 3(b) contains the path of Fig. 2(c). The diagram
is qualitatively similar to Fig. 3(a), but the elevation of s
to 20 has greatly narrowed the arms of the principal bo-
dies (the gap between the exterior tangent and period-
doubling curves), and pulled the lower parts of where the
arms and torsos merge much closer to b =0. It is the
transit of these merging parts across the one-parameter
path, between s =5 and 7.5, that is responsible for the
period bubbling in Fig. 2(b). The periodic state appears
by tangent bifurcation as the arm is entered, doubling
occurs as the arm is exited, and the state restabilizes by
period halving as the torso is entered. Destabilization
again occurs by doubling, as in Fig. 3(a), where the path
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passes out through the other side of the torso.
Once s is as large as 10, the arm of stability is, in fact,

so thin that it is unresolvable in the orbit diagram of Fig.
2(c); the state is not readily observable until is restabilizes
by period halving as the torso of the body is entered. In
this way what is for practical purposes a halving-
in —doubling-out sequence is obtained, though the true
entrance boundary of the principal windows is still a
tangent bifurcation located at some distance from the ob-
servable halving boundary.

Figure 3(b) shows bodies of orbits which are not
present in Fig. 3(a). These correspond to the intermedi-
ate states of the principal states in the Farey sequence.
The increase in s has caused these bodies to migrate in
from higher b values. The body of the mediant 1'1 of
the 1' and 1 principal states is actually visible in the
lower right-hand corner of Fig. 3(a). At s =20, the bo-
dies of only the direct mediants of the principal orbits
have crossed the one-parameter path, as in Fig. 2(d), but
as s becomes larger, the bodies of more orbits from
deeper in the Farey sequence are squeezed into the re-
gions under the parts of the principal bodies where an
arm and torso merge, and the Farey sequence orbits be-
come a progressively more preponderant feature of se-
quences observed on paths which pass through the torsos
of the principal bodies. The orbits that necessarily visit
the negative-slope interval, such as RLR and RL R, are
simultaneously squeezed out. We note that in the Farey
sequences of the map Z, such as that shown in Fig. 2(b),
the (apparent) boundaries of the principal bodies are
period doublings (outwards), as are those of all of the
Farey intermediate states except those just marginally es-
tablished [e.g., the l l in Fig. 3(b)].

Figure 3(c), which is the analytically computed dia-
gram for Z in the infinite-s limit, is a good approximation
of the picture for s =1000, the value for the orbit dia-
gram of Fig. 2(c). A complete Farey sequence exists with
full measure on the one-parameter path shown by the
dotted line (and on all similar paths). ' ' For practical
reasons only a relatively small number of bodies is shown,
of course. Figure 3(c) tnay be compared with figures in
Refs. 19 and 39.

We have now established the continuity of the various
experimental behaviors cited in Sec. II A in terms of the
qualitative invariance of the two-parameter phase dia-
gram as the steepness parameter is varied. The observed
differences are due to relative motions of the bodies of the
periodic orbits and to quantitative changes in their
geometry.

In Sec. III, the qualitative character of the bodies and
of their arrangement in the plane are explained. In Sec.
IV, their changing aspects as s tends to infinity are ad-
dressed.

Indeed such bodies have been seen in numerous other sys-
tems. ' ' ' ' ' ' ' ' ' Yet no explanation has been
offered to date for the form of these structures. Below we

present a graphical explanation of the qualitative struc-
ture of a body. In so doing, we establish the location of a
DSO as the organization center of the body. In Sec. III B
we present results on the arrangement and movement,
with respect to variations in s, of the DSO locations—
results which will then be understood also to apply to the
arrangement and movement of the bodies.

