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Nonlocal dynamics of domains and domain walls in dissipative systems
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The dynamics of domains and domain walls in spatially one-dimensional systems is investigated
for the case that the evolution equation contains nonweighted spatial averages of the order parame-
ter or a function of it (strongly nonlocal dynamics). Two ordinary differential equations for reduced
order parameters are introduced. The first one governs the dynamics of domain states and domain-
wall positions. For large systems, there occurs a separation of time scales that leads to a second re-
duced equation of motion governing the dynamics of the domain sizes. The time scale of the
domain-size dynamics is proportional to the length of the system. Validity conditions of both re-
duced equations of motion are discussed. The ballast resistor and another current instability system
serve as illustrations.

I. INTRODUCTION

Many dissipative systems, especially nonlinear optical,
magnetic, and electrical systems, show bistability or even
multistability. In spatially extended versions of such sys-
tems different locally stable states may be simultaneously
realized in different parts of the system. The part of the
system that is occupied by one state is usually called a
domain. The domains are separated by domain walls
(also called fronts or kinks).

The global macroscopic state of such dissipative sys-
tems is in general determined by an n-component field
called the order parameter u. The dynamics of the order
parameter is usually modeled by a partial differential
equation. The investigation of such nonlinear evolution
equations will be considerably simplified if a Lyapuonov
functional 4[u] [i.e., d4/dt =(5tIi/5u)B, u &0] exists.
In this case one readily gets the following result. The
domain wall between two states (which are characterized
by local minima of tIi) propagates into the less stable
state, i.e., the state with the higher local minimum. For a
plane wall in an infinitely extended system the propaga-
tion velocity U"'" is constant because of the translation
symmetry in homogeneous systems. For equally stable
states the domain walls are at rest. ' This picture is often
also valid for systems having no Lyapunov functional.
However, it is usually more difficult to obtain the sign of
the wall velocity.

In this paper we investigate the dynamics of domains
and domain walls under the influence of a nonlocality, or
more precise1y, a strong nonlocality. Strongly nonlocal
dynamics means that the evolution equation contains
nonweighted spatial averages of the order parameter or a
function of it. We restrict our investigations to spatially
one-dimensional systems

1
t), u= f p; — g(u)dx, u, B„u, . . . , t)„u with uEII",

0

II. EQUATIONS OF MOTION FOR
REDUCED ORDER PARAMETERS

Before we investigate the nonlocal dynamics of
domains and domain walls, we consider their local as-
pects.

A. Local aspects of the dynamics

In order to discuss the local aspects we introduce the
local version of the nonlocal evolution equation (1.1):

B,u=f(p, g;u, t), u, . . . , t) u), (2.1)

where the nonlocality 1/L J g(u)dx is replaced by g
which should be interpreted as an additional control pa-

where p is the control parameter, L is the length of the
system, and g is an arbitrary m-dimensional vector func-
tion yielding m different types of strong nonlocalities.
Strongly nonlocal evolution equations occur in several
fields of physics [e.g. , the Taylor-Couette system, fer-
romagnetic resonance, and current instability systems
(see examples below)].

The aim of this paper is to understand the influence of
nonlocalities on the dynamics of domains and domain
walls. In Sec. II we derive two equations of motion for a
reduced order parameter with a finite number of degrees
of freedom. The first equation of tnotion (called "reduc-
tion 1")describes the relaxation of domain states towards
equilibrium and the variation of domain sizes by
domain-wall motion. For large L, the domain-size
motion becomes very slow. Therefore the domain states
can be adiabatically eliminated. This leads to a second
equation of motion (called "reduction 2") for the size of
the domains only. In Sec. III we then take a new look at
the well-known ballast resistor ' from our point of view.
In Sec. IV a two-layer model for semiconductors and gas
discharges introduced by Radehaus et al. serves as an
example where the order parameter of a domain can be
either spatially uniform or spatially periodic.
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rameter and where L ~ ~ is always considered.
Since we are interested in states with different domains,

we assume at least bistability behavior of the local version
(2.1). More precisely, in a certain subspace of the control
parameters p and g Eq. (2.1) has s ( ~ 2) attracting (i.e.,
linearly stable) states which are either stationary uniform
(k, =0) or spatially periodic (k, &0) with a standing

(c, =0) or traveling (c;%0) shape:

u, o(g;k, (x c, t—) } with u, o(g;(Il) =u, (g;(t(+2ir),

l 1 y ~ ~ ~ p s e (2.2)

We exclude attractors where the space average of g(u) is
time dependent.

