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The characteristic function method is used to obtain the diffusion tensor for symplectic maps. At
lowest order the quasilinear result is obtained, and a series in higher-order correlations is developed.
Comparison of the theory to numerical experiments is given using a four-dimensional example of
Froeschle. The experiments agree well with the theory for moderately large parameters. Arnol'd
diffusion for the "thick-layer" case is discussed. It is shown that the short-time correlations in one
canonical plane affect the diffusion in the other plane even in the limit of zero coupling. Accelera-
tor modes exist for the Froeschle example and cause divergences in the diffusion, but these only ap-
pear when the accelerating region is included in the ensemble.

I. INTRODUCTION

Symplectic mappings provide the simplest nontrivial
models of Hamiltonian dynamics. A map can be ob-
tained from a continuous-time Hamiltonian system by
Poincare surface of section: for X+ 1 degrees of freedom
the surface of section gives a mapping of a 2N-
dimensional surface to itself. The map is symplectic as a
consequence of the preservation of the Poincare invari-
ants.

Generically such maps are not integrable, but also not
ergodic. The rigorous treatment of the subset of ap-
parently chaotic orbits by statistical methods is a long
sought, but elusive goal. One statistical property of in-
terest is the diffusion coefficient. This has been extensive-
ly studied for two-dimensional, area-preserving maps.
Notably, for the standard map, Chirikov' showed numer-
ically that the momentum diffusion of an ensemble of
particles approaches the "quasilinear" value as the non-
linearity parameter increases. Quasilinear diffusion re-
sults if the force is a 6-correlated random process. For
the standard map, the approach to quasilinearity is not
monotonic: the oscillations of the diffusion coefficient
were explained by Rechester and co-workers- using an
expansion called the Fourier path method. The Fourier
path method was extended and modified to apply to
many maps using the characteristic function formal-
ism. '" Here it was shown that the oscillations are due to
short-time correlations. The characteristic function
method allows the exact calculation of the diffusion
coefficient for Arnol'd's "cat maps, " ' and can be used
for maps with nonlinear twist terms. '

The Fourier path method was also applied to an N-
dimensional kicked rotor with a special symmetric cou-

pling. In this study only the diagonal components of the
diffusion tensor were calculated (they are all equal for the
system considered), and only the first corrections to
quasilinear theory were obtained. In this paper we show
how to obtain the entire diffusion tensor for systems with
more general coupling, as well as calculate higher-order
corrections.

In general, these expressions for the diffusion
coefficient agree well with numerical experiments, provid-
ing the measurement time is moderate. As the time is in-
creased, long-time tails in the correlation functions' '"
become increasingly important, and the diffusion
coefficient develops sharp peaks. ' ' The height of the
peaks grows with the computation time; thus the series
expressions for D are not convergent. These anomalies
are due to the presence of stable "accelerator modes" in
the standard map. We will discuss these further in Sec.
VI for the four-dimensional case.

In this paper we generalize the characteristic function
formalism for mappings of the form

xt +l —2xt +x, i= —V V(xr )

Here x is an N-dimensional configuration vector, and
V(x) is an arbitrary periodic function of x:
V(x+2rrm)= V{x) for any integer vector m. Defining
the momentum coordinate by

y, =x, —x,

this map is easily shown to be symplectic (it preserves the
area fy.dx). Since Vis periodic, the configuration space
can be taken to be the N-torus, 'T . We allow arbitrary
values for y, thus the phase space is A '

X '7'
For an example we will use a four-dimensional (two de-
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II. DIFFUSION TENSOR

A statistical analysis describes the behavior of an en-
semble of initial condtions. We choose a uniform distri-
bution over some invariant region in phase space, denot-
ed as R . It is convenient to use the Lagrangian form of
the map, Eq. ( 1), and to average over an ensemble of ini-
tial conditions ( xo, x, ) . Averages over this set of initial
conditions are denoted ( ) &. Typically, we will assume
the configuration is arbitrary, so that % is 5' X T
Ideally, one would like to use a uniform distribution on
the set of chaotic initial conditions for the ensemble since
the regular initial conditions do not diffuse. However, we
know of no analytical techniques to determine this en-
semble (which in the two-dimensional case is a fat frac-
tal '

