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We present a method that allows one to decide whether an apparently chaotic time series has

been filtered or not. For the case of a filtered time series we show that the parameters of the un-

known filter can be extracted from the time series, and thereby we are able to reconstruct the origi-
nal time series. It is demonstrated that our method works and provides reliable values of the fractal
dimensions for systems that are described by maps or differential equations and for real experimen-

tal data.

I. INTRODUCTION

In the last few years, it has been shown that for many
chaotic systems, the asymptotic time evolution can be de-
scribed as a motion on a strange attractor. ' A specific at-
tractor is characterized by its entropy, its Liapunov ex-
ponents, and by a fractal dimension that is always smaller
than the dimension b of the phase space of the system. It
is known that the filtering of the time series influences the
determination of the fractal dimension. Badii and Politi
have shown that the dimension of a low-dimensional
chaotic system can be raised by changing the bandwidth
of a filter in a measuring instrument. To demonstrate
this they use a low-pass filter of first order, whose
influence is described by the differential equation

Z(t) = riZ(t)+X(t)—.

Here X(t) and Z(t) are the original and the filtered time
series, respectively, and g is the bandwidth of the filter.
The dimension of the phase space of the system when the
filter is included is raised to 6+ 1 compared to a previous
dimension of 6 in the absence of the filter. Moreover, the
system also gets an addition negative Liapunov exponent
—g. By use of the Kaplan-Yorke conjecture, it has been
shown that the fractal dimension of the filtered time
series Z( t ) increases when k & —g ~ 0. A, denotes the
negative Liapunov exponent that appears in the denomi-
nator of the Kaplan-Yorke formula. Therefore, in order
to have no effect on the time series, the filters inside the
measuring instruments should have a large enough band-
width such that —q & k . Usually, however, we have no
information on the Liapunov spectrum of the system un-
der investigation. Thus it is difficult to choose the ap-
propriate bandwidth of the measuring instruments. To
solve this problem Mitschke, Moiler, and Lange have
suggested using the derivatives Z(t) instead of the filtered
time series Z(t), to estimate the dimension. This pro-

cedure leads to reliable results in the case of very strong
filters (ii~0), as can be easily inferred from Eq. (1.1).

In this paper we want to propose a procedure for the
investigation of filtered (low-passed) chaotic time series.
This procedure has two important features that will be
discussed in Secs. II and III, respectively. First, it indi-
cates whether the signal is filtered or not. Second, it al-
lows us, in most cases, to reconstruct the original time
series by determining the filter parameters from the
filtered time series. From these parameters (obtained
from the filtered time series), we can find a good estimate
of the information dimension Di of the attractor corre-
sponding to the unfiltered time series. In Appendix 1 a
we discuss the important case of purely recursive filters
(the commonly used low-pass filters). The problem of
nonpurely recursive filters (that include high-pass filters)
is considered in Appendix l b. We will discuss our
method using data obtained from several numerical simu-
lation and experimental systems.

We would like to emphasize that the identification of
the presence of the filter and the reconstruction of the
original time series from a physically filtered signal (RC
low-pass filter) of a hydrodynamic system are presented
here for the first time.

II. THE INFLUENCE OF FILTERS
ON THE TIME SERIES

The discretized version of the differential equation (1.1)
is, according to Ref. 2,

Z„,= e "Z„+X„+,.
As an example of the application of the formula (2.1) we
have investigated the effect of a filter on the chaotic time
series I X, I, , corresponding to the logistic map
X„+,=rX„(1—X„)with r=4 Figure 1 shows . the return
maps (Z„+, versus Z„) of the filtered times series IZ, I

using the filter parameter g= l. In this figure we see that
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FIG. 1. The return map (Z„+&
vs Z„)of the filtered time series of the quadratic map (r =4) for filter parameter g = 1.
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FIG. 2. P(k) —1nN is plotted vs (1n5k ) of the filtered time
series of the quadratic map (r =4) for g=1. Oscillations occur
and grow with decreasing values of g.

the filter has induced a self-similarity that is responsible
for the increase of the dimension. This effect has been
treated analytically for one-dimensional maps in a previ-
ous paper. The dimension therefore increases, as pre-
dicted by the Kaplan-Yorke conjecture. To estimate
this increase of dimension from a given time series, we

apply the fixed mass method: First, we reconstruct the
phase-space trajectory optimally from a given scalar time
series of N points, thus obtaining vectors Ix; ), x; ER
Then n reference points y; are chosen on the attractor
and distributed according to the invariant measure. The
distances 5=5~k between the points y and their kth
nearest neighbors among the N points ( x; j are then com-
puted. From these distances the information dimension
D

&
is evaluated using the asymptotic relation

f(k) —lnN
D& = lim

(1 5„) (2.3)

where f(k) =d lnI (k)/dk and I (k) is the usual I func-
tion. All the results described in this paper have been
obtained with the help of formula (2.3).

