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Solutions of a generalized Emden equation and their physical significance
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A generalized Emden equation is shown to appear in the description of a wide variety of critical
systems as a reduced equation for multidimensional kinetic equations for the order parameter. We
have surveyed some of the known solutions and found a number of types of physical behavior such
as singular, decaying, and osci11atory damped. A new method of finding appropriate solutions has
been given together with, in some cases, severe restrictions on its use. An important link between a
generalized Emden equation and an autonomous equation for a damped anharmonic oscillator has
been found and exploited.

I. INTRODUCTION

Historically, the Emden equation

an density

H, =
—,'m ($, ) + ,'D(V'Q) —+A2$ + A4$ +A6ttt (2)

—+— +)Ltt))" =0dP 2dg
dp T dP'

was first studied by Emden in 1907 (Ref. 1) in the context
of the thermodynamics of interacting gas molecules in a
spherical cloud, where tt) represents the gravitational po-
tential of the gas, p is an empirical constant, n is an in-
teger, and r is the distance from the center of the cloud.
It appears also as an equation describing white dwarf
stars. An anharmonic oscillator with a damping force
proportional to velocity may also be modeled using an
Emden-like equation. In these earlier studies relatively
few solutions have been found analytically, although
series expansions and numerical integration techniques
have been used extensively. '

In several recent publications a generalized Emden
equation has found new applications to the kinetics of
critical phenomena. " There appear to be two main ap-
proaches to these types of problem, both based on
Landau-Ginzburg (LG) phenomenology. The first pos-
tulates a Hamiltonian or Lagrangian density as a series
expansion of the potential energy V($) with a kinetic en-
ergy and a term describing inhomogeneities. Here 4 is an
order-parameter field that may either be real or complex.
This then leads to Euler-Lagrange equations (ELE) for
the formulation of kinetics of the critical system, which
will either be a nonlinear Klein-Gordon equation
(NLKGE) or a nonlinear Schrodinger equation (NLSE).
In the case of free-energy densities, a similar expansion is
postulated as the starting point, and the relaxation dy-
namics of the order parameter is then derived in the form
of a time-dependent Landau-Ginzburg equation
(TDLGE). The above equations have been recently ana-
lyzed using the method of symmetry reduction
(MSR).'-'

A number of critical systems can be described using
the real order parameter tb and the following Hamiltoni-

where m is the mass, A2=a(T —T, ), and the transition
is of second order if A4&0 and of first order when

A4 & 0. The constant D is related to the nearest-neighbor
interactions. The kinetics is described by ELE in the
form of the NLKGE below,

2),P = —2( A ~ tt) +2 A „P'+3 A 6P ) =F ( $), (3)

Analysis of Eq. (3) using the MSR (Ref. 5) resulted in a
large number of geometries for the solution space. Here,
we are particularly interested in solutions leading to a
generalized Emden equation of the form

d

dj
+ — =AF(ttt) = —g (tb), (4)

where g is a symmetry variable and the coefficients k and
k depend on the particular reduction. In general, for ar-
bitrary values of the parameters A2, A4, and A6 the fol-
lowing cases are of particular physical interest.

(a) For e=+1,
(=(xti+x, + +x& )'~ for 0~ k ~ 3, X= 1 .

This represents contracting unidirectional, circular, or
spherical solutions (order-parameter structures) for k =1,
2, and 3, respectively.

(b) Fo = —1,

(=(xo —x', — . —xk )'~ for 0~ k ~ 3, A. = 1

which represents expanding analogs of (a).
(c) Also, for e= —1,

g=(xi+xp+ . . +xt,. +, )' for 0~k~2, A. = —1 .

3

where 2),=B /c)xo+eg;, t) /Bx; and e= —sgn(D) is a
signature. The independent variables are defined as

x„=m '"t, (x„x„x,)= L)~ '"(x,y, z) .
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This is a stationary hyperspherical type of symmetry
variable.

(d) Also, for e = —1,

)t: +1
g (A, , x —B)

I =]
0&k&1, k= —l,

and f (g) satisfies a special form of Eq. (4),

d'f (3q+k) 1 df
dg2 (2q+1) g dg

Due to the nature of q, each solution of (5) represents an
infinite family of solutions leading to distinct (curved)
geometries of the order-parameter field.