), nor even to show that it occupies a set of positive
measure for a typical map

The momentum diffusion tensor is defined to be the
asymptotic rate of spread of the second moment of the
momentum distribution

1D= lim —( Ay, by,
t ~a)2t

(4)

where

eely,

( xo, x ) ) is the momentum change in t iterations
for an initial condition ( xo, x, }~ The factor of 2 is due to
the definition of diffusion in the Fokker-P lanck equa-
tion. ' Using ( 1 ) and (2), this can be easily rewritten as

D=-,'C(0)+ g C(t )
t = 1

gree of freedom) map first studied by Froeschle

V(x ) = —a cos(x '
) b—cos(x ) —c cos(x ' +x ), (3)

where a and b represent the strengths of standard maps
for each degree of freedom, and c couples these together.
The map appears not to have any global invariants unless
al 1 but one of the three parameters are zero. Many of the
expressions we wi 11 give below wil 1 be for the simple case
b =0, but this case does not appear to be special in any
way III. CHARACTERISTIC FUNCTION METHOD

Any statistical property of the ensemble can be ob-
tained from the joint probability distribution
P( xo, x„x2, . . . , x, ), which is the probability that the tra-
jectory lands at the points xk for k =0, 1, . . . , t. The
t th-characteristic function is defined to be the Fourier
transform of this distribution, '

y, in„n, „.. . , n„ne)=(exp i X n, x, n, ip)
j=0

where the n, are arbitrary integer vectors . In particular,
the correlation function depends only on the set of
characteristic functions with the first and last arguments
nonzero. Thus it is convenient to define the reduced
function

y, (n„no)—=y, (n„O, . . . , O, no)

Using Eq. (7) with this, the correlation function is

( 10)

C(t)= g f f~, (m, n)

For the potential (3), one can form linear combinations of
the components of the correlation tensor to separate the
contributions explicitly due to each term in (3) indepen-
dently, and those due to coupling between them . For ex-
ample, when b =0 we define

C„(t)=C"—2C' +C

a'[g, ((1,0), (1,0))—g, (( —1,0), (1,0))],

f(, ())
= (a /2i, O)

f(0))=(0,b/2i)

f(»)=(c/2l, c/2t )

plus their complex conjugates . The task is now to obtain
expressions for the ensemble average of the exponential
appearing in Eq. (7).

C(t )= ( VV(x, )VV(x, ) )z C„(t)—=C' —C ( 12)

where C, the force correlation tensor, has been assumed
to decay more rapidly than t ' . Finally, the correlation
function can be expressed in terms of the Fourier trans-
form of V V

where f = f', so that

C(t )= g f f„(iexp(im x, +i n xo)}.
m, n

ac[g, (( 1,0), ( 1, 1 )}—g, (( —1,0), ( 1, 1 )}],
C„(t)—=C"

c[y, ((1,1),(1, 1))—y, (( —1, —1),(1,1))].
Note, however, that each of the y, in ( 12) depends impli-
citly on both parameters a and c.

Evaluation of g, requires knowledge of the exact orbit
beginning at an arbitrary point ( xo, x, ), and is impossible
in general . However, a remarkab 1y simple recursion re 1a-
tion can be obtained, using Eq. ( 1}, which relates g, to

Xf —1

Since the region A is invariant under the mapping and
the mapping is volume preserving, Eq. (7) implies the
time reversal symmetry C( t ) =C( —t ), where the tilde
designates transpose.

