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The statistical properties of the third-order nonlinear dissipative oscillator, which evolves from

any state, are derived on the basis of the exact solution to the master equation. Some important
features of the nonlinear oscillator model, such as the recurrences of the initial state, are related to
the properties of quasidistributions connected with the phase of the complex field amplitude.

I. INTRODUCTION co ( tt ttl + ] ) + tty +2g 2 + y f ( b t b +2 )

The one-dimensional quantum anharmonic oscillator
plays a significant role in applications. For instance, the
nonlinear oscillator may be useful even in understanding
the classical phenomena of light propagation. ' Various
modifications of this model are closely related, although
they differ from one another by either the interpretation
or the ordering of the position and momentum operators,
which can be considered to correspond to either the real
physical space or a more general phase space.

Optics provide the applications with this nonlinear os-
cillator model that has basically the same steady states as
the linear oscillator, but the eigenfrequencies changed. '

This nonlinear oscillator is interesting not only from the
viewpoint of the quantum statistical physics, but it also
develops in the context of nonlinear quantum optics with
all its requirements and simplifying assumptions.

In Refs. 5 and 6 dissipation was included by coupling
the oscillator to a zero-temperature heat bath and in Ref.
6 a most general input state was considered. In Ref. 7 the
assumption of zero temperature was removed, but the ini-
tial coherent state continued to be assumed. The in-
volved quantitative results confirmed the qualitative pre-
dictions that some interesting quantum features can be
destroyed by dissipation. The quantum coherence effects
are explained in terms of the interference in phase space.
In this context it is obvious that many authors prefer not
to include dissipation on studying the nonlinear oscillator
evolving from more general initial states, but their as-
sumptions lead to interesting numerical results.

In this paper we present the statistical characteristics
of the third-order nonlinear dissipative oscillator respon-
sive to the requirements of quantum optics and estab-
lished without any restrictions on the initial state.
Another interpretation of the quantum coherence is pro-
vided.

+ g (tc bio +tc"b 8)

Here & (8 ) is the photon annihilation (creation) opera-
tor, to is the frequency of light, tc is a real constant for the
intensity dependence, b, (b t) are the boson annihilation
(creation) operators of the reservoir oscillators with the
frequencies g, and tc are the coupling constants of the
interaction with the reservoir.

In the standard treatments of the quantum theory of
damping the master equation for the reduced density
operator p„ in the interaction picture [it~exp(icot)ct]
can be derived

—p„=—ttc(& 8 p„—p„& d )

++(2&p„d —I ap„—p„8 8)

+yn(a p, Q+&p„& —a &p„—p„88 ), (2)

where y is the damping constant and n reflects the
thermal properties of the reservoir. Considering the
classical-quantum correspondence'

CP~ = tr 'P, (3)

related to the quantum-classical correspondence
C '(tl "a +') =a"a', where the complex amplitude a
corresponds to the operator exp(itot)&, we obtain the gen-

eralized Fokker-Planck equation for the quasidistribution

P~(a, t):

P&(a, t)= i—a2a~a~ . +a —c.c.a ~ a ~
a'

at A t)a

II. QUANTUM DYNAMICS

Modeling dissipation by coupling the third-order non-
linear oscillator to a reservoir of oscillators, we can write
the Hamiltonian of the considered system in the form

+y++ a +aa * a
2

+y(n+1) P~(a, t) .
a2

Baca'
(4)
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We assume that the initial state is described by the quasi-
distribution

$&(a,0)=exp( —
~a~ ) g g a a'"f „(0) .

m =On=0

Eq. (2) becomes the equation for P&(a, t):

a2—P&(a, t)= isa +c.c. +yn( —1+ ~a~ )
Ba

Expressing the quasidistribution P~(a, t) in the form

P~(a, t)=exp( —
~a~ )P~(a, t)

and using the rules

n 'C '(8 p„)=exp( —
~a~ )a'iI)~

n 'C '(p„tt t) =exp( —~a~')2 a

n 'C '(dp„)=exp( —
~a~ )

Ba

m 'C '(p„& ) =exp( —~a ~')a/~

(6)

(7)

a
y—(n+ ,' ) —a +c.c.