We consider the vicinity of a DSO location and show
that the form of the body of an orbit is a simple
geometric consequence of the two-extremum character of
the map. Figure 5(a) depicts schematically the situation
at a point in the parameter plane of a map f slightly dis-

placed from site of a DSO of period j+k. Here j itera-
tions of the map starting from the left turning point yield
a point displaced by a small amount A, from the right
turning point, and likewise the kth iterate of the right
turning point misses the left turning point by some small
amount p. (Any multiple composition of f has a turning
point at a turning point off itself. )

The graph of the identity map (the "45' line" ) facili-
tates the visualization of these facts. But to investigate
graphically the dynamics near this condition we use a
"one-stroke" iteration method rather than the standard
"two-stroke" technique that uses the identity map. The
need for the graph of the identity map is eliminated by
drawing the graph of f' "sideways. " That is, we draw the
graphs I(x,y)~x =f~(y)I and I(x,y)~y =f"(x)I. Itera-
tion is then achieved by each intergraph stroke. Figure
5(b) depicts the situation of Fig. 5(a) in the one-stroke
representation; the displacements k and JM are visible
directly. Figure 5(c) shows, in the same representation,
the situation right at the site of the DSO, where the turn-
ing points are mapped exactly to one another.

If we consider the displacements k and p in Fig. 5 to be
the numerical values of two parameters, we make possi-
ble a direct graphical construction of the structure that
surrounds a DSO location. We carry this out in Fig. 6.

y=x~) y (b) j

(c)

(x)

III. UNCHANGING ASPECTS
OF THE PHASE DIAGRAMS

A. Explanation of the qualitative features of a body

All the bodies in Fig. 3 have the same basic form. This
result implies that the form has little to do with the
specifics of any orbit or the detailed shape of the map.

FIG. 5. Schematic iteration of a map f near a DSO of period
j+k. (a) Standard two-stroke technique using y =f'(x) near
the left turning point, y =f"(x) near the right turning point,
and y =x. (b) One-stroke technique. Graphing x =fJ(y) and

y =f"(x) obviates the need for y =x. The periodic orbit is
represented by an intersection of the two graphs, and bifurca-
tions and superstability correspond to simple geometric
configurations. (c) The DSO in the one-stroke representation.



41 FROM U SEQUENCE TO FAREY SEQUENCE: A. . . 4229

The effect of varying parameters will be primarily to shift
the upright and sideways graphs relative to each other.
The qualitative aspects of the structure are due to this
relative motion, not to any accompanying changes in
shape. So in Fig. 6, with negligible loss of generality, the
shapes of the graphs are taken to be unaffected by the pa-
rameters; only their positions change. We choose the
reference frame in the (x,y) plane in which the sideways
graph (it is the curve which projects beyond the frame to
the left) is fixed. Varying parameters thus affects only the
position of the upright graph. The tip (+) of the upright
graph, which is taken to have coordinates (A, ,p), then
traces out the loci of interest in the effectively superim-
posed parameter plane (A, ,p) as the upright graph is
moved in such a way as to maintain the corresponding
geometrical condition. The graphs have been drawn with
blunt tips for diagrammatic clarity, as this has the effect
of increasing the spacing of the loci of interest.

The loci of three conditions are constructed: (i) su-
perstable orbit, which exists when the graphs intersect at
the tip of one of them; (ii) tangent bifurcation (tangency
of the graphs); and (iii) period-doubling bifurcation which
arises when, at their intersection, the graphs have slopes
of the same magnitude and opposite sign (since one graph
is sideways, the eigenvalue is given by the quotient of the
slopes). For each locus, at least one example of the
upright graph's position is shown. The schematic loci

obtained in this way are qualitatively identical (except for
orientation) to the numerically computed ones for the
1'1 orbit of Z shown in Fig. 4.

We have assumed that the orbit (intersection of the
graphs) which exists to the upper left of the DSO as in
Fig. 5(b) is of the same period as the DSO. It is possible
that its period is half that of the DSO. In this case, rais-
ing the upright graph will result not in a collision of two
fixed points corresponding to a tangent bifurcation, but
to a collision of three fixed points corresponding to a
period halving.

B. Qualitative arrangement of the states

Having shown how the qualitative form of the bodies is
a property of the geometric interaction of two arcs near
where they intersect tip to tip, i.e., the point of existence
of a DSO, we now discuss the organization of the DSO's.
In the following we will, for convenience, use the term
DSO to refer to the parameter-plane location of a doubly
superstable orbit, as well as to the orbit itself; which
meaning is intended will be clear from context.