The domain wall between two domains should be a
stable solution of (2.1) having a stationary shape or en-
velope moving with a constant velocity U,",

"' from a
domain of type i into a domain of type j. For simplicity
we assume that for all combinations i,j there exists a
unique type of stable domain wall with a velocity u,j"'(g)
being a unique function of g.

All local aspects of the nonlocal dynamics will be
determined by the local version (2.1). If 1/L fOg(u)dx is

time independent for a process u(t) of (1.1), then this pro-
cess has local character [i.e., will be described by (2.1)].
For example, a phase shift of a spatially periodic state is a
local process.

B. Reduction 1

with 0&q'"( I and g~, q"=1.
First of all we neglect domain-wall motions (i.e.,

q"=const) and investigate only the dynamics of the
domain states. This is a mindful approach because, as we
will see below, the time scales of domain-state motion and
domain-wall motion separate for large L. The domain
states may be described by the general equation of motion
(1.1). If the coupling caused by the nonlocality (2.3) is
zero every domain state u" will relax into the equilibri-
um u „) . If the coupling is not zero every small distur-
bance (or mode) 6u" of the equilibrium which does not
change g, i.e.,

1 Ld—f g 6u"'dx =0,
O du U (I)

will die out. Therefore the coupling between different
domains is caused only by the modes which change g
(nonorthogonal modes). Thus it should be possible to
reduce the full equation of motion (1.1) to an equation of

Now we investigate the nonlocal dynamics of a state
with I( domains. The order parameter u" of the domain
i is assumed to be a slightly disturbed equilibrium state
u (, ( of the local version (2.1). The size q "L of a domain

should be much larger than the width of a domain wall
(and also larger than 2m. /k, if the domain state is spatial-
ly periodic). Thus, the nonlocality is approximated by

K
g= —f g(u(x))dx = g q"—f g(u"'(x))dx, (2.3}L o L 0

motion for only these modes. For a spatially uniform
domain state u" the main nonorthogonal modes are uni-
form. Thus, we get the reduced equation of motion

dQ = f((M;g;u", 0, . . . , 0) . (2.4)

i = 1, . . . , K —1 , (2.5)

with U "(0')' (1,
—=0. In the case of spatially uniform

domains Eqs. (2.5) and (2.4) for i =1, . . . , 1((. coupled
through the nonlocality (2.3) form a closed system of or-
dinary differential equations for the reduced order pa-
rameter Iu'", q '', . . . , u' " q' ",u 'I This re-
duced equation of motion will be called "reduction 1."

It should be noted that Eq. (2.5) is only qualitatively
correct because the domain-wall motion is generally not
governed by the velocity function U""'(g)which is only
defined for stationary domain states. In nonlocal systems
domain states and domain sizes change simultaneously.
This leads to an open question: What is the response of a
domain wall if at least one domain state is time depen-
dent?

C. Reduction 2

In order to get a further reduction there should exist a
subspace of domain configurations I q

"', . . . , q
'

that are all nonlocally stable. For large L the domain
sizes q" become very slow variables compared with the
L-independent relaxation times of the domain states.
Thus, we eliminate the faster variables u" adiabatically
(in lowest order du" /dt—:0) which leads to a self-
consistency equation for the nonlocality

g= g q,
—f g(u, „(g;x))dx,'L o

K
with q,

= g li („q"', (2.6)
j= 1

where 6,- is the Kronecker symbol, and where q, L is the
sum over sizes of those domains which are in the state

For a spatially periodic domain state u'" the main
nonorthogonal modes are uniform amplitude changing
modes. In this case the full equation of motion may be
often reduced to a third- or fifth-order Landau equation
for the amplitude of the oscillation.

Now we introduce the notions local stabihty and nonlo-

cal stability. Local stability means that any
infinitesimally small disturbance which does not change
the nonlocality (2.3) dies out. Nonlocal stability means
that all infinitesimally small disturbances die out. Clear-
ly, local stability of every domain state (which we have
been assumed in Sec. II A) does not imply nonlocal stabil-
ity of the total state. It should be noted that the nonlocal
stability depends on the domain sizes given by q".