Applying the method for the filtered time series tZ; }
from the logistic map as mentioned before we see the ap-
pearance of oscillations, as shown in Fig. 2. Such oscilla-
tions are characteristic for attractors possessing strong
self-similarity, as, e.g., the Zaslavasky attractor. In our
case, however, this is purely an effect of the self-similarity
induced by filtering, since the attractor corresponding to
the logistic map with r =4 does not have this property.

The real attractor can properly be reconstructed from
X(t) or X(t), respectively. In both cases the dimension
algorithin (2.3) leads to the same fractal dimension from
an unfiltered time series. But, if we investigate a low-pass
filtered signal Z (t), the fractal dimensions obtained from
Z(t) or Z(t) are different [the fractal dimension obtained
from Z(t) always being smaller than that obtained from
Z(t)]. As we see from Eq. (1.1), the fractal dimension ob-
tained from Z(t) is equal to that of X(t) only if i)~0
(limit of very strong filter). One can thus decide if a series
is filtered or not by comparing the fractal dimensions of
Z(t) and Z(t) As an example . we consider in Fig. 3 a
filtered time series (X component) of the Rossler sys-
tems' with g=0.2. The decrease in the dimension using
the derivatives Z(t) is clearly visible although incom-

where
N

(ln5„) =—g ln5, &

J =l

and p =klN. In the case of very small values of k, for-
mula (2.2) has to be replaced by
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piete. Together with the optimal reconstruction of the
phase-space trajectory from the time series, this serves as
a strong indication that the time series has been filtered.

III. RECONSTRUCTION OF ATTRACTORS
FROM FILTERED TIME SERIES

In the case of a pure recursive filter as in Eq. (2.1), the
recovery of the original time series is possible by simply
inverting the filter, i.e.,

X„+,=Z„+,—e "Z„. (3.1)

(in dq)

FIG. 3. g(k) —lnN is plotted vs (ln5k ) using the embedding
dimension m =5 for the X component of the Rossler differential

equation (a=0.2, b=0.15, c=10) in the case of the unfiltered

time series (curve 1), a filtered time series with g=0.2 (curve 2)

and its derivatives (curve 3). In these three cases the dimensions
are Dl = 1.99 (curve 1), D2 =2.35 (curve 2), and D, =2.17 (curve

3).

FIG. 4. tt(k) —InN is plotted vs (ln5„) for the inverse
transformed time series [X, } of the filtered time series [Z, }

(g = 1) corresponding to the logistic map (r =4), using Eq. (3.2)
with a =0.9. The embedding dimension varies from m =2 to 4.

structed with a=0.9 from the filtered time series of the
logistic map considered earlier. Clearly a "kink" arises
and the slope is as predicted 1 above a critical value of e
and 1.6 below that value. The "kink" position moves in
the direction of the small value e when a approaches the
value g=1. There it disappears completely. With a
knowledge of the "kink" position e the estimation of the
filter parameter g would be easy, provided that the value
of Z„ in the expression e -P= ( e " e)Z„coul—d be
replaced, e.g. , by its mean value Z=(1/N)g;Z;. Since
this generally is not possible we have to invert Eq. (3.2)
for two different values a and a'. From the correspond-
ing "kink" positions e-P=(e "—e )Z„and
e'-P'= =(e "—e )Z„we can eliminate Z„and ob-
tain g from

If the value of the filter parameter g is unknown, an an-

satz for the back transformation is

C

e
ee —e'e

E
(3.4)

X„+)=Z„+)—e Z„. (3.2)

Here, of course, the original time series [X, } is obtained
for a=g. By combining Eqs. (3.1) and (3.2), we find a
connection between the time series [X;}, [X;},and [Z, }
as

