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Random packing of disks in two dimensions
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The geometry of a random dense packing of disks of equal size obtained by compacting a random
sequential adsorption configuration is discussed. The configuration is shown to be without any

long-ranged order, and no local configurations of ordered domains were found. The fraction of area
covered by disks is 0=0.772+0.002 and the number of contacts per disk are 3.02+0.03. It is ar-

gued that this random packing is a stable configuration close to the random loose-packed limit in

two dimensions. The packing fraction of the compacted packing is close to a prediction we make of
8=0.78 for a random loose-packed configuration. Several statistical distributions calculated from
the limiting geometry is studied. Both the area and circumference distributions of the Voronoi-
Dirichlet polygons could be fitted to I distribution functions.

I. INTRODUCTION

Packing spheres of equal radii in a two-dimensional ar-
ray has a long history, dating back to Kepler in 1619.' In
the last 30 years packings in two and three dimensions
have been studied extensively, in part because they serve
as useful models for a variety of physical systems. The
interest in three-dimensional packings is due to the fact
that they can serve as models for the molecular nature of
fluids, glasses, and amorphous materials. ' The macro-
scopic granular properties of powder and porous media '

have also been modeled by sphere packings.
The two-dimensional packings have often been studied

as an introduction to a three-dimensional problem,
since two-dimensional geometry is more easily handled
than the three-dimensional one. However, these packings
have also been used as models for purely two-dimensional
phenomena like the clustering of bacteria or the adsorp-
tion of monomolecular layers of large molecules on vari-
ous surfaces. ' ' We are interested in random
geometries because many of the physical processes that
we are studying, like fluid flow in porus, media, ' take
place in a random geometry. In order to understand
these processes, we feel the necessity to have a good un-
derstanding of the geometry specifying the boundary con-
ditions for these processes. We are also interested in pro-
cesses that create such random geometries, such as the
adsorption of large molecules on a surface, ' and the dis-
tribution of proteins in cell membranes. '

The aim of the work presented here was to study a
compaction process of nonoverlapping disks filling a sur-
face, and to characterize the resulting geometry. Our
starting point was a surface filled with disks generated by
the random sequential adsorption algorithm. Next, the
disks started swelling (or equivalently the surface started
to shrink) following a procedure we will describe in Sec.
III. In order to obtain a stable configuration difT'ering
from any ordered structure, the compaction algorithm
was designed to keep the configurations maximally ran-
dom through the entire process. The dynamics of our
model resembles the model of Hasegawa and Tanemura '

for the process of forming territories among animals.
In both two and three dimensions, three di6'erent limits

of the packing fraction are of interest. The first limit is
the configuration with the maximum packing fraction-
the close-packed (CP) configuration —with a packing
fraction Oct, = tr/&12=0. 9069. . . in two dimensions and

Ocp = m /+18 =0.7405. . . in three dimensions. The
packing fraction (or coverage in two dimensions), is the
fraction of space filled by spheres. Then there are two
limits called the random closed-packed (RCP) and the
random loose p-acked-(RLP) configurations. The
definitions of these concepts are nontrivial, and this will
be discussed in Sec. II. In the same section we will also
give an overview of the general problem of packing disks,
as well as discuss other concepts developed in order to
describe random geometries.

The procedure we used for comparing a packing of
disks is described in Sec. III. In Sec. IV we analyze the
dynamics of the compaction procedure. The result of im-
plementing this procedure is a configuration that is stable
in the limit of infinite "time. " The convergence to this
limiting configuration was slow, but by extrapolating the
coverage to an infinite number of iterations, we could es-
timate the coverage of this configuration to be
0=0.772+0.002. In Sec. V we argue that the limiting
configuration is both maximally random and stable. The
coordination number found for this configuration was
z =3.02+0.03. A value z =3 is the lowest possible for
the coordination number since a11 disks must have three
disks in contact for the configuration to be stable. In the
compacted configuration we generated, the disks are
stable except for cases where one or a few disks are free
to move in an environment confined by a rigidly locked
structure. Our procedure generates such configurations
rather frequently, a fact that is somewhat surprising. The
most recent literature more or less agrees upon
0=0.82+0.02 as the coverage for a RCP configuration.
Since our configuration is at the lower limit of stability,
we think that our configuration is very close to the RLP
limit. The packing fraction of the limiting configuration
is close to our prediction of 0=0.78 for a RLP
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configuration, based on a theory of Bideau et al.
In Secs. VI and VII we discuss geometrical features of

the limiting configuration associated with our
compactification procedure. In Sec. VI we discuss the
hole-size distribution for the compact configuration gen-
erated, and in Sec. VII we analyze the statistical distribu-
tions of the Voronoi-Dirichlet (VD) division of space for
these cases.