The organization in the (b, d) plane of the DSO's of the
orbits that can be characterized as N using our previ-
ously established notation can be understood with the aid
of Fig. 7, where 16 such orbits are pictured. First, we
note that the portion of the map to the left of x =0 is
barely affected by the parameters b and d, as long as s is
not too small (all panels of Fig. 7). Secondly, the larger
the asymptotic slope of Z on the right (i.e., b), the more

increasing b -+

COcI~
tO
COI
VI'a

FIG. 6. Geometric explanation of the qualitative character of
the body of a periodic orbit. The curve extending beyond the
frame to the left represents the sideways arc of Fig. 5. The (x,y)
position of the tip (+) of the upright arc is taken to be numeri-
cally equal to the values of parameters A. and p. In this way the

parameter and state spaces are superimposed and the body ap-
pears as the locus of the tip of the upright arc as the appropriate
geometric relations between the arcs are maintained: tangency
for tangent bifurcation; slopes at intersection of equal magni-
tude but opposite sign for period-doubling; intersection at a tip
for superstability.

FIG. 7. DSO's of some of the X orbits in Z. a = 1.4, c = 1,
s =10. Increasing b permits more consecutive iterates on the
right side of the central fixed point. Making d more negative
permits more consecutive iterates on the left side of the fixed
point. This accounts roughly for the (b, d)-plane arrangment of
the bodies of these orbits.
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consecutive iterates on the right are possible (across any
row of Fig. 7). Thirdly, the more negative is d, the lower
is the minimum of Z, and therefore the more consecutive
iterates are possible on the left (down any column of Fig.
7). Thus, regardless of the value of s, we expect an ar-
rangement of the N orbits in the (b, d) parameter plane
roughly as the elements are arranged in Fig. 7.

More precisely, the DSO's of the N orbits lie at the
intersections of the curves shown, for s =10, in Fig. 8.
Each of these curves is the locus of existence of a specific
itinerary between one turning point of Z and the other.
One set (dotted) corresponds to itineraries from the left
turning point to the right one, and the other set (dashed)
to itineraries from the right one to the left one. We call
these loci of inter-turning-point itineraries "I curves. "
The intersection of a dotted I curve with a dashed I curve
corresponds to a closed orbit that includes both turning
points, i.e., a DSO.

The gain from considering the net of I curves is that
we can speak of the topology of the net of I curves whose
nodes are the DSO points. The topology exhibited in Fig.
8 is a persistent feature of the (b, d) parameter plane;
there is complete transversal intersection of the two sets
of I curves for s greater than approximately 5, and in this
sense the arrangement of the N DSO's is qualitatively
persistent for s above this value.

While they are fundamental, the N orbits are only a
small subset of the periodic orbits of the map. The
DSO's of the other orbits arise due to families of I curves
which emanate from every DSO, as described in detail in
Refs. 42 and 43. Here we illustrate in Fig. 9 the dynam-
ics near a DSO with the one-stroke representation in such
a way as to explain the character of the emanating I
curves and to show how they give rise to other important

e

FIG. 9. Sketches illustrating the parameter-plane vicinity of
a DSO. The left panel shows the I curves emanating from a
DSO. The small pictures on the right show the behavior of the
map in the one-stroke representation of Fig. 5 at selected points.
A U sequence is generated along bh, and the intersections with
eg of the emanating curves like bf and bg constitute part of a
Farey sequence. See text for a more detailed description.

DSO's. The diagrams on the right of the figure depict in

the one-stroke representation the dynamics at the labeled
points in the parameter-plane vicinity of a DSO shown on
the left. The figure illustrates the role of the I curves
emanating from the DSO at b in generating a U sequence
of DSO's along the I curve bdeh; the DSO at e is the dou-
bling of the one at b. The other shown half-bundle of
emanating I curves is part of a Farey tree; for example,
the DSO at the intersection of bf and beeg is the Farey
mediant of those at b and e. In Fig. 10 we show numeri-
cal results for the map Z. As well as showing the I
curves that "cause" the 1'1 and 1'1'1 DSO's, we show
the I curve (analogous to bceg in the sketch of Fig. 9)

p I I

21
-. --.'..