X„+]=X„+]+(e "—e ~)Z (3.3)

As a first approximation we ignore the dependence of Z„
on X„. Then we may consider the term
P=(e "—e )Z„as a (in general colored) noise with an
amplitude proportional to y =(e "—e ) due to the
finite-dimensional system represented by Z„. We there-
fore expect a "kink" to appear in a plot of g(k) —lnN vs

(in5k) analogous to the "kink" we expect in the pres-
ence of infinite-dimensional noise. " In contradistinction
to the situation there, here we expect that the slope of
g(k) —lnN versus (1n5k ) converges for small values of
(In5k) to the dimension of the system plus filter if the
embedding dimension m increases.

To demonstrate this, Fig. 4 shows g(k) —lnN versus
(ln5k ) for the time series [X;}, which has been recon-

The "kink" position seems to be most easily deter-
mined by looking at the crossing point of the straight
lines that are defined by the clear scaling behavior above
and below the "kink" position in the case of the logistic
map (Fig. 4). This method works quite well for maps but
in many cases it proves to be advantageous to consider a
diagram of the derivative d[ltj(k) —InN]/d (1n51,. ) versus
(ln5k ). Figure 5 shows this for the aforementioned
logistic map. Here an alternative location of the "kink"
position would be the inflection point.

We now demonstrate the application of Eq. (3.4) using
two examples. First we consider the filtered logistic map
(q = 1) that yields an information dimension D, = l. 6
which is larger than that of the unfiltered system. Figure
6(a) shows the "kink" position in the plot P(k) —lnN
versus (In5k ) for a=0.7 and a'=0.8. The resulting ap-
proximation g= 1.02 for the filter parameter calculated
from the "kink" positions @=0.135 and e'=0.088 differs
from the true value g=1 by 2%. The second example is
obtained by considering the filtered X component of the
Henon map' with parameters a = 1.4, b =0.3. We
choose a filter parameter q=0.2. The numerically ob-
tained information dimension of the filtered time series is
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FIG. 5. d[itj(k) —lnN]/d (ln5k ) is plotted vs (ln5„) for the
unfiltered time series [X, ] (curve 1), for the filtered time series

[Z, ] with rl= 1 (curve 2), and for the transformed time series

[X, ] [using Eq. (3.2)] with a=0.9 (curve 3) of the logistic map
(r =4). The embedding dimension in all cases is m=2. 1ne is
the position of the inflection point.

D, = 1.98. In this case the plot t)'l(k) —InN versus (ln5k )
for a=0.4 and a'=0.3 leads to g=0.192, which differs
from the original filter parameter rl=0.2 by 4% [Fig.
6(b)]. The deviation from the exact value of rjis due to
the uncertainty of the values of a=0.122 and e'=0.223.

Unfortunately, two problems arise for time-continuous

FIG. 7. d [P(k) —lnN]/d (ln5k ) is plotted vs (In5i ) (embed-

ding dimension m=5) for the unfiltered time series of the X
component of the Rossler system with a=0.2, b=0.15, and
e=10 (curve 1), the filtered time series with g=0.01 (curve 2),
and for the inverse transformed time series [using Eq. (3.2)] with
a=0.1 (curve 3) and with a=0.3 (curve 4). In the first two
cases the information dimensions are D& =1.99 and D] =2.94,
respectively.

systems and for experimental data: First, in many cases
X„and Z„are strongly correlated. This fact induces an
indeterminacy in the amplitude of the "noise" term P.
Furthermore, we cannot then expect the measured di-
mensions above and below the "kink" to be the exact di-
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FIG. 6. Plots g(k) —lnN vs (In5k) for the unfiltered time
series (curve 1) and for two differently backtransformed time
series (curves 2 and 3) for (a) the logistic map (r=4, q=1,
embedding dimension m=2} with transformation parameters
a=0.7 (curve 2) and a'=0.8 (curve 3) and (b} the X component
of the paradigmatic Henon map (g=0.2, embedding dimension
m=3) with transformation parameters a=0.4 (curve 2) and
a'=0.3 (curve 3), respectively.