For the example of Eq. (3) the nonzero f are

X,(n„n, ), . . . , n), n, )

g(n, )y, )(n, )+2n, —m, n,

Ili Ili 3 . Il) Ilo} ( 13)



DIFFUSION IN SYMPLECTIC MAPS 4145

Here we have defined the Fourier transform of the ex-
ponential of V'V,

g (n) = ~ f d x exp[i[m. x —n. V'V(x )])
(2m) Q

for an integer vector m. For the Froeschle example, g
can be evaluated in terms of Bessel functions

n'

g (n)= g J
~

(n'. a)J 2 (n .b)J {(n'+n )c) .
J — oo

(Isa)

When b=0 the infinite sum in Eq. (15a) collapses to a
single term

~ I

'v Og
I Oy~

Oy

g~(n)=J ~
2(n'a)J &{(n' +n 2)c) (b=0) . (15b)

The recursion relation (13) is easily formally iterated to
obtain y, in terms of g, . In particular for the class of Eq.
(10) we obtain the exact, if somewhat formal, expression

y, (n„nQ)= g g g (nk)y, (n„nQ —nz), (16a}
[

' '''"i- ]
k=2

where the mk for k =2, 3, . . . , t are defined by

~k ~ k = nk+]+2nk nk —1

2 (16b)

with n, +, ——0. Equation (16) is exactly the same as for
the two-dimensional area-preserving case, except that
the integers m, and n, have been replaced by integer vec-
tors, and we have reversed the sign of m and the ordering
of the index k for later convenience.

If we assume that A is '7 X'7, then the first charac-
teristic function is simply a Kronecker 5

g&(m, n)=5 Q5 Q . (17)

(m, n) =b ~J~ ~ 2 (an '}J(c{n'+n

(m3, n)=J. . . , ,
,
( na)J 2 ~. . .

,
(am )

1 I

XJ, , (c(n'+n'))J & 2(c(m'+m )) .

The next characteristic function g4 is an infinite sum over
an intermediate index of a product of six Bessel func-
tions. In general, when all three parameters a, 6, and c
are nonzero, each g, contains sums over products of 3t
Bessel functions, though it is possible that some of these
could turn out to be JQ(0)=1. In fact, as we will see
below, terms with a maximal number of such factors
dominate when the parameters are large.

Using this in Eq. (16) gives the symmetry property
g, (m, n)=g, (n, m). The definition (11) then implies that
the correlation matrix is symmetric, C(t)=C(t), and
therefore so is the diffusion matrix.

When we set b=0 in the Froeschle map and use
% =7 X 7, the first three y, can be written explicitly,

FIG. 1. Principal terms represented by paths in (n, k) space
for (a) y, [(1,1), +(1,1)] and (b) y, [(1,0), +(1,0)]. The solid
paths are for even t; the dashed paths for odd t.

IV. PRINCIPAL TERMS

Each term in the sum of Eq. (16a) can be viewed as a
particular path in the space (n, k). Once the path is
chosen, then the mk are determined by the second
differences through Eq. (16b); thus m„ is effectively the
curvature of the nk path. The sum is over every path in
this space which begins as (0, 1),(nQ, 2}, and ends as

( nt), (0, t+ I ). These paths are not related to those of
the "Fourier path method. "

In the two-dimensional case, the most important terms
in this sum are those which have the minimum number of
Bessel functions of nonzero argument and index. These
are the so-called "principal terms. " These appear to
dominate for large values of the parameter a since
J (na) (ao)

The same argument can be given in this case, namely

g (n) 1 with equality only when m=n=O. For the
later case the path must have a straight segment which
passes through the origin of the n plane. The principal
terms are those with the maximum number of such seg-
ments.