Ba

+y(n+1) P&(a, t) .
a2

BaBa'

Allowing the solution of Eq. (8) to have the form

iI)~(a, t)= g g a a'"f „(t),
m =On =0

we get the set of differential-difference equations

(8)

(9)

—f „(t)=[—yn —y(n+ —,')(m+n)+is(m n)(m+n ——1)]f „(t)+ynf i „ i(t)

+y(n+1)(m+1)(n+1)f +, „+,(t), m, n =0, 1, . . . , ~, (10)

for f „(t)subject to the initial conditions

f „(t) =f „(0) .

Except for n =0 the system (10) comprises the term
ynf, „,(t}, which represented an obstacle to obtain-
ing an exact solution. The assumption

—h „(t)=[A „+B „g „(t)]h „(t)
dt

+Cmnhm+i, n+i(t»

where 3 „,8 „,C „are de6ned as follows:

A „=i'(m —n)(m + n —1)— (m +n)

(16)

min(m, ni g J (t)f „(t)= g . , h, „,(t)mn

leads to the quasidistribution P&(a, t) of the form

P~ (a, t) =exp( —
~
a

~ )

(12) yn(m +n —+1),
B „=y(n+1)(m+n+1},
C „=y(n+1)(m +1)(n +1) .

(17)

X g g a a'"exp[~a~ g „(t)]h „(t),
m =On =0

(13)

The functions h „(t)obey the initial conditions

h „(t) =h „(0)=f „(0) .f=0

&he Cauchy problem (15) is solved by the function7
introduced in Ref. 7. Now we can express

d h„(t)+—h, „,(t)—g „(t)d
(14)

g „(t)= 2n

0, +hcoth yet
2

(19)

—g „(t)=y(n+1)g „(t}di

+ [ y(2n+ 1)+2ia—(m —n}]

Xg „(t)+yn, (15)

solved under the initial condition g „(0)=0, and
renders it possible to express (d/dt)h „(t) in the form
without the term h, „,(t),

in a form analogous to (10), but with the coefficients
dependent on g „(t). The comparison of the
coefficients at h, „,(t) provides the equation for the
suitable functions g „(t}:

where

0—= II „=1+2n i ( m ——n ),. 2K

r
„=[0—4n(n +I)]'~

For y=0 it holds that

g „(t)=exp[2ix(m n)t], —

for m =n formula (19) simplifies to

(20)

(21)

(22)
nr

go(t)=, n, =n [1—exp( yt)] . —
n, +1
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Seeking for the solution of the set (16), we make the
substitution

A general solution of the set of differential-difference
equations (24) reads

h „(t)=exp[A „t+8 „f g „(t'}dt')h'„(t) .
0

The functions h
' „(t }satisfy the relations

oo

h'„(t)= g n' —n!
(n+1)

g „(t)
n

'n' —n

where

hm„(t}=Cm„em „(t)hm+, „+,(t), (24)
m'!n'!x h, „,(0),m!n!

where we used the relation

(32)

e „(t)=exp [2i (r(m n—) y——2yn )t
L

e „ t' dt'= g „ t
0 yn

(33)

+2y(n+1) f g „(t')dt'
0

and they obey the initial conditions

h'„(t) =h'„(0)=h „(0)=f „(0) .

(25) As a consequence of (32), the functions h „(t) are ex-
pressed in the form

h „{t)=exp A „t+8 „f g „(t')dt'
0

Now, we assume that m ~n without loss of generality.
Taking account of the form of the relations (24), we see
that we can assume h „(t)=0 for m )m', n )n', and
h'.„(0)=1 for fixed m', n' (m') n') and this initial con-
dition leads to a steady component of solution to {24),
h

' „(t}=l. I—n this case the relations (22) become recur-
sive, Denoting

'1

X g — g „(t)1 (n+1)
I=O n

(m +I)!(n +I)!
h (0) (34)

d—h', „,(t)=C, „. ,e „(t)h' „(t) (27)

and we can solve them step by step obtaining erst

h', „,(t}=C,„. , e „{t')dt', (28) +y(n+1) f g „(t')dt'

secondly,

1
m' —2, n' —2{t} m' —2, n' —2 m' —1, n' —1

0 sinh +b cosh
yht yet

2 2

(35)

x f e „(t')dt'
0

'2

and using the relation (33), we rewrite (34) as

etc. The method of mathematical induction provides
k

k(t)= g C,„, , f e „(t')dt'
h „(t)=exp 2iz(m——n)++ t E +„"+'(t)

which may be written in the form

(30)
I

1 (n+ 1) (m + I)!(n +I)!X —, g
1 1I=0 '. rn. n.