II. RANDOM DISK PACKINGS

In three dimensions the RCP configuration can be ex-
perimentally obtained by shaking containers filled up
with ball bearings. The resulting coverage is then extra-
polated to eliminate finite-size effects, resulting in a pack-
ing fraction 0~cp=0. 6366+0.0004 for steel ball bear-
ings, ' as well as for ball bearings of other materials.
The RLP configuration is less reproducible but has been
obtained experimentally by pouring steel ball bearings
into a container with rough walls without shaking, giv-
ing a packing fraction 0&Lp=0. 60+0.02. Even though
these experimental results are well agreed upon for ball
bearings, it is not clear that they represent the limiting
value for idealized sphere packings' (packings where,
e.g. , friction between the spheres is neglected). Simula-
tion of these packings on a computer generally gives a
greater variety of packing fractions, ranging from
0=0.61 generated by a sequential addition algorithm,
up to 0=0.665 generated by a cooperative arrangement
algorithm. Attempts have been made to calculate 0gLp
and 0Rcp by various statistical geometrical approaches.
Gotoh and Finney ' found 0R Lp

=0.61 and 0Rcp in the
interval [0.6357, 0.6472], while Berryman' found

0xcp 0.64+0.02
In two dimensions the situation is even less clear. This

is first of all due to the lack of precise definitions of the
characteristics of RLP and RCP configurations. ' ' The
main difticulty with obtaining a random dense packing in
two dimensions is linked with the lack of frustration be-
tween short- and long-range order. In three dimensions
the locally most dense configuration —the tetrahedron—
will not fill the space. The locally dense configuration is
not the preferred one if one wants a global maximum of
the packing fraction. This frustration between short- and
long-range order is the principal reason for the observed
structure of random dense packings in three dimensions,
since most packing processes try to maximize the density
locally.

In two dimensions such as frustration between short-
and long-range orders does not exist. Locally the tri-
angular agreement is the densest configuration, and it
also tiles the space. The most used packing algorithms
are grown algorithms, the most common being a growth
algorithm due to Bennet, where a new particle is added
as close as possible to an initial seed. In order to intro-
duce frustration in two-dimensional packings and to
mimic some of the behavior found in three dimensions,
different approaches have been used. The initial seed of
growth may be a central disk larger than the other disks,
or the growth may start from an irregular boundary.
Packings have also been simulated in curved space.
Several studies have been made of the phase diagram,

coordination number, and packing fraction in packings of
hard disks with two different sizes as the concentration
and diameter ratio are varied. "' ' Packings in
two dimensions have also been made with regular po-
lygons instead of disks. Even though packings in two
dimensions with frustration introduced in one of these
ways make a closer contact with three-dimensional pack-
ings than packiags of disks of equal size, the existence of
two-dimensional RLP and RCP configurations in pack-
ings of equally sized disks is still an open question. Some
authors think that the RCP configuration may identify
the transition from liquid to solid of fatty acids adsorbed
on a contracting film. ' '

In order to discuss these packings, we should have a
clear definition of the different packing limits. Such a
definition should be purely geometrical, and not linked to
any particular thermodynamic quantity of a hard-sphere
Auid like the singularity in the equation of state, ' as ar-
gued by Berryman, ' although such relations are of in-
terest.

In order to define what we mean with RLP and RCP
configurations, we must first consider what we mean by a
random or maximal random configuration, a concept first
introduced in a thesis by R. Ben Aim in 1970 (see refer-
ence in Ref. 11). We will also define what we mean by a
stable and a dense configuration.

We define maximal random configuration as a
configuration without any short- and long-range order.
The long-range order may be defined in terms of radial
and angular two-particle correlation functions showing
no correlations. The lack of short-range order is more
subtle. Many packing algorithms generate small zones
with a regular triangular structure, where a disk will have
six neighboring disks at contact. But ordering may also
refer to the square lattice. Packings constructed by
sequential addition of disks under the influence of a uni-
axial field create large domains with a distorted square
lattice structure. ' For a configuration to be maximal
random, no such short-range ordering should exist —or
to be more precise —the contribution to the coverage
from such arrangements should vanish in the thermo-
dynamic limit where the size of the system goes to
infinity. This definition is similar to the definition given
by Berryman' stating that a random configuration con-
tains neither short- nor 1ong-range correlations. %e have
been more precise with the definition of no short-range
correlation, since that is the crucial point in going from a
random to a crystalline structure. This point has been
neglected in many of the earlier works.