Consider the case of g, {(1,1),s(1, 1)}, where s =+1,
which is needed to compute C„. When t is even the prin-
cipal path is given by the sequence, ~(1,1)
~(0,0)~( —1, —1)~(0,0)~, as shown in Fig. 1(a)
by the solid line. The resulting contribution to g, for
t~2is
y, ((1,1),s(1, 1))=[JQ(a)J,(2c)]' 6,

( t even ) . (19)

For odd t, the paths necessarily include at least one defect
(i.e., an extra point with m, n&0) in order to satisfy the
boundary conditions at k =0 and t. Paths with a single
defect, such as those shown by dashed lines in Fig. 1(a)
will have the minimum number of Bessel functions. The
defect can occur at any of the (t —1)/2 positions. Each
term gives the same result, so we obtain (for t ~ 3)



4146 HYUNG-TAE KOOK AND JAMES D. MEISS 41

Z, ((1,1),s(1, 1))= [[J3(2e)]5, „~, ~,»+[J,(2c)] 5, I)I —3)»I[J0(a)] [J0(a)Jz(2c)]" ' (t odd) . (20)

Combining Eqs. (5) and (11) with Eq. (16) gives an ex-
plicit, formal expression for the diffusion tensor. As was
the case for area-preserving maps, the convergence of
these series is doubtful due to the long-time correlations
induced by regular regions in the phase space (in particu-
lar, the accelerator modes: see below). Such effects have
not been studied when the number of degrees of freedom
(%+1) is larger than two. However, moderate time and
finite precision numerical experiments can be expected to
give results close to those given by Eq. (5) if a finite num-
ber of terms in t is retained.

The first term in the series for the diffusion tensor is
the so-called quasilinear term

D, =—C(0)=—g f f1 1
(21)

m

where we have set A to the entire torus. For the
Froeschle example this is

C2a +c
c2 (22)$2+ 2

The series in force correlations gives corrections to this
which, because of the Bessel functions, tend to oscillate as
the parameter values change. The first few terms are easy
to write out (with b =0),

The paths contributing to the principal terms for

g, ((1,0),s(1,0)) are shown in Fig. 1(b). When t is even,
the solid path is dominant; and when t is odd, both the
dashed paths must be included. The results are
equivalent to the above upon making the substitutions
2c~a and a~c.

Finally, one would like to compute the principal terms
for y, ((1,1),(+1,0)). Such paths must also have at least
one defect. However, it is not difficult to see that for
each path with one defect contributing to g, ((1,1),(1,0)),
there is one which gives the identical result for

g, ((1,1), ( —1,0)). Equation (15) implies that these terms
cancel from C„. In order to compute the effect of C„on
the diffusion it is necessary to include paths with two or
more defects. Thus C„=O in the principal term approxi-
mation.

A similar argument can apply to the case when b@0.
For instance, in Eq. (15a) the j=0 term is the only term
which can have magnitude one (this occurs when
m =n =0), and thus represents the leading term in the
principal term approximation.

V. QUASILINEAR DIFFUSION
AND CORRECTIONS

Note that these equations mix the contributions from the
two forcing terms in Eq. (1); in particular D„depends
upon the value of a. In the principal terms approxima-
tion, D„=O, or D, 2 =D2, =D22. We expect these results
to be a good approximation when both a and c are not
too small.

An interesting limit is that of a &&1, implying that the
first degree of freedom is highly stochastic and c « 1, im-

plying that the coupling is weak. In this case the self-
diffusion of the first degree of freedom is approximately
quasilinear. This degree of freedom drives the diffusion
in the second, this is called "thick-layer diffusion. "'
Tennyson, Lieberman, and Lichtenberg compute such
diffusion by treating the second degree of freedom as
though it was stochastically driven by the first. This
technique yields only the lowest-order quasilinear term in

D„. The principal terms expression implies that

Dp& ~Dqr in the limit c~O; however, this is not exact be-
cause there are an infinite number of terms which con-
tribute to D at 0(c ) that have been neglected.

Another limit of interest is a 1, c «1, where the ini-
tial conditions are chosen with the first degree of freedom
in a narrow stochastic layer. This leads to "thin-layer
diffusion, " or what we think of as Arnol'd diffusion. '

Our method does not give an effective technique for com-
puting this.

VI. ACCELERATOR MODES

Maps of the form (1) are also periodic in the momen-
tum direction: if (y„x, ) is an orbit on % XV, then

(y, +2m.j x, ) is also an orbit for any integer vector j.
This suggests looking for generalized "periodic" orbits
satisfying the conditions

o+2~j xf =xo . (25)

The coupling correlation C„(t) vanishes identically for
t &4.