''
. 41

31".."--. --

d

:12
~ ~

4A' P2'. . -- '. . 42

14
4

2 -. --~- 4

-3
p 1 2

x10

I

5

-1.2

FIG. 8. The doubly superstable orbits X of the map Z exist
at the intersections of I curves, the loci of inter-turning-point
itineraries. Dashed (dotted) curves correspond to itineraries
from the left (right) turning point to the right (left) one. The
first four members of each family are shown. a =1.4, e =1,
s =10. For clarity, there is a scale change at b =2.1X10
The complete transversal intersection of these two families of
curves is a robust of the (b, d) plane for s ~5. Iteration of the
map at each of the intersections is shown in Fig. 7.

0.5 1.0
12111112

FIG. 10. Numerical calculations showing the emanating I
curves which give rise to the doublings of 1'1 and the Farey in-

termediate state 1'1 1'1'1' of 1'1 and 1'1'1 . I curves are the
thicker curves. a = 1.4, e = 1, s = 10.
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-5 I I I V. FAREY SEQUENCES CONTRASTED
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In the preceding sections we have seen how a variety of
experimentally observed one-parameter dynamical se-
quences can be placed on a continuous spectrum of be-
havior, and we have analyzed the diversity and continuity
of this spectrum in some detail. In this way we have
gained considerable knowledge about a mechanism for
generating a Farey sequence that the evidence suggests is
likely to be operating in physical systems. This mecha-
nism has its own signatures which are different from
those of motion on a torus, and in this section we summa-
rize those differences as they are reflected (a) in one-
parameter sequences and (b) in two-parameter surveys.

A. One-parameter sequences of behavior

—.75-
s=100

—.75-

FIG. 16. A doubling of 1'. an example of a body whose area
vanishes as s ~ ao.

1.25 1.50 0.80 1.05 0.70 0.90

FICs. 17. 2' another example of a body whose area vanishes
as s~ oo. The scales are the same in all pictures. The range in
d is 0.2.

for orbits with DSO's asymptotic to the overlap bound-
ary or beyond (even those with no iterates on the interval
between the turning points). The body of the 2 orbit is
shown in Fig. 17 as an example. As with the doubling of
the 1', the bi-SSO approaches the DSO leaving no torso
in the limit, and all that remains of these bodies in the
limit is their degenerate superstable skeleton.

The measure of chaos in the wedge between b =0 and
the overlap boundary vanishes as s tends to infinity. This
can readily be understood by performing the transforma-
tion x'=ln[x —I/( I —a)]. With this coordinate, posi-
tive contributions to a Liapunov exponent in the wedge
can be obtained only in the interval between the turning
points. The preimage sequence of this vanishing interval
escapes entirely from the invariant interval except on a
vanishing measure of the wedge.

In a system that can be represented by a two-extremum
map such as Z, the bodies of the Farey sequence states
are distributed in the parameter plane on a Farey tree
[see Figs. 3(b) and 10, and Ref. 43]. Consequently, a typi-
cal parameter path intersects a finite number of them.
For example, the 1'1'1 state does not appear on the pa-
rameter path of Fig. 2(d) [see Fig. 3(b)]. In contrast,
along a parameter path in monotone circle maps, by
which motion on a torus can be represented, the com-
plete set of Farey intermediate states of the end points
appears (limited only by observational resolution). Thus
in an experimentally observed Farey sequence, the
definite absence of some Farey intermediate states is a
strong signature of a two-extremum map as the underly-
ing mechanism.

Additionally in systems representable by the map Z,
the boundaries of the Farey sequence states are period
doublings rather than tangent bifurcations to quasi-
periodicity. Exceptions, where the boundaries are
tangent bifurcations —though to chaos not quasi-
periodicity —are members of the sequence which are only
marginally established on the parameter path; an exam-
ple is the 1 1 state in Fig. 2(b) [see Fig. 3(b)].

Evidently, when the comparison is between the behav-
iors represented by a slightly nonlinear shift map of the
circle and by the map of the interval Z at low s, there is
little room for confusion. More dificult situations exist,
however.