We also introduce the concept of stable configurations
A stable configuration is a local maximum of the cover-
age in the space of all configurations. Such a
configuration is stable in the sense that if we want to
make it denser, it must first be expanded. The expansion
needed may only give an infinitesimal increase in the cov-
erage. Therefore this stability requirement does not im-

ply stability against thermal vibrations (of molecular
structure) or a general shaking procedure (for granular
materials). In fact, in a flat two-dimensional space it is
believed that only the triangular lattice configuration [see
Fig. 1(d)j is stable in the alter case. The reason being the
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(a) (b)

FIG. 1. Regular two-dimensional packings with the highest
coverage for coordination number z =3,4,5, and 6 I,'taken from
Ref. 38).

lack of frustration between short- and long-range correla-
tions.

A stable configuration as we have defined it is therefore
not likely to be the limiting configuration of the contrac-
tion procedure described by Stillinger et al. This was
noticed in experiments with silicon 0 rings on a contract-
ing rubber film by Quickenden and Tan, ' and in comput-
er simulations by Mason.

There exists only 11 regular two-dimensional packings
that are stable in the sense defined above. These pack-
ings have a coverage 0 ranging from 0=0.390 675 and up
to 0&p =0.906 900 for the closed-packed (CP)
configuration in Fig. 1(d). The coordination number
ranges from z =3 up to the only regular configuration
with z =6. In Fig. 1 we show packings with the highest
coverage for each coordination number.

Last we define a dense pgcking as a packing where no
movable disk may be moved to create holes sufficiently
large for additional disks. Of the four regular packings in
Fig. 1, only Fig. 1(a) is not dense, since there it is room
enough to insert more disks.

Using these definitions we may now define RCP and
RLP configurations as the configurations with the maxi-
mal or minimal coverage, respectively, of all maximal
random, dense, and stable configurations. Note that this
definition is purely geometrical without reference to
external fields, frictional forces at points of contact, or
thermodynamic quantities. Our definition of RLP
configurations is not analogous to three-dimensional
configurations generated by experiments because they are
stable in a uniaxial field. Friction among the spheres also
plays an important part in experiments.

There have been many attempts to construct random
close packings in two dimensions, mostly by simulations;
however, a few experiments have also been carried out.
These algorithms may be divided into three classes:
growth models in a central or uniaxial field stating with a
seed, ' ' ' ' ' compaction of a random open
configuration, "' ' ' and lastly, diluting a CP
configuration and relaxing the disks into the created
voids. The results of these simulations and experiments
seem to fall in the range 0.80 (0& 0.89, as compiled by
Berryman. ' Also the conclusions drawn by various au-

thors from their works are different. Some claim that
0=0.82+0.02 is an upper limit to the coverage for a
RCP configuration; others claim that the same value is a
lower limit. The distinction between or definitions of
RLP and RCP configurations are also unclear in the
literature. Finally, most of the work done lacks a
thorough investigation of the geometry of these
configurations, especially an identification of crystalline
zones. There are some exceptions like Kausch et al. '

who, from a simulation of a growth process under the
influence of a central field, found small triangular crystal-
line domains. They tried to correct the observed packing
fraction for these domains, leading to ORcp =0.82.
Visscher and Bolsterli simulated growth under the
influence of gravitational force, and found after an initial
random growth, large domains of nearly square structure
tilted at about 45' from the vertical. The increase of the
coverage from 8=n. /4 =0.785 for a square packing as
the one in Fig. 1(b), to the observed value of 8=0.82 was
ascribed mainly to the higher density in the grain-
boundary region. Visscher and Bolsterli also claimed
that Kausch et al. ' should see these domains for large
clusters when a central force acts more as a uniaxial
force.

There have been several theoretical approaches based
on various statistical geometrical assumptions, all leading
to values close to t9~cp=0. 82. ' ' ' ' Some of these
approaches ' assume a coordination number z =4.
This value is most probably correct when disks are added
one by one as densely as possible under the influence of a
central or uniaxial field. In this case each new disk added
needs two contacts to be stabilized. But in a collective
reconstruction process, this value may be lower. The
lowest value any stable packing can have is z =3, since
each disk must be supported by a minimum of three
neighboring disks in order to be blocked from any move-
ment. Also, the angle that any pair of these neighbors
make with the center disk must be less than m for the
center disk to be blocked or stable. If this is not the case,
the central disk could move without moving any of its
neighbors.