Using the principal terms (19) and (20) for the longer-
time correlations we can do the sum in Eq. (5) to obtain

a 2 1 —[2J, (a )+J2(a ) —2J3(a )]J0(c )

4 [1+J2(a )JQ(c )]

(24)

e2 1 —[2Jf(2c )+J2(2c )
—2J3(2c)]JQ(a )

cc 4 [1+J0(a )J2(2c )]~

C„(1)=C„(1)=0

C,(2)= —
—,'a J~(a )J0(c),

C„(2)=—
—,'c J0(a)Jz(2c),

C (3)= ——'a [JI(a ) J3(a )]J0(e),

C„(3)= —
—,'c2[J~&(2c ) —J3(2c )]J0(a ) .

(23)

If j&0 then these orbits are called t th-order accelerator
modes.

The condition for the first-order accelerator modes
t =1 for Eq. (1) is that —VV(x)=2m'j=2vr(r, s), where r
and s are integers, and y=0. Using the potential (3), with
b =0, implies that
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2m(s —r) .
~ 2 2ns

sin(x ')=, sin(x '+x') =-
a c

(26)

Thus these can exist only if
~
c

~

~ 27r ~s ~
and

~a~ ~2m ~r —s~. In general, there are four such fixed
points for each (r, s), of which only one is stable. The re-
quirement for stability (all four eigenvalues of modulus
unity) is determined by linearizing the map about the ac-
celerator orbit

ay 0, (a —8)(y —4) 16, 0 a+2y 8,
where

a —=a cos(x ') =+[a —4m (s r) —]'

y =c cos(x '+x ) =+(c 4n s —)'
(27)

The regions of parameters where the stable first-order ac-
celerator modes exist are shown in Fig. 2.

In the case of area-preserving maps, the existence of a
stable accelerator mode causes the series for the diffusion
coefficient to diverge. This is due to two effects: first, if
the region % is chosen to be the entire phase space, then
initial conditions trapped in an accelerator mode (which
by the KAM theorem' have nonzero measure) are includ-
ed in the average. ' Since b,y increases in proportion
to t for such initial conditions, D necessarily diverges.
The characteristic functions must include this effect;
however, extracting it from the formulas appears
difficult.

Second, even if initial conditions trapped in an ac-
celerator mode are not included in the average, numerical
evidence indicates that the correlation function decays as
t ' for large time where z is in the range 0.3—0.5. ' '"
This is due to long-time trapping of stochastic orbits near

"sticky" islands. Consequently, the series (5) must be
divergent even if % is chosen to be the connected stochas-
tic region.

This divergence might be expected to be less severe in
higher-dimensional maps because initial conditions in the
neighborhood of an elliptic orbit can still escape by the
mechanism of Arnol'd diffusion. However, this escape
can be slow, ' and may still give an algebraic decay of the
correlation function.

VII. NUMERICAL EXPERIMENTS

The diffusion tensor can be computed directly from Eq.
(4), interpreting the average as a sum over a grid of initial
conditions in phase space. We iterate each initial condi-
tion for a time T, and estimate the statistical errors in 0
by the RMS deviation of the results for the different ini-
tial conditions. The RMS deviation is seen to decrease as
inverse of the square root of the ensemble size.

Comparison of the numerical results with the principal
term theory is shown in Fig. 3 for a=3.0, as c varies
from 0.0 to 5.0. Here we chose a grid of 10 initial condi-
tions, and iterated each T=50 times. The plots (a) and
(b) show the values of D„and D„normalized to their
quasilinear values, respectively. The contribution of D„
to D» is comparable to D„when c is small [Fig. 3(c)].
For larger c, D„ is consistent with zero (statistical errors
due to the finite ensemble prevent an accurate measure-
ment). Results for various ranges of parameters show
that providing a and c are larger than 2, the principal
term results agree extremely well with the numerical ex-
periments.