&l() b), &

FIG. 8. Plots P(k) —lnN is plotted vs (In5„) (embedding di-
mension m =2, . . . , 6) for the unfiltered (a) and filtered (b) time
series of the local velocity from the Taylor-Couette system. The
values of the information dimension are (a) D, =2.17 and (b)
D, =2.5 respectively.
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FIG. 9. d[P(k}—inN]/d (ln5I, ) is plotted vs (in5I, ) for the

Altered time series (curve 1) and for the inverse transformed
time series [using Eq. (3.2)] with a= 1 (curve 2} and a=0.15

(curve 3) of the local velocity from the Taylor-Couette system.

mensions of the unfiltered and filtered system, respective-
ly. Actually these effects can be demonstrated with data
from the Rossler system, ' with the parameters being
a =0.2, b =0.15, and c= 10. The value of the information
dimension of the unfiltered time series is D, =1.99. The
filter parameter is taken as g=0.01 and the dimension al-
gorithm (2.3) leads to an information dimension

D, =2.94 for the filtered time series. ' Figure 7 shows
the plot d[P(k) —lnN]/d(ln5& ) versus (in5I, ) using the
embedding dimension m = 5 for the unfiltered time series
(curve 1), for the filtered time series (curve 2), and for the
transformed time series [using Eq. (3.2)j with a=0. 1

(curve 3) and a=0.3 (curve 4). This plot shows a lower-
ing of the dimension on the right-hand side of the arrows
when the parameter a approaches the filter parameter g.
In addition, we notice that the region to the right of the

arrow, where the dimension is lowered, is increased when
a tends towards il. To the left of the arrow, and for small
values of (ln5k ), we observe that the dimension of curve
3 is lower than that of curve 4 as we mentioned before.

A second problem arises from the fact that in experi-
mental situations one generally has background noise
such as that of a "kink" caused by the deterministic noise
induced by the filter which can be hidden by the back-
ground noise. In these cases we consider the deviation of
the scaling behavior (arrows in Fig. 7) as significant and
plot this scale e versus the reconstruction parameter a.
Determining the minimum of e(a) as e becomes small for
o.~g is for practical cases a useful method for the com-
putation of the filter parameter.

We have applied this procedure to the experimental
case, i.e., to the rotational Taylor-Couette Aow. The ap-
paratus and the measuring techniques that have been
used are described in detail in Refs. 14 and 15. The Aow
we observed was a ten-vortex state with a gap
height —to —width ratio of 16. This gives a vortex wave
length of 3.2d, where d is the gap width. The scenario
observed was a breakup of a torus at Reynolds number
630. The local-velocity data were filtered by a first-order
RC low-pass filter with a cutoff frequency of 1 Hz. This
corresponds to g=0.15 for a sampling frequency of 41.66
Hz. For small values of (In5& ) we see the effect of the
white noise in the plot of g(k) —lnN versus (ln5k ) both
for unfiltered [Fig. 8(a)] and for filtered [Fig. 8(b)j time
series. Let us imagine now that we only have access to
the filtered time series. To determine whether this time
series is filtered or not, we compare the information di-
mension D, of this time series and its derivative as ex-
plained in Sec. II. We get the derivative of the given time
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FIG. 10. The "kink'* position e (corresponding to the arrows in Fig. 9) plotted vs a for the data from the Taylor-Couette system.
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series by choosing a=0 in Eq. (3.2). The information di-

mension of the time series of the derivative is found to be
D I

=2.19. This strongly dift'ers from the value D, =2.50
for the given time series. This shows that the investigat-
ed time series has been filtered. We plot
1[lb(k) —InN]/d(ln5k ) versus (In5k) (Fig. 9) and ob-

serve that the curves of the filtered time series (curve 1),
and the transformed time series [using Eq. (3.2)] with
a= I (curve 2) and a=0.15 (curve 3) converge for small

values of (In5k }. The reason for this behavior is the
noise inherent in the experimental data. Curve 3 in Fig. 9
especially does not show the two-plateau pattern as found
in curves 3 and 4 in Fig. 7. Hence we are not able to lo-
cate the position of the 'kink" as the point of inAection
of the curve.

