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Microscopic theory of the continuous measurement of photon number
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This paper proposes a microscopic model for the continuous measurement of photon numbers,
where the continuous measurement is simulated by a sequence of infinitesimal processes. Each
process is composed of a unitary evolution for the coupled system, which consists of the field and
the measuring apparatus, followed by a projection according to the readout of the measuring ap-
paratus. The proposed model consists of two-level atoms that are coupled one by one with an op-
tical cavity field via the electric-dipole interaction. Each atomic level is then read out after the
interaction, causing a nonunitary state reduction of the field. In particular, it is sho~n that this
microscopic model leads to the Srinivas-Davies model that has been postulated for the photodetec-
tion process.

Continuous photodetection is an interesting quantum
measurement process because the photon number is mea-
sured continuously rather than instantaneously owing to
the one-by-one conversion of photons into photoelectrons.
The quantum theory of the photodetection process, which
takes the measurement back action into account, was first
treated by Mollow. ' In his treatment, however, unitary
evolution of the field-detector system is assumed until the
photoelectron number is measured. The quantum theory
of continuous photon counting was initiated by Srinivas
and Davies, 2 in which they postulated a model for one-
count and no-count processes, namely, the Srinivas-Davies
model (SD model). A theory for nonunitary evolution of
the field under continuous photon counting has been
developed by the authors 4 based on the SD model. The
SD model has been, however, a postulate which has not
been explained microscopically. The present paper gives a
microscopic foundation of the SD model, using the
Jaynes-Cumming Hamiltonian (JC Hamiltonian) for the
field and a two-level atom. Zoller, Marte, and Walls also
pointed out that the solution of a master equation for pho-
toemission, which is derived from the JC Hamiltonian,
can be expressed by one-emission and no-emission pro-
cesses similar to the SD model. In contrast, we derive the
SD model directly from the JC Hamiltonian. A general
theory of continuous measurement has been developed by
Barchielli, Lanz, and Prosperi and specific models are ex-
amined by Caves and Milburn for the position of a free
particle. The present paper, on the other hand, treats the
continuous measurement of photon numbers.

In the SD model, the one-count process and the no-
count process play major roles. (i) The one-count process
is described by a superoperator J such that

p(t + ) ts- Jp(t) =)ap(t) a f, —

where p(t) and p(t+) are the field-density operators be-
fore and after the one-count process, A, is a constant that
denotes the magnitude of coupling between the field and
the detector and it means the reciprocal expectation value

of waiting time for a single-photon state, and a (a ) is the
photon annihilation (creation) operator. (ii) The no-
count process is described by

p(t + r) tx: S,pt = exp—[( i to ——
)I,/2)nr] p(t)

x exp[(ito —X/2) nr], (2)
where ta is the optical frequency of the mode under con-
sideration, n (—=a a) is the photon-number operator, and
r is the time during which no photon is counted from t to
t+r. Equation (2) is derived from Eq. (1) by assuming
that the one-count process and the no-count process form
an exclusive exhaustive set of events. 2 Equations (1) and
(2) are, however, postulates and a microscopic derivation
of the above SD model has not been presented to date.

As has been pointed out in Refs. 2 and 10, the SD mod-
el cannot be described by von Neumann's projection pos-
tulate, " according to which an arbitrary density operator
p is Jirojected onto PpP with a probability P(X)
—=Tr[Pp(t)P], where P—= ~X)(X~ is the projection opera-
tor, and

~
X) is an eigenvector of the measured observable

X with eigenvalue X. Since annihilation operator a is not
a projection operator, it is obvious that the SD model, ex-
pressed by Eq. (1), cannot be described by von Neu-
mann's projection postulate. In other words, von
Neumann's postulate is applicable only to a first-kind
(nondestructive) measurement while the photodetection
process is a second-kind (destructive) measurement. It is
therefore necessary to generalize the concept of quantum
measurement so that it includes not only measurements
described by an instantaneous projection but also includes
continuous measurement processes, such as the photo-
detection process described above.