In the region of parameter space where a first-order ac-
celerator mode is stable, the diffusion coefficient is
enhanced when the ensemble is T X 7' . As in the case
of the standard map, the peak in the diffusion coefficient
grows as T is increased, indicating that convergence has
not been obtained. To exhibit the role of the accelerator
mode, we choose initial conditions at y=O, with x chosen
on a 10 X10 grid: the location as well as the size of
stable islands varies as parameters vary; however, first-
order accelerator modes are always at y=O. Figures
4(a)-4(c) demonstrate divergent behavior of D„ in T due
to the first-order accelerator mode with j=(1,0).

To attempt to eliminate orbits trapped on invariant
tori encircling the stable accelerator mode, we choose an
initial condition near the unstable fixed point y=O, and
x=(0.5, 0.5), iterate it a large number of iterations, and
break the orbit into n segments of length T to obtain
statistics,

I

I

27t

FIG. 2. Accelerator mode stability regions. Parameter re-
gions for the existence of the first-order accelerator modes with
various j's are shown. An orbit trapped in the j= (r, s ) mode
propagates by 2vrr in the y' direction and by 2ws in the y direc-
tion upon each iteration of the map. The mode j=(0,0), the
fixed point, does not contribute to acceleration.

(28)

The result is shown in Fig. 4(d) with n =10, T=10 for
the same parameters as Fig. 4(c). In contrast to the
area-preserving case, these results show little dependence
of the diffusion coefficients on T. This can be interpreted
that the trapping time distribution of a stochastic orbit
near the accelerator mode decays rapidly enough that the
diffusion series converges. We will study the decay of
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correlations for this situation in a planned paper.
When either of the parameters is small, the effect of

trapping is conceivably important. Thus, to study small c
regime we use the single, long-orbit statistics introduced
above. Our numerical results imply that as c approaches
zero, D„ limits the diffusion of the standard map for the
given value of a, as would be expected. On the other
hand, though D„appears to scale like c as c goes to
zero, it does not seem to converge to its quasilinear value

consistently for all values of a, as would be expected on
the basis of Eq. (24). Rather, it is observed that
lim, oD„/D &

depends on a, only approaching 1 as
a ~ ao. This is shown in Fig. 5, setting c = 10 (which is
small enough to be considered as the c ~0 limit), n = 10,
and T= 10 . Note that there appears to be a correlation
between D„/D I and D„/D &, which is also shown in

Fig. 5, though an improvement in statistics would be
necessary to prove this. The relative behavior of D„and

1.5.

=3.0 a=3.0

(c)
0.0

-0.5 .0

FIG. 3. Comparison of numerical diffusion coefficients with theoretical results. The dotted curves represent the theory which in-

cludes up to the third-order correction to the quasilinear result. The principal term results are drawn with the solid curves. The sta-
tistical ensemble consists of 10 orbits of length T=50 with their initial conditions chosen from an uniform grid over the whole phase
space. The error bars give the rms deviation from the average values. (a) D„and (b) D„are normalized to their quasilinear values,
respectively. (c) D„ is normalized to D„. Its fluctuation for c 2.0 is of the order of D„; however, considering its contribution to
D», it is still consistent to zero.
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approximation to D as long as the correlation function
decays rapidly.

We show that stable accelerator modes enhance the
diffusion. For the area-preserving case these cause the
divergence of D; however, for higher dimensions this ap-
pears to be no longer true when the ensemble of orbits
does not include the accelerating invariant tori. The
long-time behavior of the correlation function for a sto-
chastic orbit is still under investigation.

The thick-layer model of diffusion is appropriate when
a is large and c is small. In the limit c ~0 the motion in
the two canonical planes is separable, and when b =0 the
(x,y ) motion is integrable. The transport in this limit

is described by the quantity lim, oD„/D t. While this
function approaches 1 as a increases, it appears to depend
on a due to short-time correlations in the (x ',y') plane.
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