However, we obtain an approximation of the filter pa-
rameter by plotting the "kink" position versus a (arrows
in Fig. 9). As shown in Fig. 10 we find that the filter pa-
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a= a) =0.1, and (c) for the second inverse transformed time series IX, j with a = r)' = l.
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rameter is 0. 1 ~ g ~0.2 in coincidence with g=0.15 of
the physical RC low-pass filter. The effect of the re-
transformation on D& within this range is remarkable.
We get the following results:

2. 17 for the unfiltered signal

D, = ~ 2. 50 for the filtered signal

2. 18 for the retransformed signal .
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which can be rewritten as a product of two filters with
one pole each, and with cutoff frequencies q and g' re-
spectively, as

If a time series is filtered with a purely recursive filter (l
poles) it is possible to determine the corresponding filter
parameters g, , . . . , gl by iterating our method. To illus-
trate this point we consider a purely recursive filter with
two poles. Because of Eq. (Al) this filter has the general
form
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Yn =e Yn —J +a OXn

Z„=e "Z„&+Y„,
which imply

Z„=(e "+e ")Z„,—e "e "Z„2+apX„.
(A4)

APPENDIX

i. Generalization of the inversion procedure

Using (A4) it turns out that a purely recursive filter with
two poles can be written as a twofold iteration of a filter
of the type of Eq. (2.1). Comparing (A3) and (A4) we ob-
tain

a. The case ofpurely recursive filters of higher order b, =e "+e ", b2=e "e (A5)

Z =aoX +bIZ ] +$2Z 2+ ' ' ' +&IZ (A 1)

The transfer function F(to) of any filter with l poles can
be described by a product of transfer functions F;(co)
(i =1, . . . , l ) as

F(~)=F&(co) . . Fl(~o) . (A2)

We now want to generalize our method to the investi-
gation of filters of higher order. The general form of a
purely recursive filter with I poles is

This system of equations guarantees the existence of two
cutoff frequencies g and g'. As an example we discuss
the logistic map that has been filtered according to Eq.
(A3) with a0=0.9, b, =1.27, and bz = —0.33 [Fig. 11(a)].
Using our "kink" method in an iterative fashion, the first
approximate cutoff frequency is calculated to be g=0.11.
If the parameter a is varied in a neighborhood of g, the
exact value g=0. 1 can be obtained. It follows that the
information dimension DI is reduced from D& =2.4 to
1.56 [Fig. 11(b)]. The same method is used to calculate
the second cutoff frequency g'= 1, which reduces the di-
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mension to D& =1. The logistic map for this example is

shown in Fig. 11(c).

b. The case of nonpurely recursive filters

Z„=b ) Z„,+aoX„+a ) X„ (A6)

The "kink" method may also be applied to nonpurely
recursive filters with one pole. The general form of a
nonpurely recursive filter with one pole is defined as

Xn = Yn
—BXn-i

where B is a free parameter. Thus

X, =- Y, =aoX

X2 = Yz BXi =a O—X2 + (a i Ba&)X�, —

iX3�

Y3 BX2 =aoX3—+ (a, Bao)(X2 B—X, ), —

(A9)

(A 10)

Y„=Z„—e Z„ (A7)

For e =b& the dimension is reduced to the exact value

D, =1 (Fig. 12). The value a=0. 1 can be calculated us-

ing the method described above. The original time series

IX„) is not obtained at the end of this transformation.
Instead, the time series I Y„}obtained now contains the
nonpurely recursive part, which is, from Eq. (A6),

Y„=aoX„+a &X„ (A8)

The inversion of (A8) is

Here the value of Z„ is not only dependent on X„, but
also on X„,. For negative values of a, this is a high-

pass filter. To illustrate the method, we have filtered the
logistic map with a nonpurely recursive low-pass filter
and with one pole using the parameters a o

=0.90,
a~ =0.85, and b& =0.90. First, we invert the purely re-
cursive part

n —1

X„=Y„—BX„ i=a&X„+(ai —Bao) g ( B)" ' "Xk. —
k=1

The term containing B in (A10) is the noise contribution.
If B=a

&
/ao, we see that X„=aoX„,i.e., we obtain, up to

an irrelevant factor, the unfiltered time series. If B is a
number in the vicinity of a, /ao, but is not equal to
a i /ao, a "kink" appears in the plot of tb(k) —InN versus
(ln5k ). This "kink" vanishes as B=a

i /ao. In order to
find this value of a, /ao, one has to vary B until the
"kink" disappears. This procedure can also be applied
on a high-pass filter with one pole. It may also be applied
on a nonpurely recursive low-pass filter with I poles

Z„+)=aoX„+a,X„&+6&Z &+ ' ' +b~Z
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