One of the main tools in characterizing the geometry
of a random disk packing is the statistical distributions of
network quantities that may be derived from the different
networks possible to construct from the positions of the
disk centers. The first network is based on the Voronoi-
Dirichlet (VD) division of space. This division is defined
as follows: Around every disk center we find the set of
points closer to this center than to any other disk center.
This set of points defines the interior of a convex polygon.
The VD network is defined from the edges of these po-
lygons. By definition each VD cell contains one and only
one disk. This tessellation is shown in Fig. 2 for the ran-
dom sequential adsorption configuration. In a close-
packed configuration the VD tessellation consists of regu-
lar hexagons. Another tessellation of space is the dual of
the VD network. ' The vertices of this network are at
the centers of the disks. Nearest-neighbor pairs (also
called contiguous pairs ' ) defined from the VD tessella-
tion as a pair of disks defining an edge in a VD polygon,
are connected with a line segment. This dual network of
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FIG. 2. The figure shows the first iteration step for the region
within the inner frame in Fig. 4. The network is the VD net-
work for the starting configuration. The circles are the largest
circles possible to inscribe in each polygon. The segments with
an arrow represent the disk movements. The starting points are
at the disk centers defining the VD polygons and the end points
are at the centers of the circles shown.

the VD network is a tessellation of space made out of tri-
angles only, since each vertex in the VD network is
defined by three disks.

Another network representation often studied in con-
nection with random dense packings relies on the real
contacts between disks. ' In the triangular network
defined above, only lines going through real contacts are
retained. All the remaining links mill therefore have the
same length equal to the disk diameter d. This new net-
work consists mainly of polygons, but unlike the two oth-
er networks, it may exhibit some isolated sites and dead
ends. If each disk is stable in the sense discussed above,
this network will be completely connected without dead
ends. In discussing the stability of dense packings, this
network is probably the most natural. But for reasons
that will become clear later, we cannot discuss the statis-
tics of this network in our limiting configuration.
Theoretical estimates for the coverage of an RCP
configuration, are often based on statistical and topologi-
cal constraints of these different tessellations. '

III. DESCRIPTION OF THE PROCESS

As a starting configuration for the contraction of the
surface, we used the random sequential adsorption (RSA)
configurations described in Ref. 20. This configuration is
generated by sequentially adding disks randomly onto a
surface. A disk is irreversibly adsorbed on the substrate
if it does not overlap any disks already there. If, howev-
er, the new disk overlaps any disk already adsorbed, the
disk is removed and a new trial is made. This process
continues until the surface is jammed, i.e., until there is
no room for another disk. At this stage the fraction of
the area occupied by disks, or the coverage, is
0=0.5472+0.0002. The geometry of this jammed
configuration is well characterized. The RSA
configuration is a random packing of equal nonoverlap-
ping disks without any long-range order. The two-

particle correlation function has a logarithmic divergence
at contact, and there is no other short-ranged structure;
in particular, there are no hexagonal nuclei in the RSA
configuration. Even if the RSA configuration is jammed,
it is not stable because many disks may easily be moved
to create holes sufficiently large to accommodate new
disks. The RSA model describes some of the essential
features in protein adsorption on a surface. '

Starting with the RSA configuration, the surface is
"contracted" homogeneously without any preferred
directions in contrast to algorithms that use axial or cen-
tral fore'e fields. This contraction procedure is done itera-
tively in a way that ensures that the configuration is man-
ifestly random and homogeneous during the whole pro-
cess.

One iteration step is as follows: First a VD polygon is
constructed around every disk. Each disk center is then
moved to the center of the largest inscribed circle in the
respective polygons, as indicated by the arrows in Fig. 2.
Then all the disk radii are increased with the same
amount until the first disk pair is in contact. A new
configuration with somewhat higher coverage is obtained,
and the whole process is repeated. The iteration pro-
cedure is somewhat similar to the one used by Hasegawa
and Tanemura ' in their model of spatial patterns of an-
imal territories, but they used the average coordinates of
the vertices defining a VD polygon as the new disk
center.

This iteration process is equivalent to a uniform con-
traction of the surface where the particles have a weak
repulsive force in addition to the hard-core repulsion.
We will argue that the limiting configuration after having
repeated this iteration procedure infinitely many times, is
a random dense packing close to the RLP limit.