n' —n
1h'„(t)= g C . ,„, , f e „(t')dt'

n' —n
Xh +(„+({0). (36)

(31) With the aid of (34) the relation (12) becomes
I

f „(t)=exp —2ia(m n)+ ~ t E —+„"+'(t)

1 (n+1) (m +I)!(n+I)! 4n(n+1) . 2 yet—n t +(„+(0 F —m, —n, 1 +1; srnh
2

(37)

where F( —m, n, !+1;x) is—the hypergeometric function. Let us note that for n =0 we arrive at the formula (12) from
Ref. 6 for f „(t)using the limit value
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lim —g „(t)= (1—expI[ —y+2ia(m —n)]t I ) .1

o (t
"

y —2i(r(m —n)

In the case m & n we use the fact that f „(t)= [f„(t)]'.

(38)

III. PHOTON STATISTICS AND SQUEEZING

The quasidistribution P&(a, t) plays a substantial role when determining the photon statistics and squeezing proper-
ties of the radiation under consideration. Starting from its form (13), we establish the antinormal characteristic func-
tion

nt 1
C& (p, t ) = f p& ( a, t )exp( pa' p'—a )d a =m

0 m! 1 —g „(t)

m+1
(t)pm

—n

1 —g „(t)
(39)

where the Laguerre polynomials are used,

n

L„'(x)=I (n+l+1) g
0 j!n j—!I j+l+1

Using the identity

f eXp( —C~P~2)Pm
—n+sPesd 2P ~$ „S!C

—s —1

we may express the normal generating function

(40)

(41)

C&~(X,t)= f exp —!Ip! ——1 C~(P, t}d P

(1—A, )

[1—g (t)(1—X)]

(42)

C'~'(X, t)= y. (1—X)"p(n, t)
n=0

(43)

we obtain the photon number distribution

In accordance with the corresponding results in Ref. 6
this function depends on the diagonal elements
g(((t), h (t), only and as is evident from (19) and (36) the
dependence on rc is ruled out.

On the basis of the relation

[g(((t)]"
p(n, t}=en! g h (t)=~n!f„„(t).

n —m! (44)

The factorial moments of p (n, t) can be determined with
the aid of (44) because it holds that

( W'")~= g '
p (n, t),

n —k! (45)

Xh„+( kn(t)—

(n +l)!f„+( k „(t), k ~ l,
n=0

(46)

while for k & I we consider the complex conjugate quanti-
ty. Respecting the dependence (36), we can rewrite (46)
in the following way:

a consequence of the relation (43). The formulas (44) and
(45} yield, after some rearrangement, the formulas (48)
and (49) in Ref. 6, respectively. Formula (44) implies
m.g„n!f„„(t)= 1.

The quasidistribution (ts&(a, t) enables us to calculate
the expectation values of the antinormally ordered field
operators

(g Q tl) ( k nl) f k nip (a t)d2a

n +I +1oo
1=sr g (n+l)!

1 gl k( t)— —

(8 d ') =n. exp 2ia(l —k—)+~ t E(' k+'(t) 1

2 1 g, „(t)—
X g (n+1 k)!n!f„+,—„„(0)g (n —j+l)!

0 j!(n —j)!(n —j+ I —k)!
(n+1)

g, k(t)
n

E( k(t}
1 gl «(t)—

'n —j

The formula (47) simplifies in cases k =0, l&0 and k = 1,l = 1 to the form

and

) =nexp 2i al + . t—
2

El(t)
' I+].

(n + l)!f„+(„(0)G("(t),
g( ' .=0

(48)
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Eo(t) Eo'(t}
(8& ) =m. exp g n!f„„(0) n Go '(t)+Go(t)

2 [1—g (t)] „"" 1 g—o(t}

=exp( y—t)[(&(0)8 (0) ) —1]+n, + 1, (49)

where

n+1
G, (t) = g,(t}+,1=0,1, . . . , ~,

1 gi(t—)
' (50}

respectively. In particular Go(t) =1.
Considering the quite reservoir case (n =0), we use (38)

and the following limit relations:

again the origin of the recurrences of the initial state with
the aid of an analysis of the quasidistribution P&(a, t)
oriented to its relation to the density matrix elements in
the number-state basis.