Up to now we have assumed that the domain walls are
at rest (i.e., q '=const). But the movement of the
domain walls changes the domain size. Thus, we get

d'" 1
[U

wall (g) wall
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u;0. Clearly, the q's fulfill the conditions 0 & q; & 1,
i =1, . . . , s and g,'-, q, =1. The self-consistency equa-
tion (2.6} is an implicit definition of the function

g(q, , . . . , q, &). Thus, Eq. (2.5) leads to coupled equa-
tions of motion for the q, (reduction 2):

dqi

dt
=1 g n„u,","'(g), i =1, . . . , s —1,

j6o,
(2.7)

where o.; is the set of all types of domains which are
neighbors of domains of type i and where n; is the num-

ber of domain walls connecting domains of types i and j.
Equation (2.7) describes correctly the dynamics up to

the order L '. By taking into account the interaction
between domain walls, we get the correction terms of or-

der e ~ ~ (D is the domain-wall width) of the
Kawasaki-Ohta theory. These terms will be dominant
after reaching a stable fixed point of (2.7).

A further reduction will be possible if the number of
nonlocalities m is smaller than s —1 (s is the number of
domain types), and if the spatial average of g(u;o(g;x))
does not depend on g. Differentiating (2.6) and using
(2.7) leads to an equation of motion for the nonlocalities:

dg 1
g;(g) g n;, U,","'(g)

I

with g; =—j g(u;o(g;x))dx . (2.8}
1

0

In Secs. III and IV we concentrate our discussion on
physical systems where reduction 2 gives a correct
description. But it should be kept in mind that (2.7} is
only true as long as the domain states are nonlocally
stable (i.e., nonorthogonal disturbances which are con-
nected by the nonlocality die out). Since nonlocal stabili-
ty depends on q;, we can apply bifurcation theory, where
the q's act as control parameters. For example, if
g(q&, . . . , q, &) defined by the self-consistency equation
(2.6) is multivalued, a saddle-node bifurcation will occur
at the submanifold of the space [ q, , . . . , q, , ) where
two branches of g(q~, . . . , q, , ) are connected. The
domain states are nonlocally stable on one branch and
unstable on the other. Now let us choose a state on the
stable branch. Consider the case that the equation of
motion (2.7) for the q's moves the state toward this
saddle-node bifurcation. At least at the saddle-node bi-
furcation, reduction 2 [i.e., Eq. (2.7)] fails. Usually it fails
before reaching the saddle-node bifurcation because

III. THE BALLAST RESISTOR

A. The equation of motion

The ballast resistor is an essentially one-dimensional
system. The equation of motion for the temperature
profile T(x, t) along the wire is

c,B, T =Ac)2 T —A (T)+I R (T), (3.1)

where c, is the specific heat per unit length, A, the heat
conductivity, A (T) the heat loss into the gas, and R (T)
the temperature-dependent resistance of the wire per unit
of length. For simplicity we have neglected the Thomson
effect (which leads to a term o IB„T)and the temperature
dependence of c, and k. The nonlocality results from the
fact that the current I is determined by the total resis-
tance which is an integral of R ( T) over the sample,

In this section we apply our theory to one of the sim-
plest nonlocal systems: The ballast resistor —an old elec-
trical device. The advantages of this example are the fol-
lowing. (i) The order parameter has only one component
(the temperature); (ii) there is only one nonlocality (the
total resistance); (iii) the equilibrium states of the
domains are always uniform and stationary; (iv) the local
version which is a one-dimensional reaction diffusion sys-
tem has a Lyapunov functional' '" (but not the nonlocal
one); (v) existence and stability of domain walls of the lo-
cal version have been rigorously proved. '

The ballast resistor consists of an iron wire in a cooled
hydrogen atmosphere under low pressure. Connecting
the ballast resistor to a voltage source leads to a linear
ohmic response for low voltage. For higher voltage, the
slope of the current-voltage characteristic decreases, and
a plateau of constant current is reached either smoothly
or by a jurnp to a lower level of the current. At the end
of the plateau, the current increases again, usually linear-

ly, but with a higher resistivity than for low voltages. In
the plateau regime the resistor shows a nonuniform spa-
tial structure of a hot glowing region surrounded by
cooler regions of the wire. The hot region spreads by in-
creasing voltage.