In practice, we have carried out our simulations on a
unit square with periodic boundary conditions in both x
and y directions. The area of a particle is always mea-
sured relative to this unit square, and the disk diameter
increases as the structure is compacted. We started out
with 66 completely jammed RSA configuration made out
of disks with a relative area of a=0.0002. The average
coverage of these configurations was 0=0.5472+0.0002.
This estimate of the coverage for the two-dimensional
RSA of disks is as far as we know that most precise value
reported. The procedure of generating a completely
jammed RSA configuration is explained in Ref. 20. Next
we performed 1000 iterations of the contraction process
on each of these configurations. All calculations were
performed in double precision.

The rest of this article will be based on results from
these configurations; however, we have also done smaller
simulations, starting with larger disk areas up to
a =0.01. The results of these simulations are in agree-
ment with the results reported here. All errors quoted
are statistical errors only, based on linear regression or on
standard deviations obtained from fluctuations among
the different realizations.

IV. DYNAMICS OF THE ITERATION PROCESS
The increase in the coverage 0 as a function of itera-

tion number n is shown in Fig. 3 for the case a=0.0002.
The simulations with larger area gave a similar behavior
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FIG. 3. The coverage 0 as a function of iteration number n in

the compaction procedure. The horizontal line is the extrapo-

lated limiting value 0„=0.772.

FIG. 5. The standard deviation of the coverage as a function
of iteration number.

but on shorter time scales. The iteration number is of
course a "nonuniversal" time and should be scaled
somehow with the number of particles in the target area
to give a size independent time. At the start of the pro-
cess the average disk movement was 10% of the disk di-
ameter d. After 1000 iterations the average movement
was 0.006% of d. The disk diameter had increased with
an approximate factor of 1.2 during the iterations. The
coverage after 1000 iterations was 0=0.7643+0.0002.
An example of the initial RSA configuration and the
same configuration after 1000 iterations is shown in Fig.
4

In Fig. 5 we show the change in the standard deviation

~ ~ ~If' ~ Ql TIFy
+~

I

I ~ i, l

11 I

il I' ~ iraqi ~r- --, II IPi i.. « i1]g i
'~ a

C '- == '
lm I

I ~ I' ' '
' . . 'Ir . ~ rig

/ ~ pl Nfl'/ll 41(&& II

M

! li;I .

';;I)r

& -"&'', Qua. iIvr~ ~ ' - pic I E. ;:i '

gJi~g '' ~ iraL

r . .— —~~ ' '' '~ ~~r~'+ + '' '~l L '!S%14 ~

paar j~ ~ IEH ' g( - ' ' . XIL~I[gl J::' I

[

of the coverage 58=((8—8) )' during the process.
We see first a sharp peak, before the standard deviation
decreases. Towards the end of the process the decrease in
68 is approximately proportional to 1/n Thi. s behavior
is easily obtained. We start out with 66 configurations
generated by the RSA process described in Ref. 20.
These configurations all have the same disk size, but the
number of disks on the target area (i.e., the coverage)
fluctuates. As the iteration process proceeds the size of
the disks is different in different replicas, because in sam-
ples with many particles the particle diameter will not in-
crease as fast as in samples with fewer particles. This
causes the rms fluctuations to grow. But soon the parti-
cle size is adjusted to the particle number, and the fluc-
tuations in the coverage among the different replicas start
decreasing. When we stopped the compactification, the
rms value had decreased to 67% of the initial value.

The convergence to the limiting state was slow. By
fitting the curve in Fig. 3 to various asymptotic functions,
we could extrapolate the coverage to infinite iterations.
The only functional form that gave a reasonable fit, was a
power-law behavior resulting in a coverage
0„=0.772+0.002 after an infinite number of iterations.
The quality of this fit is shown in Fig. 6 where we have
plotted log, o(8„—8) versus log, o(1 jn). We should also
mention that during the iteration process, holes
sufficiently large for an additional disk were created.
These were not filled, however. During the later stages of
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FIG. 4. The top figure shows the starting RSA configuration
and the bottom figure shows the resulting configuration after
1000 iterations. The center square in the top figure is enlarged
in Fig. 2.

FIG. 6. The coverage log»(0„—0) vs log»(1/n). The
straight line is a least-squares fit.
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our process, these holes are so rare that filling them at
that point would not change the values reported above.

We conclude that the process we have described in Sec.
III saturates asymptotically towards a coverage
0„=0.772+0.002. In the next section we will argue that
this limiting configuration is a random stable
configuration with a coverage close to the RLP limit.