In experimental situations corresponding to high s in

Z, the character of the bifurcation boundaries may be
hard to establish since the period-doubling cascades are
highly compressed. Neither would the technique of using
perturbations on the stable side of the boundary to
characterize eigenvalues be effective due to the proximity
of the superstable curve to the bifurcation boundary (see
Fig. 15).

Furthermore, the incompleteness —note that we mean
incomplete in membership, not just in measure —of the
Farey sequence is harder to establish for situations corre-
sponding to very large s in Z; as s approaches infinity the
sequence on a path such as those of Fig. 2 becomes com-
plete in the senses of both membership and measure.
Note that in Fig. 3(c) we showed bodies of only a handful
of the Farey sequence states; the complete set fills the en-
tire measure of the wedge between b =0 and the overlap



4234 JOHN RINGLAND, NAOUM ISSA, AND MARK SCHELL 41

boundary. ' ' Measure-complete Farey sequences are
also seen in marginally noninvertible, or "critical, " circle
maps, as well as invertible circle maps with a near
discontinuity. However, differences exist. Universality
results have been obtained for the scaling in critical circle
maps. In contrast, the scaling of large-s Farey se-
quences in Z is highly variable and nonuniversal. One
can see from Fig. 3(c) that the predominance of the prin-
cipal states (1',l, l, . . . ) ranges from total, on b =0, to
zero on the overlap boundary. (The tips of the Farey se-
quence torsos are dense on the overlap boundary. ) In
fact, while the dimension of the complementary set is
zero on all paths to the low-b side of the overlap bound-
ary, ' practical algorithms for its determination, such as
those of Refs. 8, 46, and 47, yield a completely variable
answer from zero on b =0 to 1 on the overlap boundary,
rather than the universal value 0.87. . . for critical circle
maps. In any case, values much different from 0.87
should suggest that a high-s two-extremum map be con-
sidered as a possible mechanism.

FIG. 18. The map Z on the overlap boundary in the infinite-s
limit. a =1.4, c =1, b =0.338734, d = —1.653163, —2.9 x
~ 1.4. On the boundary in the limit, the common point of inter-
section with the y =x line of the parts of the map with slope a
and slope b leads to the phenomenon of zero Liapunov exponent
for almost all x.

B. Two-parameter surveys

If experimental circumstances permit a two-parameter
investigation, more opportunities naturally exist for
ascertaining the mechanism of an observed Farey se-
quence. It is possible that an experimental parameter ex-
ist that is analogous to s in Z.

The characteristic spectrum of behavior described in
Sec. II would then be observable. However, there is
reason to think that (b, d) planes of Z are more typical
parameter planes than ones parallel to the s axis, and in
the following we allow for the most difficult case that the
effective s value remains fixed in a two-parameter experi-
ment.

The two-parameter distribution of the bodies of the
Farey sequence states in a situation representable by Z at
moderate s [see Figs. 3(b) and 10, and Ref. 43] is radically
different from the essentially one-dimensional arrange-
ment of the Arnold tongues of phase locking. In fact,
the phase diagram for the two-extremum map has an ex-
tremely rich structure, with universal vector scaling, ' '

and a universal asymptotic geometry of the bodies of se-
quences of orbits such as the Farey subsequence
1',2', 3', . . . .

However, if the choice is between a high-s Z mecha-
nism and a torus mechanism, the possibility for confusion
still exists because of the existence of a "pseudoquasi-
periodic" line in Z at infinite s: on the overlap boundary
in the infinite-s limit, almost every x has zero Liapunov
exponent. The behavior of Z on this boundary thus
resembles that of the shift map of the circle. Indeed, in
the limit, Z on the overlap boundary mimics a continuous
piecewise linear map of the circle, as is illustrated in Fig.
18. Furthermore, the torsos of the Farey sequence bodies
extending away toward b =0 resemble Arnold tongues in
the respects of their denseness on the boundary and their
increasing width away from it. Yet the two mechanisms
for generating this quasiperiodic line can be distinguished
by the neighboring phenomenology. In circle maps the

line where quasiperiodicity has full measure is a bound-
ary (or symmetry line) of the space of such maps. In Z
the line may be crossed into the region to the right where
complex chaotic behavior predominates.