When (t is complex the Hamiltonian density is

02= ,'mls, I'+ ,'-DIVWI'+ A-il((l'+ A&III'+A6141'

(6)

The equation of motion then takes the form of a complex
NLKGE

2),iI)= —2[A2+2A4$$*+3A6($$') ](t .

Representing the order parameter as /=i)e'~, where r) is
the envelope and it the carrier wave, one can transform
Eq. (7) into an equivalent system of coupled partial
differential equations (PDE's), which can then be solved

by imposing a special ansatz. For example, by setting
(Vg) =const, Xl,i)'j=0 and (Vrl) (Vitt) =0 yields the now

familiar NLKGE for the envelope g. The three condi-
tions listed above Eq. (8) can be easily satisfied when the
envelope and carrier waves propagate in orthogonal
directions. Thus, again, we see several possibilities which
lead to an Ernden-like equation.

When the conjugate momentum of the complex order
parameter P is

BL —isr=
BP, 2

then the corresponding Lagrangian density may be writ-
ten as

and the Hamiltonian density is that of Eq. (6) with m =0.
The ELE then takes the form of a NLSE

(A;, A, )= —b;, ; 1 ~i, j~k+ I, where A, and 8 are ar-
bitrary vector functions of xo+x3. This is a so-called de-
generate symmetry variable. We wish to emphasize that
in all these cases, (a) —(d), one should reduce Eq. (3) to the
ordinary differential equation (ODE), Eq. (4).

In addition, we find specific reductions that arise pre-
cisely at the tricritical point, i.e., for A2 = A4 =0. One of
them is g=(xo —x, — —x )(xo+x, )~, k =1,2, 3 for
g= —1. The solution is then expressed as P=p(x)f (g),
where

p=[(2q+ I)/6A6]'~ (xo+x, )~, qW —
—,
'

iy, =»y —2A, y 4—A. lyly —6A IyI'y . (10)

Recently, " this formalism was used to describe a bo-
son gas with two- and three-body interactions. Rotation-
ally symmetric "bubblelike" soliton solutions satisfying
an Emden-like reduced ODE have been found numerical-
ly. Furthermore, Gagnon and Winternitz have pub-
lished extensive studies for Eq. (10) using the MSR. A
few reductions result in an Emden type of equation for
the envelope of (t. All of them involve either cylindrical
or spherical geometries with k =1 or 2 in Eq. (4), respec-
tively.

In this context, a recent result ' links a very general
second-quantized Hamiltonian for strongly interacting
many-body systems of bosons or fermions near criticality,
i.e.,

03 g ~k, /q kqi + 2 ~«, i, q «qi q qk+ I
k, l k, l, m

6 = ,'D(V$) + Aip + A—~b + A6$' . (12)

The relaxation kinetics of the nonconserved order param-
eter $ is described' by the TDLGE

P, +V $=+b$+cP'+dP', (13)

where t is a scaled time variable and the parameters b, c,
and d are also scaled from Az, A4, and A6, respectively.
Equation (13) (Ref. 9) and its steady-state analog" have
also been the subject of analyses using MSR. ' Two
reductions correspond to cylindrical and spherical
geometries, for which the reduced equation is of the Em-
den form.

Thus the generalized Emden equation appears in both
Hamiltonian (Lagrangian) and free-energy descriptions of
critical systems with real or complex order parameters.
The types of reduction that lead to the Emden equation
correspond to cylindrical and spherical geometries or,
only for the vicinity of the critical or tricritical poirit, ta
fairly arbitrary ones as a result nf the presence of degen-
erate symmetry variables.

with the NLSE in an exact way because of renormaliza-
tion theory. Such a generic form of the Hamiltonian is
frequently encountered in the physics of superconduc-
tors, superAuids, metals, crystal lattices, and magnetic
spin systems, to mention but a few. Heisenberg's equa-
tion for the creators and annihilators is denved using Eq.
(11) followed by the introduction of quantum fields. The
equation of motion for the quantum field is then demon-
strated to be a generalized NLSE. Therefore on using the
MSR, one finds, for example, in cylindrical and spherical
geometries, that the reduced ODE's are Emden-like.
Through the connection with quantum many-body phys-
ics oscillating solutions may be interpreted as elementary
excitations, whereas localized solutions lead to coherent
structures such as solitons or vortices.