In this paper, we propose a general microscopic model
of continuous measurement and apply this model to the
photodetection process. The main idea is that continuous
measurement can be accomplished by the simultaneous
progress of system-apparatus coupling and readout of the
measuring apparatus. This process is simulated by a se-
quence of infinitesimal processes, each of which represents
system-apparatus coupling via unitary interaction fol-
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lowed by the readout of the measuring apparatus.
Let us consider that the system and the apparatus are

coupled via an interaction Hamiltonian, 0;„t. The cou-
pled density operator after the interaction then becomes

p, .(~r) -Up, (O) ep. (0)U', (3)

where p, ,—(At) is the coupled density operator after in-

teraction time At, U is a unitary operator defined as U
=—exp( iH;„—iht/h), and p, (0) and p, (0) are the initial
density operators for the system and apparatus, respec-
tively. When the apparatus is measured by a process de-
scribed by a projection operator in a Hilbert space, the
state of the system after the measurement of the ap-
paratus is obtained, using the probability-operator mea-
sures for the coupled systems, ' as

.&XIp, ,(~r) IX).
Io, ht

Tr, (p, ,(ar )p,'""']
Tr, —.[p, —.(a )rp.'""] '

p, (0) p, (ht;X) M[Up, (0)ep, (0)U ], (5)

with measurement readout X.
Repeating the above process yields a sequence of

readout values Xi, X2, . . . for every time interval dt. The
time evolution of the system density operator after t Nht
is obtained by making N successive operations of the
above process as

where p, (ht) is the system density operator just after the
measurement of the apparatus, IX), is an eigenvector of
the apparatus observable X, with an eigenvalue of X, and

p,"' = IX)„&XI. Symbols Tr„Tr„and Tr, —,denote
traces over the system, the apparatus, and the system and
apparatus, respectively. After the apparatus observable is
measured, the state of the apparatus is reset to its initial
state in order to prepare for the next measurement. If we
write the measurement process expressed by Eq. (4) as
p, (dt) M[p, —,(ht)], then the total process within a
time interval of ht is characterized by the state change for
the system as

P, (N&t+I, X2, . . . ,XN) M~'[' ' ' M2[UMI[UP, (0)I8IP, (0)U ] P, (0)U ]8

H;„,- Irig(ae'+a'a), (7)

where a is the level-lowering operator for the two-level

where M„depends on readout X„. If we make h, t 0
(and N ~ with Nht t), the readout becomes a func-
tion of time as X(t). The nonunitary state evolution of
the system depends on all readouts X(r) (0 ~ r ~ t) and
the initial state p, (0). Therefore, p, (t) is expressed in a
functional forin as p, (t) f[X(r)(0» r ~ t), p, (0)]. In
order to obtain an explicit expression of f[X(r)(0~ r
~ t), p, (0)], a more specific model for the system and
apparatus is needed. It should be noted that in making
dr 0, the magnitude of the coupling between the system
and the apparatus should be changed appropriately, as
will be discussed in a later example [see Eq. (16)].

Now, let us apply the above theory to the photodetec-
tion process schematically shown in Fig. 1(a). The photo-
detector is coupled to the optical field in a closed cavity so
weakly that the detector does not absorb more than one
photon in an infinitesimal time interval. The output of the
detector is a time sequence of photoelectric current pulses,
each of which represents the detection of one photon. Fig-
ure 1(b) shows the physical model we propose for the pho-
todetection scheme in Fig. 1(a). Here, two-level atoms
that are prepared initially in the ground state are driven
into the cavity one by one. Each atom passes through the
cavity within the same time duration ht so that it interacts
with the cavity field via the electric-dipole interaction dur-
ing ht. This interaction causes a unitary evolution of the
atom-field system. After passing through the field, the
level of each atom is measured. This causes a state
change in the optical field. An atom in the upper level
corresponds to the one-count process, and an atom in the
ground state corresponds to the no-count process.