VI. CONCLUSIONS

We have presented and analyzed in detail a model
which accomplishes a unification of previously unrelated
classes of dynamical behavior. This unification is impor-
tant as it demonstrates that a wide variety of experimen-
tal observations can be generated by the same fundamen-
tal mechanism.

Moreover, we have shown how a U sequence and a
Farey sequence can be transmuted one into the other by a
smooth deformation that involves no change in the topol-
ogy of the underlying mechanism. Thus is demonstrated
the existence and characteristics of Farey sequences that
arise in a manner quite different from that traditionally
attributed to them. This kind of Farey sequence cannot
occur on an invariant torus; the main periodic windows
are separated by bands (possibly very narrow) of period
doublings and chaos.

We have supported the significance of our model to ex-
perimental observations by referring to similar one-
dimensional maps derived from data, and by demonstrat-
ing a correspondence between the spectrum of behavior
generated by the model and results in the experimental
literature. Given the result that there is more than one
kind of Farey sequence that may be observed in experi-
ments, we have, in order to facilitate their correct
identification, discussed the differences between the
respective phenomenologies, as well as their potentially
confusing similarities.

A family of maps related to ours has been derived by
Ding ' from an impulsively forced oscillator model, thus
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identifying a class of systems in which the phenomena an-

alyzed here will be exhibited. We believe, however, that
the contexts for maps of this kind are broader than this,
and therefore that further important work on how such
maps arise remains to be done.

ACKNOWLEDGMENTS

Acknowledgment is made to the Donors of the Petrole-
um Research Fund, administered by the American
Chemical Society, for the support of this research.

'Present address: Center for Fluid Mechanics, Brown Universi-

ty, Providence RI 02912.
R. Simoyi, A. Wolf, and H. L. Swinney, Phys. Rev. Lett. 49,

245 (1982).
~J. Testa, J. Perez, and C. Jeffries, Phys. Rev. Lett. 48, 714

{1982).
M. Bier and T. C. Bountis, Phys. Lett. 104A, 239 (1984).

4E. Knobloch and N. O. Weiss, Physica 9D, 379 (1983).
sU. Parlitz and W. Lauterborn, in Proceedings of the 12th Inter

national Congress on Acoustics, edited by T. Embleton et al.
{Beauregard, Toronto, 1986), p. I4-7.

K. Coffman, W. D. McCormick, H. L. Swinney, and J. C.
Roux, in Nonequilibrium Dynamics in Chemical Systems,
edited by C. Vidal and A. Pacault (Springer, New York,
1984).

7J. M. T. Thompson and H. B. Stewart, ¹nlinear Dynamics
and Chaos (Wiley, New York, 1986), Chap. 15.

J. Maselko and H. L. Swinney, J. Chem. Phys. 85, 6430 (1986).
F. N. Albahadily, J. Ringland, and M. Schell, J. Chem. Phys.

90, 813 (1989).
' W. Lauterborn and I. Eick, J. Opt. Soc. Am. B 5, 1089 {1988).
)'G. Hardy and E. Wright, An Introduction to the Theory of

Numbers (Clarendon, Oxford, 1979)~

S. Fraser and R. Kapral, Phys. Rev. A 25, 3223 (1982)~

S. Fraser and R. Kapral, Phys. Rev. A 30, 1017 (1984).
S.-J. Chang, M. Wortis, and J. Wright, Phys. Rev. A 24, 2669
(1981).

' R. Perez and L. Glass, Phys. Lett. 90A, 441 (1982).
'6L. Glass and R. Perez, Phys. Rev. Lett. 48, 1772 (1982).
' L. Glass, M. Guevara, J. Belair, and A. Shrier, Phys. Rev. A

29, 1348 (1984).
' J. Belair and L. Glass, Physica 16D, 143 (1985).
' J. Nagumo and S. Sato, Kybernetik 10, 155 (1972); S. Yo-

shizawa, H. Osada, and J. Nagurno, Biol. Cybernetics 45, 23
(1982).
E. J. Ding and P. C. Hemmer, J. Stat. Phys. 46, 99 (1987).