V. CORRELATIONS AND STABILITY

The increase in the coverage from 8=0.7634 after
1000 iterations to the extrapolated value 0„=0.772
represents an increase in the disk diameter from
d =1.8847X10 to d =1.8953X10 or an increase in
the diameter by a factor of 1.006. We claim that there
will be no significant changes in the particle positions
during the rest of the process. To support this view, we

show in Fig. 7 an enlargement of the central region of the
configurations in Fig. 4. In the figure we have marked
with an arrow the disk movements during the first 300
iterations (top figure) and the last 700 iterations (bottom
figure). We see that during the last 700 iterations there
has been virtually no movement for most of the disks.
What happens is as follows: In each step of the iteration
process the radii of the disks are increased uniformly un-
til the first pair of disks reach contact. This pair may be
the only pair in contact. The other nearest-neighbor dis-
tances are distributed in a narrow peaked distribution. In

the asymptotic limit of the process, the disk pair of
closest contact will be slowly separated so that the disk
radius may be increased, while all the other disks just "vi-
brate" around an average position. The average distance
a disk is moved in a single iteration step has large fluctua-
tions, but this distance has roughly a 1/n dependence to-
wards the end of the process. Most of these movements
are, however, vibrational, so the actual displacement of a
disk after several iterations falls off more rapidly. The
average distance x, a disk has been moved during the first
200 iterations is x/d =0.004, and for the next 200 itera-
tions it is x/d =0.0004. The maximal movement of a
disk during the same intervals, is one order of magnitude
larger. This process of slowly separating the closest disk
pair causes the distribution of nearest-neighbor distances
to become sharper. After 200 iterations the peak of this
distribution is at x/d =1.01 and after 400 iterations the
peak has moved to x/d =1.005. After 1000 iterations it
is even closer to 1.

We therefore claim that we can obtain information of
the geometrical structure of the limiting configuration by
viewing our configurations after 1000 iterations on a
clearer scale, that is to say, let the precision in which we
can determine the disk diameter d to be accurate to about
0.6%%uo. In practice what we claim is that two disks are in
contact when the distance x between them is x 1.006d.
We now show that under these assumptions our
configuration is maximally random and stable.

A. The correlation function

Let G ( r ) be the two-particle correlation function
defined as the probability of finding a disk a distance r
from a given disk at the origin (see Ref. 20). In Fig. 8

G(r) is shown for the "limiting" configuration, normal-
ized so that G(r)~1 when r~~. The true value of
G(r) for r =d is 30, and not 15 as shown in Fig. 8. We
reduced the value at contract to a factor of 2 in order to
see the structure in the correlation function. The dashed
vertical lines in Fig. 8 represent the correlation function
of a triangular lattice. The limiting configuration has no
long-range order, since G(r) =1 for d ) 3. For d & 3 we
see some structure reminiscent of the triangular lattice.
However, the peaks in the correlation function are far
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FIG. 7. The figure shows the movements of the disks in Fig.
2 during the iteration process. The top figure shows the move-
ment during the first 300 iterations, and the lower figure shows
the movement during the last 700 iterations.

FIG. 8, The two-point correlation function. The dashed
vertical lines are the two-point correlation functions for the tri-
angular lattice.
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less pronounced and localized than the peaks in the
correlation function obtained by Mason at the same
coverage. Also the correlation function presented by
Schreiner have pronounced peaks at the position of the
5 function peaks for a CP configuration (see Fig. 8), so it
is doubtful that their configurations are maximally ran-
dom.

B. The geometrical neighbors

To test the short-range correlations further, we have
measured the distance to the geometrical neighbors '

defined by the VD tessellation. The distance to the first-
second- and third-neighbor disk have 5-function-like dis-
tributions. This is because at least three disks support a
given disk, except disks which are free to move in rigid
surroundings as mentioned earlier. These local
configurations broaden the distribution slightly, as seen
in Fig. 9. The distance to the fourth and fifth nearest
geometrical neighbor yield broader distributions, but still
with a value greater than zero at x /d = 1, as shown in

Fig. 9. In order to have a reasonable scale on the ordi-
nate axis in Fig. 9, we have reduced the value at the point
x =d. The correct value for the first point in the first-,
second-, and third-neighbor disk distributions are 92.7
and 32.7 for the fourth distribution. The sixth-neighbor
distance distribution has a value approximately zero for
x/d =1 as seen in Fig. 9. This implies that no local hex-
agonal configurations exist. We have therefore no short-
range order either. The configuration we have generated
is therefore maximally random.