The electric-dipole interaction can be described' by
the JC interaction Hamiltonian:
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FIG. 1. Photon-counting system for an optical field in a
closed cavity. (a) The real system being considered. The densi-

ty operator of the field gradually changes into the vacuum state
as the photodetection process proceeds. (b) Corresponding
physical model. Two-level atoms in the ground state are succes-
sively driven into the cavity one by one. The atoms are excited
with a small probability, and the atomic level is measured.
Atoms in the excited level correspond to one-count processes,
and atoms in the ground level correspond to no-count processes.

I

atom defined by 8=
I g)„&e I, where I g), and I e), are

state vectors for the ground and excited states, respective-
ly. For each time duration [to, to+At], the initial state is

expressed as

p(to) pf(ro) I g) &g I
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where p(to) is the initial state of the atom-field system, pf(to) is the initial state of the field, and
~ g&„&g ~

is the ground
state of the atom. The evolution of the density operator for the total system can be written, in the interaction picture, as

p(t) -p(to)+ gm-o

' m
l fi 0 &m- I

„,dti„, ct2 „', dt [H;„,(ti), [H;„,(t2), . . . , [8;„,(t ),p(to)]. . .]].

Using Eqs. (7), (8), and t —= to+At, p(to+At) is expressed as'

p(to+At) p(to)+igAt[pf(to)a I g&. o&e I apf(to) 1 e&«&g I ]

+ [[pf(to)ri+ripf(to)18 [g&«&g (
—2apf(to)a ) e&«&e

~ j,
2

(io)

where the two-level atom is assumed to be resonant with the field frequency. Here, we consider up to the second order of
the perturbation because the second-order term is the lowest order that describes the real transition. Higher-order terms
can be neglected for the present case because each atom is assumed to pass through the cavity in an infinitesimal time At.

When the atomic level is measured, the associated state reduction of the field is calculated using Eq. (4) for the one-
count process and the no-count process. (i) For the one-count process, p,"' is equal to ~e&„&e (. Substituting this

p,
"' and Eq. (10) into Eq. (4), we obtain

J[pf(to)]At = [g'Atapf(to)a']At . (»)
(ii) For the no-count process, p,"' (t) is equal to

~ g&, ,&g ~
. Using Eqs. (4) and (10), we obtain

At
5«[pf(to)] exp( —itori At) pf(to) — [pf(to)ri+ripf(to)] exp(itonAt), (i2)

where the picture is changed into the Schrodinger picture from the interaction picture. Since At is very small, we can
write

pf(to) — [pf(to)n+npf(to)] exp — nAt pf(to)exp nAt
(gAt)'. . .. (gAt)' . . (gAt)' .

2 2
'

2

Using this, Eq. (12) can be written as

S«[pf(to)] exp —to — nAt pf(to)exp ico — nAtg ht g ht
2 2

If we set r NAt (N is an integer), the N successive operations of Eq. (14) yield
P

ght . . ghtS,[pf(to)] exp —ito — rir pf(to)exp ito — nr

(14)

(15)

Equations (11) and (15) describe the one-count and
no-count processes of the present model, respectively.
Both processes describe the nonunitary evolution for the
field owing to the continuous measurement. The factor
g At in Eqs. (11)and (14) represents the photon-counting
rate, which is the reciprocal expectation value of waiting
time for a single-photon state. We set this factor as

A, =—g ht.

Hence, Eqs. (11) and (14) become Eqs. (1) and (2), re-
spectively, that is, the SD model.

The present argument indicates that the SD model,
which has been postulated, turns out to be equivalent to a
sequence of infinitesimal processes, each of which is com-
posed of a unitary evolution via the electric-dipole interac-

I

tion and the projection onto the atomic level. Thus,
continuous-state reduction by one-by-one photon counting
is describable by successive-state reductions with the
readout of the coupled measuring apparatus.

The present theory is not limited to destructive continu-
ous measurements but can also be applied to nondestruc-
tive continuous measurement. If the unitary coupling be-
tween the system and apparatus is associated with an in-
teraction which satisfies the quantum nondemolition
(QND) conditions, ' then the process becomes a continu-
ous QND measurement. This subject will be reported
elsewhere.
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