Remembering the third-order nonlinear oscillator
models, we introduce their interaction-picture interaction
Hamiltonians

lim g&(t) =0,
n —+0

lim E&(t)=exp — +ill t
n~0 2

P=Wat2a',

8=Ac(d t&)

(51)
Without dissipation the functions f „(t}read

(ssa)

(55b)

lim GI(t)= y 2iz—l exp[( —y+2i~l)t]
n~O y 2i ~1—

Using the moments (48) and (49), we determine the
squeezing properties of the third-order nonlinear dissipa-
tive oscillator. Defining the operators Q and P in terms
of the operators &,8 ~,

Q = ted+it, P= —i(8 —& ), [Q,P]=2i 1, (52)

we can deduce squeezing either from the variances

((b&~) ) = —122[(b &M )+Re((58) ) ]

or from the quantity

X= —1+2[(~&~&') —1((~&)')I'] . (54)

According to the standard definition of squeezing, " this
phenomenon is observed if min(((EQ) ), ((hP) ) }&1;
the principal squeezing' ' occurs under the condition
k&1.

The principal squeezing definition may be advanta-
geous in the case of the nonlinear oscillator because the
free-field frequency is here modified by the self-
interaction and depends on the intensity of the field.
Thus the quantity A, , which is phase independent, is also
independent of this effect.

IV. QUANTUM COHERENCE

The quasidistribution 4~(a, t) itself illustrates a num-
ber of important features of the third-order nonlinear os-
cillator model. It is familiar that without dissipation the
initial state repeats after a certain time interval, viz. , the
period. The period attained in our case differs from that
of the model in Ref. 7 due to the ordering of the field
operators. %'e will show that our period is half theirs.

In Ref. 5 the role of higher-order derivatives in the
equation of motion for the Q function (equal to mP~)
with respect to the revivals of the initial state was ex-
plained and in Ref. 7 it was pointed out to the interfer-
ence in the phase space as a possible source of this quan-
tum effect. In this section we would like to expose once

f „(t)=exp[is(m —n)(m +n —1)t]f „(0), (56a)

f „(t)=exp[is(m n)(—m +n)t]f „(0), (56b)

and they determine the quasidistributions P&(a, t) with
respect to the formulas (6) and (9). From (56a) and (56b)
it follows that the functions f „(t) have the shortest
common period t, =n/a, tb=. 2.m/~, respectively This.
period is possessed, for instance, by the function

fzo( t) =exp(2iet) f2o(0),

f~o(t}=exp(iKt)f ~o(0)

(57a)

(57b)

in the model (55a) and (55b), respectively. All relevant
quantum statistics repeat after this time interval. Recal-
ling the respected role of the classical dynamics in the
previous considerations, ' ' we present the classical
equation for the complex amplitude

a'(t}=exp(i2x~a(0)~ t)a'(0) . (58)

For the trigonometric form a=r exp(iy) of the complex
amplitude the formula (59) reads

We observe that the rotational shear occurring in the
classical description can be reduced and/or eliminated by
the assumption of discreet values for the intensity ~a(t)~
and we establish the corresponding periodicity to the case
b for ~a(t)~ =0, —,', 1,—'„2, . . . .

To investigate the periodicity we express the quasidis-
tribution P~(a, t) in terms of the density-matrix ele-
ments

1
ply 4 n

P~(a, t)= —g g p„(t), exp( —~a~ ),~ ~ =o n =o (m!n!}'"
(59)

where'

p„(t)=(n!m!)' mf „(t) .
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P&(r, p, t)=rP&(r exp(iy), t}
1

m+n+1
X Pnm(—0 =0 (m!n! )

respectively, which can be verified easily by substituting
(56a) and (56b} in (63).

The set of equations (69b) for the functions P, (y, t) can
be derived on substituting the series

Xexp( —r )exp[i(m —n)q&] .

(61)

f(r, q, t) = g 5(r —1'")P,(~, t),
I

(71)

or, equivalently,

I (1 +1)
P, (q, t)=

2 X ft+k, t k(t)e—xp(i 2k') .
k= —I

Let us note that it holds

Pi(y+n. , t) =(—1) 'P, (tp, t),
because

(64)

exp(i2k2r) = '
exp(+i2r) = —1=(—1) ', 1=—,', —'„.. . ,

1=(—1) ', 1=0,1,2, . . . . (66)

Since it is valid that

r f"OI(V, t)de=I .
I

(67)

the functions Pt(qr, t), 1=0,—,', 1, —,', 2, . . . , form a quasi-

distribution. Substituting the quasidistribution P&(r, tp, t)
in the form (62) into the equation [cf. the generalized
Fokker-Planck equation (4) for y=O, n =0 in the polar
coordinates]