Although since the beginning of the century the ballast
resistor was used to stabilize the current in technical ap-
plications, an explanation of this behavior was given for
the first time by Busch in 1921. Since the mid 1970s, the
ballast resistor was taken as an example of a nonlinear

system. ' "" ' In the past 30 years several similar
electrothermal instabilities in metals, semiconductors,
and superconductors have been investigated (for review

and further references see Ref. 5).

g

R Tx dx
L 0

U0
with E=

L
(3.2}

and g varies on a faster timescale than the nonlocal relax-
ation of the domain states. One might go back to reduc-
tion 1, but it is unclear whether this approach is useful
because of the above-mentioned unknown status of the
domain-wall velocities for time-dependent domain states.

where U0 is the external voltage and L the length of the
wire. In order to suppress the effects of boundary layers
we use the following boundary conditions:

(3.3)
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Instead of the averaged resistivity R we will use the
current I as the nonlocality. Therefore, the local version
(3.1) of the ballast resistor has a natural meaning: It is
the resistor in a current-controlled circuit. In any other
circuit where the current through the ballast resistor is
not externally given, we have to take into account the
nonlocal character of the system. In the literature the
ballast resistor is often treated as a current-controlled
system, and voltage Up is computed afterwards by using

(3.2). Such an approach fails, however, in the case of
nonstationary solutions. In a paper by Bedeaux and
Mazur' on the stability of domainlike stationary states,
they distinguish clearly between fixed current and fixed
voltage. However, they made an error in the computa-
tion of the spectrum of the linear operator which occurs
in the linear stability analysis. For no obvious reason
they symmetrize the original non-Hermitian linear opera-
tor. But it is evident that the spectrum of the sym-
metrized operator differs generally from the spectrum of
the original one. In the case of Neumann boundary con-
ditions (3.3) this leads to the wrong result that the largest
eigenvalue for large L is proportional to L . From the
second reduced equation of motion (2.7) (reduction 2) it

may be seen that the largest eigenvalue is proportional to
L ' [see Eq. (3.17) below]. Computing the spectrum of
the nonsymmetrized operator of Bedeaux and Mazur
leads to the correct result.

The local version The .local (i.e., current-controlled)
version (3.1) of the ballast resistor has the Lyapunov
functional

4[T]= f —(B„T) P( T) dx,—
0 2

(3.4)

where P( T) is defined by

P( T) = f [I R ( T') —A ( T')]dT' . (3.5)

Clearly, the stationary linearly stable uniform states
T;0(I) of the local version (3.1) are given by the relative
minima of 4[T) [i.e., relative maxima of P( T)]:

A (To)=I R (T, )owith dT A (To) )I drR (To)

for i =1, ~ . . , s, (3.6)

where dT—:d/dT. Figure 1 shows the graphical solution
of (3.6): Locally stable uniform states are given by inter-
section of 3 with I R, where the slope of 3 is larger than
the slope of I R. In order to get even bistability R should
have at least one inAection point if heat conduction dom-
inates the heat loss (i.e., 3 ~ T —TG). Such behavior of
R is typical near a phase transition point T, of the con-
ductor. " Bistability is possible only if TG & Tc and ifI,„&I&I,„(see Fig. 1). Spatially periodic states of
the local version are all unstable. '

Consider a domain wall between two uniform stable
states T,p and T p) T,-p. As mentioned in the introduc-
tion, the sign of the domain wall velocity v,""'(I) is given
by the sign of

A(T} —
I
12—

I

10 20

T o(I)
$(T,O(I)}—(h(T;0(I)}=f A (T)dT

to
T 0(I)I R (T)rIT .

This leads to the well-known equal-area rule' which says
that the domain wall rests if the two hatched areas in Fig.
1 are equal. Since the local version is a one-component
reaction diffusion system the domain wall is always stable
in the comoving frame of reference if there does not exist
a stable state Tp with T,p ( Tp & Tj p.

'

The existence of a Lyapunov functional implies that
the local version has no limit cycle solutions. But the
nonlocal (i.e., voltage-controlled) ballast resistor does not
have a Lyapunov functional. A forthcoming paper will

give examples for such limit cycles in the framework of a
detailed discussion on the failure of reductions 1 and 2.