A more phenomenological approach to the kinetics of
critical systems is to postulate a LG expansion of the
free-energy density 6 as
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II. SURVEY OF KNOWN SOLUTIONS

In this section we briefly review the known analytical
solutions we are aware of, for Eq. (4).

A. Monomial g (P) =y4)"

3. Solution for n=l, k=2, y=1

For this case Davis provides the general solution

sing cosg
(21)

Without loss of generality y may be put equal to unity
as a result of scaling the independent or dependent vari-
able.

1. Special cases with n=O, n=1, k=0

For special cases with n =0, n =1, and k =0, we have
the following.

(a) n =0. This applies to Eq. (4) with g (P)=1. Putting
Z =d(t)/dg reduces it to a first-order linear ODE with an
integrating factor g". Then, the following explicit solu-
tions are found when k%1, kW —1:

To the best of our knowledge there are no solutions for
n —2.

y=+&(2 —k)/lylg '. (22)

The k =3 case has been studied by Fowler, ' and he
found for y &0,

4. Solution for n =3

A special solution for k%2 and y (0, but otherwise ar-
bitrary, is found, for example, in Skierski, Grundland,
and Tuszynski,

-~' +"' ""+k,
,2(k + 1) (1—k)

(14) 1 2
( )=-

y(2 —K )

1/2
ln(g/go)

dn
(2—K )

z ]/z' (23)

when k =1;

4
+ k0lng+ k2,

when k= —1;

in)+ ++ +k3,k() g

2 4 2

(15)

Z+() —k)/2( (17)

(c) k =0. When g(P) is a cubic polynomial this ODE
has been studied in Ref. 13 while for a quintic polynomial
it has been exhaustively investigated in Ref. 5. However,
for a special case when g (P) =P" we may integrate direct-
ly to obtain for n 4 —1

dP
[k yn+1/(n +1)])/2 (18)

while for n = —1

=f exp(k0 —Z )dZ,

where k0 —lnP=Z .

2. Solution for n =0, k=2, y = l

where ko, k, , kz, and k3 are integration constants.
(b) n =1. Here Eq. (4) can be cast in the form of the

Bessel equation

z W" +(1—2a)zW'+[(Pyzr) +a —5 y ]W=0,
with the solution W =z Zs(pzr) and Zs is any arbitrary
solution of the standard Bessel equation. Hence the solu-
tion to Eq. (4) with n =1 is

where go and K are arbitrary constants, K being the Jaco-
bi modulus such that O~K &1. Since dn is an elliptic
function, P represents an oscillating damped solution.

For K =0 and K =1 one obtains, ' respectively,
' 1/2

1 8 ko

If —,
' (E & 1 there is another solution given by'

' 1/2

(24)

ln( g/go)
,K

(2K —1)'
1 2K

( )=-
y(2K —1)

(25)cn

For y & 0 a general solution may be expressed in terms of

—tn(l(, in(), —,—nc(A, in(),1 1 sn(A, in/) 1

where l(, is a suitably chosen constant. All these solu-
tions, unfortunately have periodic singularities.

P
—[3C /(f2+ 3C2 )]1/2 (26)

For k =2 Gagnon and Winternitz have provided a gen-
eral solution using a sequence of two substitutions of in-
dependent and dependent variables and the type of solu-
tion obtained depends on the types of roots of the polyno-
mial

P(W)= W + W +C2W
3

4r~o

5. Solution for n =5

Davis has given a particular solution for k =2 and

y =1 which depends on one arbitrary constant C& name-

ly,

Following Davis a general solution is —:W( W —W, )( W —W2 )( W —W3 ), (27)
C~y=c, +

where C, and Cz are arbitrary integration constants.