C. Stability

The coordination number z is defined as the average
number of geometrical neighbors in contact with a given
disk. Bideau et al. showed that for a configuration
with maximal disorder, z =4 is an upper limit of the
coordination number. Their argument is as follows:
Start with the network defined from the real contacts be-
tween disks. This implies a network consisting of po-
lygons which have edges of equal length d. From the
Euler-Poincare theorem one can write

10"

0--
1.0 1.2 1.4

x/d
1.6 2.0

FIG. 9. The probability density of finding a geometrical
neighbor at a distance x/d. ~: First-, second-, and third-
neighbor distributions collapse into the same curve; A: fourth-
neighbor;: fifth-order neighbor; and +:sixth-neighbor.

P„E—+N =1,
n (~3)

where P„ is the number of n-sided polygons, F is the total
number of edges of these polygons, and N is the number
of disks, or equivalently, the number of vertices in the
tessellation. Using the fact that each edge is defined by
two polygons, and that an edge ends at two vertices, one
may write g„~ 3,nP„=2E=Nz. Substituting the last
part of this relation in Eq. (1), gives

P„=N(z —2)/2,
n (+3)

(2)

where a term of order 1 has been neglected. Since all
edges in the tessellation have the same length d, a po-
lygon P„with n sides, is completely determined by speci-
fying (n —3) angles. The full tessellation is then specified
by determination of g„()3)(n —3)P„angles. In addition
there are N constraints at each vertex stating that the
sum of angles is 2~. For the packing to be maximally
random (or maximally disordered), the number of angles
must be larger than the number of constraints,

(n —3)P„~N . (3)
n (~3)

If this was not the case, there would be correlations be-
tween the angles. Using the above relations, Eq. (3) is
equivalent to z &4.

Uhler and Schilling tried to give an estimate of the
coordination number for a loose-packed configuration by
calculating the probability of a disk having n neighbors in
contact in a stable configuration. The central disk is
stable if it cannot move without moving any of its neigh-
bors. The value they obtained was z=3.3—3.4. Even
though their calculation was rather general in connection
with the process producing the random packing, it still
assumed a growth process of the packed configuration
disk by disk. Therefore this bound does not prevent the
coordination number from being lower in a cooperative
packing procedure like the one we have implemented
here.

In Fig. 10 we show how the coordination number
changes as the precision used to determine the disk diam-
eter d changes. The lowest curve is the RSA
configuration, and the other curves show the develop-
ment for iteration number n =200, 400, 600, 800, and
1000. From these curves we extrapolate that the
configuration in the limit n ~ ~ has a coordination num-
ber z =3.00—3.05.

We find that each disk is supported by three disks not
all on the same side of a big circle, except for the disks
which are free to move in a surrounding enclosed by a
rigidly locked structure. Stillinger et al. argued that
these locked structures are local configurations which
would rarely appear. Our procedure, however, generates
such configurations rather frequently, as can be seen in
the lower part of Fig. 4. This is a somewhat surprising
feature. The existence of many local configurations like
these is probably the reason why our configuration is at
the lower limit of stability, and that the coverage is low.
Even if the free disks are moved, only few additional
disks may be added to the configuration, so that the value
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of the extrapolated coverage will be approximately the
same. Oger et al. have studied the same effect of local
arching in three-dimensional packings created in a collec-
tive rearrangement process.

The topological relations used to derive the constraint
z ~4 for a maximal random packing, was also used by
Bideau et al. to obtain an expression for the coverage.
If 3„ is the average area of a polygon with n sides, the
coverage may be written as

n&d')
4+P„A„ (4)

0
1.0

x/d
1.2

n {~3)

Here {d2) is the average squared particle diameter, if the
packing has a size distribution of disks. Eliminating P3
and P~ between Eqs. (I) and (2) gives

FIG. 10. The figure shows how the coordination number
changes as the precision used to specify the side diameter
changes. The lower curve is for the initial RSA configuration.
The other curves show the behavior after 200, 400, 600, 800,
and 1000 iterations.

4 —z 18=m{d ) 4. A&+ (A& —2A3)+ —g P„[A„—(n —3) Az +(n —4)A3] . .
n {~5)

(5)

For a packing of equal-sized disks, the polygons with
three edges are all equilateral triangles with area
A3=d &3/4. The polygons with four sides are rhombii
with angles between n. /3 and 2a/3. The average area of
these, assuming an uniform distribution of angles, is
A~ =d 3/m. Inserting this in Eq. (5) leads to

We conclude that the configurations we have generated
are stable and dense in the limit of infinite iterations.
Since the coordination number z of our configuration is at
the lower limit of stability, with a coverage
0„=0.772+0.002, we suggest that the value we have ob-
tained must be very close to the RLP coverage.