B. Reduced equations of motion

We assume that there exists only two locally stable
domain states T&p and T2p with Tzp& T,p, as in Fig. 1.
The simplest nonuniform state has two domains which
are separated by a domain wall. Applying our theory
from section 2 [i.e., Eqs. (2.4) and (2.5)], we get reduction
1:

dT'
c, = —3 (T")+IR (TI') i =1,2,

dt
(3.7)

with

d 1q =—.""(I)
dt L

(3.8)

(1 q)R (T''')+qR (T—' ')
(3.9)

where qL is the size of domain 2.
In order to test the domain states on nonlocal stability

we keep q fixed. Now the stationary solution of (3.7) is
( TI ",T' ') =(T,o(I (q) },T20(I (q) }),i = 1,2, where I (q) is

FIG. 1. The uniform states T,o of the ballast resistor defined

by Eq. (3.6) (for more details see text).
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a solution of

I(q) = E
1 —q)R ( T,o(I (q) ) )+qR ( Tzo(I (q) ) )

(3.10)

dI —(Az —Ai)

qo E+I ((1—12 qo )dTR, dr T, +qodTRzdi Tz }

(3.18)

k —kN„+Ad„=O,

where

(3.11)

Solving the linearizeg rized equation of motion (3.7) with the
ansatz 5T'"=c, exp A, t c„) leads to the characteristic o-
lynomial for the eigenvalue k:

eris ic po-
Differentiating (3.6) with respect to I leads to

2I IqR;

dT A, —I zdTR;

Using (3.13) and (3.19) we find

(3.19)

N =A.
"'—X'"—2 R

E q, R idTRi+qqRqdTRq), (3.12)

—glOCglOC
3

z
— (q, R, dTR, Az" +qzRzdTRzA, '")

(3.13)

dI
qo

—(A —A )A, '"A,'"
EXd„

(3.20)

Sin
t fd

'nce d„ is assumed to be positive (i.e., nonlocal stabili-

i qo)& A(Tio).
ionary solution (3.16) is stably o amain states) the station e

with

dq 1=—vzi"'(I lq)), (3.15)

where the current I(q) is defined by (3.10). Thee station-
g' n or equal-area-rule current I

vzi (Iiq)=0]:
gl.e.,

q,:—1 —q, q,:—q, R; —=R(TO},

drR; =dTR (To), A, ';"=—d A (T )+Izd;o +I dTR (T;o) .

Now the condition for nonlocal stabilit
1 N 0 dN,a d„&0. Because E I

p-tve -d ~'-
, q;, andR, are

is negative in accordance with (3.6)
sumcient conditio

~ p a

and dTR (Tzo) &0.
ffi

'
ition for nonlocal stability is d R (TT io) &0

Now assuming nonlocally stable dom
'

o y s a e domain states and ap-
'n . ond reduced equation'ng q. . ), we get for the secon

A (T)=T,
R (T)=1+r(T—To)/[(gT) +(T —T0

(3.21)

with 0(r (1, (3.22)

where T mT measures the temperature difference fr
gas temperature T . Furturt ermore, we set in E . (3.1)
c„=1 and A, = 1. Since R ( T) incrincreases with T we see im-
me iate y y applying the results of Sec. IIIB that
two-domain state is alwa s s

tata
ways stable. For the simulation a

ran - icolson scheme was used. A11 c
h di a gn oint distanance of 0.1 in space as

Figure 2 illustrates the typical dynamical behavior of

C. Com arip 'son between numerical simulations,
reductions 1 and 2

tions:
We choose the followin ( h

'

g p ysically reasonable) func-

E/I, q
—R ( Tio(I iq ) )

0 R ( Tzo(I i~ )) R ( Tio(Iiz ) )
(3.16) 10

In order to test the stability we make thma e t e usual ansatz

q =qo+5q e ' and linearize the e ua
'

qo. ear y qo is stable if

10

10

dUp)

q "L dI I12dq qo

(3.17)
10

dU wall
21

12

Differentiating
A,:—A(T, O(I, ~

find

=2I,~ R (T)dT &0 .

(3.10) with respect to d
)

o q and using
) and the definitions (3.14) at I =I we—I&z we

is negative. The existence of a L aa yapunov functional for
a version implies immediately

10
0 5 10 15 20

t

0 T
0 10 20

X
30 40 50

FIG. 2. Numumerical simulation of thee ballast resistor with
=1, E=2, and L=SO. Mes

=01 Th o d 1o te ~ne indicates the terno e temperature profile at
is t e stationary state for E=1.5.

snapshots of the
he solid lines are

e system at t=5, 10,15,2025
picts the Euclid d'

, 0. The inset de-
i ean Istance in phase s ace betwe(=)
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8.1—

simulation

reduction 2

differential conductivity and the other layer is assumed to
be a purely ohmic medium with constant resistivity. In
the model of Radehaus et al. , the potential v(x, y, t)
across the ohmic layer and the normal component of the
current density w (x,y, t) from the ohmic layer into the
nonlinear layer are governed by the following equations
of motion:

7.7—

&0&v —Av +w v p &

B,w =oh, w —v —f (w)

with the nonlocality

1
peg p f w Qx Gfp

(4.1)

(4 2)

7.5
0.000 0.005 0.010 0.015 0.020 0.025

1

FIG. 3. Relaxation of the domain wa11. Comparison between
simulations, reduction 1 and reduction 2. The dashed line is a
linear extrapolation of the last two data points. The parameters
are the same as in Fig. 2.

the ballast resistor. The simulation starts with a two-
domain state which is stationary for a lower value of E.
The solid lines are snapshots of the temperature profile
for equidistant time steps. First of all the temperatures of
both domains increase rapidly. Afterwards the tempera-
tures of both domains slowly decrease down to the values
they had started with. On the same time scale the
domain wall relaxes into a new equilibrium position. In
1921 in a footnote of his paper, Busch gave a nice
description of an observation of this dynamical behavior.
The inset of Fig. 2 depicts clearly the two regimes of the
fast and the slow relaxation of the domain states and the
domain wall, respectively.

In Fig. 3 the time scale of a domain-wall relaxation
given by the largest eigenvalue kz of a linear stability
analysis is shown as a function of 1/L. The data of the
simulation are given by the slope of In~~ T(t +At) T(t)~(—
for large t. The curves for reductions 1 and 2 are calcu-
lated analytically (see appendix). Reduction 2 gives the
leading term of a 1/L expansion which agrees very well
with the simulation. The higher-order corrections of
reduction 1 are clearly wrong. The reason for that is the
fact mentioned in Sec. II that the domain-wall motion is
not known quantitatively for nonstationary domain
states.

B„v (O, t) =B„v(L, r) =B„w (0, r)=B„w (L, t) . (4.3)

For f we choose a third-order polynomial which is the
simplest analytic function leading to negative differential
resistivity (i.e., f'=d f&0):

f (w)=w —yw, (4.4)

where the inflection point of f has been shifted into the
origin which does not change the form of (4.1) because f
is the only nonlinearity.

A. Stationary states of the local version and their stability

Solutions of

p,~=w+f(w)=w +(1—y)w (4.5)

lead to spatially uniform states of the local version (4.1)
with v = —f (w). If y ) 1 we find bistability for

' 3/2

where all variables and parameters are measured in di-
mensionless units, F is the area of the boundary between
the two layers, p and p,z are proportional to the external
voltage and to the voltage difference between the metal
electrodes, respectively, r is proportional to the load
resistance, ~ is given by the dielectric constants, and 0. is
proportional to the ratio between the charge carrier
diffusion constant and an effective diffusion" constant of
v (for more details see Ref. 6). The nonlinearity f (w) is
the current-voltage characteristic of the nonlinear medi-
um.

Now we restrict our investigation to the one-
dimensional version of (4.1) (i.e., b +d„) and cho—ose as
boundary conditions

IV. NGNLOCAL DYNAMICS IN A TWO-LAYER MODEL
OF A CURRENT INSTABILITY

This section exemplifies the typical nonlocal behavior
of a bistable system where one state is spatially periodic.
The system is a two-layer model for semiconductors and
gas discharges introduced by Radehaus et al.

The system consists of distinct planes layers between
two plane metal electrodes which are connected to a con-
stant voltage source via a load resistor. One layer is as-
sumed to be a medium with an S-shaped negative

Testing the stability of a uniform solution against a per-
turbation of the form (5v, 5w)=(5vk, 5wk)exp(ikx+At)
leads to the eigenvalue (3.11) with

N„= —f'(w) —(o+r ')k —r

rN~„=1+(1+k )[f'(w)+o.k ] .

(4.6)

(4.7)

The uniform state becomes unstable either by N„&0
which implies a Hopf bifurcation or by X~„&0 which
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FIG. 4G. 4. Instability and bifurcation types of the spatially uni-

orm states of the local version of the two-layer model (4.1),
w ere H indicates Hopf bifurcations, SN saddle-node bifurca-
tions (k =0), and PF pitchfork bifurcations (k =k, WO).

FIG. 5. A stationary state of the two-layer model (4.1) for
p= —0.47, r=2, o. = —', ~=1, y=0.9, and L=250. It results

from a numerical simulation (Ax=0.25 b, =0.1t= . started with
the state (4.11) (a sharp Gaussian peak at x=100 on the unsta-
ble uniform state).