(20) where A,o and Cz are arbitrary integration constants.
When P ( W) has a double root, say W), then the solution
1S
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1/2
)to a+pcosr

with y &0,v+6 cosr
(2g)

4
3 —k

1+
(3—k)

where a, p, v, and 5 are constants given by Gagnon and
Winternitz and ~ is

%'hen C2=0 and y &0 Gagnon and %internitz recover
Eq. (26) using their method. If P(W) has four distinct
real roots such that 8'1 &0& 8'2 & W3 the solution be-
comes

A,o [ W3 ( W2 —W, )
—W, ( W2 —W3 )sn (r, K) ]

[Wz —W, —(Wz —W3)sn (r, K)]

(29)

where y, A,o &0 and r depends logarithmically on g.
Two more solutions are found when P ( W) has two real

roots (Wo and W, ) and two complex conjugate ones W2

and 8'3. They take the form
' 1/2

)(,o [eWoA + W, B+(WoA —eW, B)cn(~,K)]
e A +B +( A eB)—cn(~, K)

(30)

Constants A, B, and K are given in Ref. 4 and ~ is also a
logarithmic function of g. It is required that
8'1 & wp=o, y(0, and 6=1 or W1 0, Wp=o, y&0,
and e= —1.

Equations (29) and (30) represent functions which are
singular at (=0, finite everywhere else, and exhibit
damped oscillations. A similar behavior is shown in Eq.
(30) with y & 0 and otherwise singular.

(32)

For k =2 and —g (P) =aP+yP a solution has been ob-

tained of the type
1/4 —1/2

ko Z(r), (33)

where 2, y, and go are real constants,
r=(A. /y )' in(g/go), and Z is an elliptic function satisfy-

ing the equation

dZ +pZ+ Z =C
dt 3

and hence systematic techniques are available to then find
solutions. Incidentally, it is of interest to note that the
equations of motion of the form of Eq. (3) become confor-
mally invariant precisely when

k+3
k-1 (34)

Series solutions of Eq. (4) have also been obtained sub-
ject to appropriate boundary conditions. Clearly, con-
stant solutions can be obtained which satisfy g (P)=0 and
it appears that some of them play the role of "attractors"
for damped oscillating or decaying solutions. This seems
to be supported by a number of numerical studies ela-
borated on else~here.

Equation (4) with g(P)=P" actually passes the Pain-
leve test for many values of k and n, e.g.,

(k, n)=(2, 5), (3,3), (4, —,'), (5, 2), (6, -', ), . . . ,

B. Polynomial g (P)

In the general case

g(4) =a0+W—'+ 1'4' (31)

where a, p, and } are constants, the existence of particle-
like (localized) solutions free of singularities at the origin
has been proved' ' for both k = 1 and 2, provided a & 0
and one of the following conditions is satisfied: (i) for
k =1, y &0; for k =2, y=0 and p&0; or (ii) for k =1
and 2, y )0 andP & —(16ay/3)'

More importantly, a Painleve analysis was performed
for Eq. (4) and it was found that only the following spe-
cial cases have the Painleve property (i.e., no movable
critical points). (i) k =0, giving an equation which is
easily integrated by quadratures and the solutions are ex-
pressed in terms of elliptic functions. (ii} k =2, with
a=P=O. This case has been analyzed by Gagnon and
Winternitz. (iii) k = 3, with a =y =0. Fowler' provid-
ed a complete state of solutions for this equation.

A special solution for arbitrary k and
—g(p)=5/ +pp (p&0, 6)0) has recently been found'
as

iii. FURTHER RESULTS
AND NE% METHOD OF CALCULATiON

A. Solutions of the form P =pP

Here we seek solutions of the above form to Eq. (4)
with g (P) =P" and n %1. Substituting P(g) into (4) gives

ps (s —1)P +k}us/ +p"P'=0 .