4—z nv'3
12 2 6

—
1

+ g P„[A„—(n —3)A~+(n —4)A3]
1

NA4

(6)

Bideau et al. studied numerically a packing generated
from a seed in a central field according to the algorithm
of Bennet. In this case over 70.1% of the polygons had
four edges, and 20.7% of the polygons had three edges.
From this simulation they concluded that the sum in Eq.
(6) was less than a 0.5% correction term compared with
X X A 4. Since z =4 is believed to be an upper bound for
the coordination number of a maximal random
configuration, it follows from Eq. (6) that an RCP
configuration should have a coverage close to
0=~ /12=0. 822. This value is then an upper limit for a
maximal random packing, and the coverage corresponds
to only taking into account the contributions from the
rhombii. Gamba ' and Bordia took only this contribu-
tion into account in their derivation of the packing frac-
tion. It is interesting to observe that with a coordination
number of z =3, Eq. (6) leads to a coverage 6)=0.786 as
an upper limit. Taking into account a 0.5% correction
from the sum, the coverage becomes 0=0.782. This is
close to the average 0 =0.772 that we found for the lim-
iting configurations of our compaction algorithm.

VI. HOLE-SIZE DISTRIBUTION

0.2
I

0.4

d„/d

0.6 0.8 1.0

FIG. 11. The hole-size distribution function. The first verti-
cal line is the diameter of the smallest hole possible, and the
next is the diameter of the largest hole defined by three disks
with two points of contact ~

In Ref. 20 we introduced the concept of circular holes.
There we showed the existence is a one-to-one correspon-
dence between the circular holes and the vertices of the
VD network. In Fig. 11 we have plotted the probability
distribution for these holes. We see that the distribution
has two regions where it decreases in a characteristic
fashion. The lower cutoff' value corresponds to the small-
est possible hole, defined by three disks with three points
of contact. The crossover value is very close to the larg-
est hole defined by three disks with two points of contact.
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TABLE I. The frequencies of VD polygons occurring in the

compacted configuration.

No. of edges

3
4
5

6
7
8

9
10

Occurrence
(%%uo)

0.0
0.252

21.593
56.999
20.224
0.920
0.011
0.0

Total 99.999

geometries. It is also possible that there exist geometries
where a fit to a I" distribution is ruled out.

In Table I we list the frequencies of the different VD
polygons occurring in our configurations. We see that
only 57%%uo of the polygons have six sides, this being slight-
ly higher than the value 50&o in the RSA configuration.
The average number of sides is however 6.00, consistent
with the constraints derived from the Euler-Poincare
theorem.

VIII. CONCLUSION

We have studied a compaction process of a surface
filled with nonoverlapping disks, and characterized the
resulting geometry. We started out with a surface
jammed with disk generated by the random sequential
adsorption algorithm. The coverage of the RSA
configurations at the jamming limit was
8=0.5472+0.0002, and is the most precise value report-
ed so far. This configuration was compacted using an al-
gorithm designed to keep the packing uniformly random
during the hole process. At each stage of the compaction
process, we constructed the Voronoi-Dirichlet tessella-

tion, and moved every disk to the center of the largest
circle which could be inscribed in a VD polygon. The
disk diameters were expanded until the first pair of disks
was in contact, then the iteration was repeated. A ran-
dom dense-packed configuration with coordination num-
ber z =3.00—3.05 was the limiting configuration in the
limit of infinitely many iterations of the compaction pro-
cedure. This value is at the lower limit of stability. The
coverage obtained was 0=0.772+0.002. We have argued
that this limiting configuration is stable, implying that
the obtained coverage should be close to the coverage of
an RLP configuration. The coverage for the compacted
packing is close to a predicted coverage of 8=0.78 based
on a formula developed by Bideau et al. Our method
of compaction is a collective rearrangement process. As
a result, many local configurations containing one or a
few disks free to move in a ridigly locked environment
were created. Such local configurations cannot be creat-
ed in a process where individual disks are packed one by
one. Several statistical distributions calculated from the
limiting geometry of the compaction algorithm was stud-
ied. We found that both the area and circumference dis-
tributions of the Voronoi-Dirichlet polygons could be
fitted to I distribution functions. The disk packings gen-
erated by our algorithm are well characterized and suit-
able as "substrates" for the study of physical phenomena
such as the Aow of Auids in porous media. Together with
the random sequential adsorption and the random close-
packed configurations they form a series of well-
characterized random configurations at different cover-
age and porosities.
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