1
&mphes a saddle-node bifurcation (k=O) or a pitchfork
bifurcation (kAO}. The Hopf bifurcation occurs if

(4.8)

the saddle-node bifurcation occurs if

(4.9)

and the pitchfork bifurcation occurs if
' 1/2

domain-wa11 motion moves the system int t t
spikes as seen in Fig. 5. Oscillations of

~~u t+ht —u(t)~~ [i.e., the Lz norm of the difference of
the order parameter u—:( v (x ), tv (x ) ) between successive
simulation steps] indicate acceleration and deceleration

-0.02B

f' f'p„—=o —2&o with k =k, —=
1——1v'g

(4. 10)

-0.030—

L.
-0.034—

Which kind of instability actually occurs depends on o

-0,038—

B. The nonlocal pinning behavior

We choose ~=1, o =
—,', and y =0.9 to avoid bistability

between uniform states. Nevertheless, the local version
shows numerically bistability between a uniform state
and spatially periodic states.

Figures 5—7 present results of a simulation for

sc erne was used. The simulation was started at the un-
stable uniform state with a sharp Gaussian pea~.

'2
x —100

2
v (x, 0 }= —0. 186461+e

-0.042

10

10

10

250 500 750

u) (x,o) = —0.218 821+e

x —100
'2

2

(4.1 1)

10
This large perturbation of the uniform state ga e guarantees

a on y one domain with a spatially periodic order pa-
rameter will be created (see Fig. 5). For 0 ( t (20 a non-
ocal relaxation occurs into a sm 11 11a spatia y periodic

domain with one spike. ' For 20(t& 500 the nonlocal

250 500 750

FIG. 6. T
in hase s ac

~ . he evolution of the nonlocalit and thi y p,z an t e distance
p ase space between successive steps of th le simu ation of the

wo-layer model mentioned in Fig. 5.
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FIG. 7. The wave number k (x) from the simulation

of the two-layer model mentioned in Fig. 5 for t=500, 1500,

2500, 3500, 4500. Phase diffusion flattens k(x) in the domain

with the spatially periodic substate. k(x) was computed by

measuring the distance between successive maxima or minima.

of the domain-wall motion. At every maxim urn of
~~u(t +At) —u(t)~~ a new spike occurs. A pair of spikes
will always be created since there are two domain walls.
At the same time the nonlocality p,z decreases rapidly.
The time intervals between two successive spike creations
become larger and larger because the averaged domain
wall velocity decreases. After the creation of the last pair
of spikes the domain wall comes to rest. For t & 500 the
nonlocality p,z remains constant. But a local process
remains: Phase diffusion in the spatially periodic domain
(Fig. 7).

The acceleration and deceleration of the domain-wall
motion indicate that the domain wall "feels" the periodi-
city of the nonuniform domain state. This is a generic be-
havior of a domain wall between a uniform state and a
spatially periodic state. ' As consequence of this behav-
ior the averaged domain-wall velocity U""'(p,fr) of the lo-

cal system is zero in a ftnite interval of p,~, i.e., the
domain wall is pinned. In a numerical experiment we are
able to measure this pinning interval by varying p,z until

an instability occurs, and either a spike appears of disap-
pears. Figure 8 shows the result for a smaller system
than the above-mentioned [L = 10(2'/ k, ) ]. Thus,
u""'=0 for —0.0468 (p,&& —0.0396. In both the local
and the nonlocal systems, the domain-wall pinning leads
to rnultistability between states with different numbers of
spikes, where the number of states is proportional to L
and to the width of the interval of p,z where U"'"=0.
Furthermore, multistability is also caused by the fact that
the number and the positions of spatially periodic
domains may be varied. In the extreme case single-spike
domains may be randomly distributed over the system if
the Kawasaki-Ohta forces between the domain walls are
smaller than the pinning force. '

Multistability is a very common feature of current in-

FIG. 8. Stationary stable states of the two-layer model for
r=2, 0.= —,~=1, y=0.9, and L =20m found by numerical

simulation (hx = vr/10). The uniform state is labeled with horn,

the spatially periodic state ( k =0.95) with per, and the two-
domain state with the number of spikes.

stabilities. Many experiments ' show that multista-
bility is caused by the occurrence of filaments (i.e., nar-
row current trails where the current density is much
higher than elsewhere) which occur randomly every-
where in the sample. By identifying filaments with spikes
the analogy is evident. But the matter is not as simple as
one would expect because one has to keep in mind that
the two-layer model has two different uniform states if
y) l. In this case (which is the more typical one) it is

difficult to distinguish between spikes which are small
uniform domains and spikes which are spatially periodic
domains with one oscillation.