Putting m =1+k, n =I —k, where 1=0,—,', 1,—'„2, . . . ,
and k = —I, —1 + 1, . . . , 1 —1,1, we rewrite (61) as

2
P~(r, y, t)= g r '+'exp( r)P—t(y, t),

I

where

I'(1+1) ' Pt «, t+k-t
2nk .

t [(I—k)!(I +k)!]'i

(63)

where 5 is the Dirac 5 function, in the classical Liouville
equation

P(r—, tp, t) =tt2r P(r, gr, t) .
a(p

Because of the following:

f f P(r, y, t)dydr =1,

(72)

(73)

gem gnf „(0)=
, ,

exp—(—I(i')
~ ~

and the corresponding quasidistribution PI (p, 0) reads

p
1 p 1

(74)

the function P(r, tp, t) given in (71) is a quasidistribution.
It is evident that the sec'ond-order term in Eq. (68a) and
(68b) occurs due to the presence of the smooth functions
2[I (1 + 1 ) ] 'r '+ 'exp( —r ) in the series (62) instead of
the singularities 5(r —1 i

) in the series (71).
The equations of motion (69a) and (69b) evoke the pic-

ture of the quasidistributions Pt(y, t) rotating in a clock-
wise direction with the angular velocity «(21 —1),«(21),
respectively. In the case (55a} the quasidistribution
Pt(qr, t) for I =

—,
' is not moving and for 1 =1 it is rotating

with the angular velocity ~ but according to the formula
(65) it consists of two identical parts, hence the circular
frequency is 2«and the period is n. /a. In the case (55b)
the quasidistribution p, i2(p, t) is rotating with the angu-
lar velocity «and with respect to the formula (65) it con-
sists generally of two different parts, thus the circular fre-
quency is «and the period is 2nl«

For the coherent state ~g) it holds particularly that

P&(r, y, t)= —Ir 2r —1+ra a a
at ap ar P~(r, tp, t),

(68a)

g'= [(]exp(i g) . (75)

The time development of (75) with respect to the two
nonlinear oscillator models is governed by the formula

a a 2 a—P~(r, q), t)= i~ 2r +r
Bt

'
By Br

(68b)

(0, t) = [~(21 —1)]pt(V, t),B B

Bg

(0, t}= [«(21}]gt(V,t) .
B B

Bt

(69a)

(69b)

Of course, it has the solution

Pt(y, t) =Pt(y+~(21 —1)t,O),

P, (p, t}=PI(p+ir(21)t, O),

(70a)

(70b)

we arrive at the set of equations for the functions Pt(y, t),

Pt(tp, t)=, exp( —i(i )
1 2 1

X I ig[cos[qr —g+~(21 —1}t]I

„,e"p( —i(i'}1 p 1

'+2
X } i g i cos[p —@+sc( 21 )t] }

' .

(76a)

(76b)

Analyzing these relations, we can find that although the
period in the model (55a) does amount to one-half the
period in the model (55b), the physical state at the time
t =

—,'(2r/2«) in the case (55a) corresponds to that at the
time t =

~i (2r/z) in the case (55b), i.e., at equal times, with

regard to the squeezing properties.
The considerations in this section confirm the picture
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that the quantum coherence is sensitive to dissipation
since it consists in the harmony of the orbits
t'ai =0, —,', 1,—,', 2, . . . . The dissipation does not only
mean that the system as described by Pt(qr, t) descends to
the lower values of half-integer intensities I, but also that
the quasidistribution Pt(tp, t) may rotate with velocities
which do not preserve the harmony of motion.

V. CONCLUSION

Using the master-equation approach, we determined
the quasidistribution related to the antinormal ordering
of field operators for the third-order nonlinear dissipative
oscillator being initially in an arbitrary state. With the

aid of the standard techniques the photon number distri-
bution, its factorial moments, and squeezing characteris-
tics were established. The photon statistics proved to be
independent of the nonlinearity, so that they coincide
with those for the linear dissipative oscillator. The tradi-
tional and principal squeeze variances were expressed in
terms of the lowest antinorm. ally ordered moments. The
investigation of new quasidistributions connected with
the phase of the complex field amplitude conveyed more
information on some important properties of the con-
sidered radiation, especially the recurrences of the initial
state. For the initial coherent state results consistent
with those of Daniel and Milburn were obtained.
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