'P. Mandel and R. Kapral, Opt. Commun. 47, 151 (1983).
P. Nardone, P. Mandel, and R. Kapral, Phys. Rev. A 33, 2465
(1986).
P. Gaspard, R. Kapral, and G. Nicolis, J. Stat. Phys. 35, 697
(1983}.

24A. Arneodo, P. Coullet, E. Spiegel, and C. Tresser, Physica
14D, 327 (1985).
E. Celarier and R. Kapral, J. Chem. Phys. 86, 3357 (1987).
D. M. Lindberg, Ph. D. thesis, University of Texas, 1988.
M. Rabinovich and A. Fabrikant, Zh. Eksp. Teor. Fiz. 77, 617
(1979) [Sov. Phys. —JETP 50, 311 (1979)].

K. Coffman, W. D. McCormick, Z. Nosticzius, R. Simoyi, and
H. L. Swinney, J. Chem. Phys. 86, 119 (1987); see also P.
Richetti, J. C. Roux, F. Argoul, and A. Arneodo, ibid. 86,
3339 (1987);A. S. Pikovsky, Phys. Lett. 85A, 13 (1981).
O. Decroly and A. Goldbeter, J. Theor. Biol. 124, 219 (1987).

s T. H. Yoon, J. W. Song, S. Y. Shin, and J. W. Ra, Phys. Rev.
A 30, 3347 (1984); J. W. Song, T. H. Yoon, and S. Y. Shin, J.
Opt. Soc. Am. B 1, 488 (1984); S. Tanka, T. Matsumoto, and
L. O. Chua, Physica 28D, 317 (1987).

s'L. Q. Pei, F. Guo, S. X. Wu, and L. O. Chua, IEEE Trans.
Circuits Syst. CAS-33, 438 (1986).
R. Van Buskirk and C. Jeffries, Phys. Rev. A 31, 3332 (1985).

33P. Collet and J. P. Eckman, Iterated Maps of the Interval as
Dynamical Systems (Birkhauser, Boston, 1980).
N. Metropolis, M. Stein, and P. Stein, J. Comb. Theory 15, 25
(1973).
R. Bagley, G. Mayer-Kress, and J. Farmer, Phys. Lett. A 114,
419 (1986); J. Maselko and H. L. Swinney, ibid. 119, 403
(1987); M. Schell and F. N. Albahadily, J. Chem. Phys. 90,
822 (1989);J. L. Hudson and J. C. Mankin, J. Chem. Phys. 74,
6171(1981).
D. Barkley, Phys. Lett. A 129, 219 (1988).
Z. Noszticzius, W. D. McCormick, and H. L. Swinney, J.
Phys. Chem. 93, 2796 (1989).
This pair of curves has been termed the "skeleton" of the orbit
(see Ref. 16).
C. Genis, J. Math. Biol. 24, 291 (1986); R. P. Pascual and J.
Lomnitz-Adler, Physica D 30, 61 (1988).
K. Kaneko, Prog. Theor. Phys. 72, 1089 (1984).

4~R. S. Mackay and C. Tresser, Physica 27D, 412 (1987).
J. Ringland and M. Schell (unpublished).
J. Ringland and M. Schell, Phys. Lett. A 136, 379 (1989).

44No numerical counterexamples have been observed.
~~J. Milnor and W. Thurston, in Dynamical Systems, Vol. 1342

of Lecture Notes in Mathematics, edited by A. Dold and B.
Eckman (Springer, New York, 1988), p. 465.
P. Cvitanovic, M. Jensen, L. Kadanoff, and I. Procaccia, Phys.
Rev. Lett. 55, 434 (1985).

47H. L. Swinney and J. Maselko, Phys. Rev. Lett. 55, 2366
(1985).

4sV. I. Arnold, Geometrical Methods in the Theory of Ordinary

Differential Equations (Springer, New York, 1983), pp.
95-109.

~ M. Schell, S. Fraser, and R. Kapral, Phys. Rev. A 28, 373
(1983).

~oJ. Ringland and M. Schell (unpublished).
'E. Ding, Phys. Rev. A 34, 3547 (1986);35, 2669 (1987).