Equation (35) requires that

(35)

2
S—,p—

1 n

—2(1 —k)
(n —1) (n —1)

1/( n —1)

(36)

B. A generalization of the Fooler method

We now consider Eq. (4) with an a priori arbitrary
value of k and n and seek solutions in the form

and it is easy to see that p becomes zero when
k =(n +1)/(n —1). Clearly, this solution includes Eq.
(22} as a special case. Also note that this solution asymp-
totically solves the generalized Emden-like equation, Eq.
(4), with the polynomial g($)=g", A P close to the
critical point /=0.
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1I)=g(g)g ' with (=exp(Ace), LAO

choosing s so that, after substituting in Eq. (4), the
coefficient of dg/dao is zero. This results in the relation,
1+2s =k, and the ODE becomes

Solving Eq. (41) for 2) we obtain

e' dV k
yn

—1
(42)

d2
+ A f+Bf"exp[A,co(2+s —sn) ]=0,

d co
(37)

Substituting 2) from Eq. (42) into the left-hand side of Eq.
(40), and using the definition of V, produces

2

q2+ qn+1+(
n —1 (n +1)

1/2

or

= + 1n(g/go) for n A —1 (38)

, &2
=+In(g/go) for n = —1,(f —2 in/+ C)'

(39)

where A =A, [s(s+1)—sk] and B =A, . In order to
make Eq. (37) autonomous we demand that the argument
of the exponential vanish, which means 2+s —sn =0.
This latter condition, together with k =1+2s, results in
Eq. (34). This method generates an infinite number of
sets of solutions for the Emden equation, provided only
that Eq. (34) holds. In particular, the two very special
cases when either k =2, n =5, or k =3, n =3, have al-
ready been discussed in Sec. II following Refs. 4 and 14,
respectively. By multiplying both sides of Eq. (36) by
d l(t/dc@ and integrating gives the implicit form

d e dV k
yn

—1

which on differentiation gives

dV dV k d V k + 1 + dV k

(43)

nyn
—1

We now use Eq. (41) and difFerentiate again to obtain

(44)

2 = ——+nP"P '+nP'( —l)P 1I)' . (45)
df2 g2

By substituting for P" from our original Eq. (4) and P'/P
from Eq. (41) we can obtain a relationship between the
second and first derivatives of V, the independent variable

g, and the entity n P" '. If the value of n P" ', obtained
in this way, is substituted back into Eq. (44), with P'/P
from Eq. (41), we simply obtain an equation for zero.
Thus, we must evaluate the third derivative of V from Eq.
(45), namely,

where C and go are integration constants.

C. A new method

Here we use Eq. (4) with g(((1)=p" where n@1,0 We.
first multiply Eq. (4) through by g" to obtain

d V

dg

'2
2k nk + k n + 3nk

3
k

d V k n2)p"
where 2)—:g"1))' .

( gkyi ) gkyn

Putting e—:g"P" we differentiate to obtain

(40)

(41)

(46)

At this point nP" ' is determined from Eq. (46), where
(P'/P) is replaced by (I/n)(dV/dg k/g) from E—q. (41)
and substituted into Eq. (44). This results in the follow-
ing rather complicated relationship:

dV dV k d V k (1 n) dV— k

dg dg g dg' g' n dg

'2
(
—n+3) dV k k

n dg

—d V 2k (k+k) dV k 3k dV k 2 dV k

dg g g dg g ng d( g n2 dg
(47)

The substitution

dV k
(48)

reduces Eq. (47) to

d p+ dp (3 n)p+ k — k + 2k(1 n)+ 3(—I n)
()

dg n g g2 ng

A further substitution

(49)
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(50)

transforms Eq. (49) into the equation

d u +g k —2+ +u(2 —2k)+u
dg n

3 —n k(1 n) —
3 1 —n+u

n2
(51)

A Euler-like change of independent variable, namely, u'= Au +Bu +C, (56)

g=expZ,

gives our final equation

d u + k —3+ u +u (2—2k)dz2 dZ n
I

+ z (n —3) k(1 n)— 3 1 n-
+u + +u

n n

(52) where A, B, and C are constants to be determined self-
consistently. We first differentiate Eq. (56) with respect
to Z to obtain u ". This, together with u

' from Eq. (56), is
inserted into Eq. (55) and equal powers of u are equated
for compatability. This results in four simultaneous
equations on the set of parameters. One of these condi-
tions yields that either C =0 or B = —b0.