V. CONCLUSION

In this paper the influence of nonlocalities on the dy-
namics of domains and domain walls has been studied.
The existence of domains implies that the local version of
the equation of motion (i.e., the nonlocalities are treated
as control parameters) shows bistability or even multista-
bility. Two systems of first-order differential equations,
called reductions l and 2, were introduced. Reduction 1

[Eqs. (2.4) and (2.5) with (2.3)] describes the dynamics of
nonorthogonal modes (orthogonal modes do not contrib-
ute to nonlocalities) of the domain states coupled by the
nonlocalities and the dynamics of the domain sizes. The
time scales of the domain states do not depend on L,
whereas the time scales of domain sizes are proportional
to L. Thus, for large L the nonorthogonal modes can be
adiabatically eliminated. This yields reduction 2 [Eq.
(2.7) with (2.6)] which is a closed set of first-order
differential equations for the domain sizes. Reduction 2
may be interpreted as the first term of a 1/L expansion.

The adiabatical elimination yielding reduction 2 is
correct as long as all nonorthogonal modes of the domain
states are damped (nonlocal stability of the domain
states). Nonlocal instabilities are possible even though
every single domain state is locally stable. For the ballast
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resistor, for example, this may be possible if
drR (To) &0. Nonlocal stability depends clearly on the
actual domain sizes. Therefore, it is conceivable that the
dynamics governed by reduction 2 moves the system into
a state where the validity condition of reduction 2 fails.
Using reduction 1 in this case the system may be de-
scribed qualitatively very well. But, as we have seen in
Sec. III C, quantitative results may be incorrect since the
domain-wall velocities used in (2.5) are generally wrong
because they are computed for stationary domain states.

It should be noted that the idea which leads to reduc-
tion 2 may be found implicitly and some times explicitly
in the literature, e.g. , for electrothermal instabilities see
Refs. S and 13, and for spiral turbulence in Taylor-
Couvette systems see Ref. 23. But it is the first time that
reduction 2 is generally discussed, and almost more im-

portant, its limitations are shown.
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APPENDIX: LINEAR STABILITY ANALYSIS
OF THE TWO-DOMAIN STATE
OF THE BALLAST RESISTOR

4+T,o

b, T[po —ln(p+o )]
(A8)

This result is easily found by interpreting the equation of
motion (3.1) in the comoving frame of the domain wall as
an equation of motion of a damped (damping constant
=U""') particle in the potential P. Solving the charac-
teristic polynomial of (A3) leads to the eigenvalues

In this appendix we compute the stationary two-
domain state and its stability for heat loss A (T) and
resistivity R ( T) defined by (3.21) and (3.22), respectively.
We do this only for reduction 1 [i.e., (3.7) and (3.8) with
(3.9)]. The results, especially for A, , for reduction 2 can
be obtained by taking the limit 1/L ~0.

Because of the symmetry of R ( T) the equal-area rule
leads immediately to

I„=+To . (Al)

Thus, the stationary state of reduction 1 is given by

kl /2

1
A, = —1+—

3
p

where

~(1) 2
1+p P

2p2 p2

2g( I j 2( 2

+ 1+
p 1

g(l) 2
p

p2

L
—1

'2 1/2 '

(A9)

(A10)

«To —To
Tlo/20= To+ ATo qo= 1+

2 ATo
(A2)

6T, a „a,2 b, 6T]
d

6T2 = a21 a22 b2 5T2
dt

6q c
1 c2 d 6q

(A3)

where p=rTO/b T and cr =(p —1)' . Next, we linearize
reduction 1:

8+Too4—
~(1)

E (p + 1)[po —ln(p+ o ) ]
(Al 1)

a =a'"L-'+0(L-2) .
q

(A12)

For reduction 2 A, is given by the leading term of (A12).

Expanding the largest eigenvalue I, —= k& (which charac-
terizes the relaxation time of a domain wall) in powers of
L 'weget

'Usually a small "force" proportional to 1/exp (distant between
walls/wall width) remains between neighboring walls, see
Ref. 9.
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