If C=O, then this results in four separate cases, all
with C=0:

(53)

where u only appears with powers 1 to 3 inclusive and
the original power n appears as part of a coefficient with
the other parameter k. Equation (53) is, first of all, an au-
tonomous equation and, in fact, is a particular form of
the damped anharmonic oscillator equation. From a
solution u (Z) of Eq. (53) we generate a solution of Eq. (4)
by using Eqs. (52), (48), and the definition of V to obtain

(i) A =, 8=2,
2n

1
(ii) A =, 8=2,

n —1
(iii) A =, 8 =1—k,

2n
—1

(iv)A =, 8 =1—k .

1 yk u(ln( )
d~(/n (54) On the other hand, if 8 = ba (C is no—t necessarily zero),

then we find the following two cases:
where Ka is an integration constant from the integration
of Eq. (48) (which is not arbitrary). It is easy to check
that P in Eq. (53) may be a solution of Eq. (4) by direct
substitution. Thus the remaining task is to find as many
solutions of Eq. (53) as possible. In fact, Eq. (54) involves
an integration constant K0 which is not free but may be
subject to a stringent consistency check when inserted in
Eq. (4). Another point worth making is that, if u (Z) is a
solution of Eq. (53), so is u (Z+ZD) where ZD is an arbi-
trary constant.

Equations of type Eq. (53) frequently have the Painleve
property and can be solved. We have attempted to find
conditions on Eq. (53) for which it would possess this
property using standard approaches. ' However, due
to the fact that the coefficients appearing in Eq. (53) are
interrelated, we have been unable to find a set of values of
n and k, other than those mentioned earlier, for which
Eq. (53) reduces to one of the Painleve types. We there-
fore try another approach to find special solutions.

n —1
(v) A =, 8 = ba, C=n—(k —1),

2n

(vi)
—1 2n (k —1)

In each of these cases a substitution into an outstand-
ing equation gives a relationship between n and k as fol-
lows.

(i) n =(3+k)/(k —1) for k&l.
(ii) n =0 or k = —1 (the case n =0 having been solved

earlier).
(iii) k =0 or n = —1 (the former already discussed).
(iv) This is true for any n and any k subject only to

n WO (n =0 has been discussed earlier).
(v) k&1 and n =(3—k)/(k —1).
(vi) n =0 (considered earlier).
Hence, there are only five cases to consider. We inves-

tigate each of these cases in turn and integrate Eq. (56) to
give

1. Ansatz solutions
(3+k)e ~ k +3

(57a)

We solve here Eq. (53) in the form

u" u+'(b 0+bu() +au(+azu +a3u =0 . (55) (ii) u = 2ne 2z
k= —1,

e —nK 1

(57b)

The method we use was developed by Otwinowski, Paul,
and Laidlaw, and is based on seeking kinklike solutions
to Eq. (55) which simultaneously satisfy

(iii) u = (k 1) z(1 —k)
n= —1,

e Z(1 —I&)
(57c)
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or

n(1 —k)e
(iv a) u

z~& —z~K1+e
(57d)

n
(ivb) u =

1

for k =1, n&0 (57e)

for k%1, n&0 (otherwise any n and k),

2. The Fowler solution after our transformations

The power of our method is best seen by considering
Eq. (53) with a special set of values k and n, namely,
n =3 and k =3, which reduces it to an elliptic form on
subsequent integration. Thus the Fowler solution is
recovered in a straightforward way.

3. Constant solutions

and

(v) u = (3—k)
(1 n—)

~k —I~(Z —Z, )
+ ~k

—1 ~tanh
2

3—k
provided nXO, k%1, n = (57f}

where K, and Zp are arbitrary constants. We now calcu-
late the final result for each of the cases above. From
each of Eqs. (57a) —(57e), the final result is in the form

Equation (53) also possesses the three constant solu-
tions

2no=O u~= u2=n(1 k)
1 —n' (61)

However, before substituting these solutions into Eq. (54),
in order to obtain P(g}, we must, once again, make sure
that they do not violate self-consistency requirements. In
fact, uo=O and u2=n(1 —k) both violate this condition
always. However, the solution u

&

=2n /(1 —n) only
violates this condition if k =(n +1)/(n —1). Using Eq.
(54) then gives

4(C)=K ""(l +l 0')' (5&) (g) K 1/~(g/g )2/(1 —n)

where y =@3/p2An. Here p„p2, p3, A, , and y are fixed
constants, except IM1, which is proportional to an arbi-
trary integration constant K, . That is,

(i) k=2, p&
= K&, pz=——1, @3=—(3+k),

(ii) A, =2, p&= nK&—, p&=+1, lt3=2n,

(iii) A, = 1 —k, p, , = K„p 2—+ I, @3=k—1,
(iv a) A, = 1 —k, p& =+K„@2=+1, ls3=n (I k) . —

In case (iv b} the solution may be obtained separately to
give

in(+ K )
&(&)=

info+ K,
(59)

For case (v) we find
' (3—k)/(1 —n)

y
—(K~ )

—1/n

ko Xp

lk —1l /2

—lk —11/2 2/{1—n)

Xp

where

Kp =Kp
l
k —1I /2

ko

Xp

(60)

—lk —
1l/2 2n/{1 —n)

ko

Xp

and Zp =1nxp.
The solutions we have now derived are still subject to

verification in the original equation. Upon inspection we
find that case (i) is allowed unless k = —1 and n = —1

(assuming u is not a constant). Cases (ii), (iii), and (iv) are
not acceptable under any circumstances. Case (v) is,
however, acceptable and Eq. (60) represents a new solu-
tion.

and Kp must have a particular value which agrees exactly
with Eq. (22) and the restriction on k above it.

4. The Leach method

It has been pointed out by Leach, Feix, and Bouquet
that the equation

y" +3a(x)yy'+b(x)y'+a (x)y +c(x)y

+d (x)y +e(x)=0 (62)

may be transformed into a linear second-order equation
by means of a point transformation. Identifying Eq. (62)
with our Eq. (53) we see that the latter will be of this
form when n = —3 (or n =0, a case discussed earlier). In
principle, therefore, we can find solutions of the original
Emden equation using our special transformation.

IV. CONCLUSIONS

In this paper we have surveyed a generalized Emden
equation, which plays a very important role in the kinet-
ics of multidimensional critical systems. Those reduc-
tions of the order-parameter equations that lead to
Emden-type equations involve either stationary or time-
dependent unidirectional, cylindrical, spherical, or even,
in some cases, so-called degenerate variable structures.
Only the cases with n =3, k =3, and n =5, k =2, have
been completely solved until now. However, the method
of Fowler has been shown to produce a reduction to
quadratures in the more general case when
n = ( k +3 ) /( k = 1 ). In the other cases the results are
rather fragmentary. Based on the former cases one might
expect three general types of behavior, namely, singular,
decaying, or damped oscillatory. For polynomial non-
linearities in the equation, linearization around stable
mean-field solutions is probably the most viable general
approach at the moment.



41 SOLUTIONS OF A GENERALIZED EMDEN EQUATION AND. . . 4173

Finally, a new method has been presented which in-
volves a substitution of independent and dependent vari-
ables. The resultant equation Eq. (53), is apparently not
of the Painleve type. We have examined the Painleve
property of this equation by comparing it with a detailed
analysis provided by Murphy. The problem appears to
be that the coefficients appearing in it, although constant,
are not arbitrary and there are a series of relationships
between them. Furthermore, it does not appear to be
transformable into the Leach type of equation by, for ex-
ample, scaling dependent and independent variables with
constants, a scaling of the type y~ya(x), changing the
independent variable to some arbitrary function V(x) or
indeed a linear fractional transformation. In spite of this
difficulty we have generated new solutions to the Emden-
like equation by finding several special solutions of the
transformed equation, such as constant solutions or kink-
like solutions.

Through the discussed link with quantum many-body
Hamiltonians the various solutions of our field equations
may be attributed to a particular physical interpretation.

The localized solutions represent the formation of a
coherent structure in the system, such as, for example,
solitons in charge- or spin-density wave systems, or for
two-dimensional cases, as vortices in superconductors
and superAuids. The oscillatory solutions represent ele-
mentary excitations which, in most of the cases, are of
finite lifetime due to the presence of damping.
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